
ar
X

iv
:2

20
8.

05
41

2v
1

 [
cs

.I
T

]
 1

0
A

ug
 2

02
2

Equivalence of Insertion/Deletion Correcting Codes

for d-dimensional Arrays

Evagoras Stylianou, Lorenz Welter, Rawad Bitar, Antonia Wachter-Zeh, and Eitan Yaakobi

Abstract—We consider the problem of correcting insertion and
deletion errors in the d-dimensional space. This problem is well
understood for vectors (one-dimensional space) and was recently
studied for arrays (two-dimensional space). For vectors and
arrays, the problem is motivated by several practical applications
such as DNA-based storage and racetrack memories. From a
theoretical perspective, it is interesting to know whether the same
properties of insertion/deletion correcting codes generalize to the
d-dimensional space. In this work, we show that the equivalence
between insertion and deletion correcting codes generalizes to
the d-dimensional space. As a particular result, we show the
following missing equivalence for arrays: a code that can correct
tr and tc row/column deletions can correct any combination
of tinsr + tdelr = tr and tinsc + tdelc = tc row/column insertions
and deletions. The fundamental limit on the redundancy and
a construction of insertion/deletion correcting codes in the d-
dimensional space remain open for future work.

I. INTRODUCTION

Coding for insertions and deletions received a lot of at-

tention due to new applications such as DNA-based data

storage [1], [2], synchronization errors [3], [4] and racetrack

memories [5]. An important notion in this class of codes

is the equivalence of insertion and deletion errors. In his

original work [6], Levenshtein showed that a code can correct

t deletions in a length-n vector if and only if it can correct

any combination of ti insertions and td deletions such that

ti + td = t. A more intuitive proof of the equivalence, which

line of thoughts we follow in this work, is given in [7].

A code C correcting deletions in q-ary length-n vectors is

evaluated by its redundancy defined as R , n− logq |C|. The

redundancy of t-deletion-correcting codes is bounded from

below by t logq n−O(1) [6], [7]. The asymptotical tightness

of this bound is shown using the Varshamov-Tenengolts codes

[6], [8], [9] that can correct one deletion. Several recent works

considered constructing binary t-deletion-correcting codes,

t > 1, whose redundancy approach the previously mentioned

lower bound [10]–[17].

Codes correcting insertions and deletions in two-

dimensional arrays have been investigated in [18]–[23].

The model considered in [20]–[23] is that of coding for

ES, LW, RB and AW-Z are with the ECE department at the Technical
University of Munich. EY is with the CS department of Technion — Israel In-
stitute of Technology. Emails: {evagoras.stylianou, lorenz.welter, rawad.bitar,
antonia.wachter-zeh}@tum.de, yaakobi@cs.technion.ac.il.

This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 801434), from the Technical University of
Munich - Institute for Advanced Studies, funded by the German Excellence
Initiative and European Union Seventh Framework Programme under Grant
Agreement No. 291763.

row/column insertions and deletions in two-dimensional

arrays. In [22], Hagiwara constructed codes that can correct

up to tc column and tr row deletions where tr and tc are

predetermined. In [20], [23], the authors constructed codes

correcting a variable number of column and row deletions

for a predetermined number of total deletions. In addition,

they provided a lower bound on the redundancy of codes

correcting insertions and deletions in arrays. Moreover, they

generalized the equivalence between insertions and deletions

across each dimension (columns and rows), separately. More

precisely, the authors showed that given an integer t, a code

can correct tr and tc, for all tr + tc = t, row and column

deletions if and only if it can correct the same number of

rows/columns insertions. However, combinations of insertions

and deletions of columns (and rows) was not studied.

In this work we generalize the equivalence between codes

correcting insertions and deletions to the d-dimensional space.

In this setting, the insertions and deletions are defined as

(d − 1)-dimensional hyperplane insertions/deletions in a d-

dimensional array. In the d-dimensional space there are

d =
(

d
d−1

)
different types of (d − 1)-hyperplane dele-

tions/insertions. Each type of deletion is indexed by the

missing dimension. More precisely, let (x1, . . . , xd) describe

the axes of the d-dimensional space. Deleting a (d − 1)-
dimensional hyperplane not containing the axis xi is referred

to as an xi-deletion. See Fig. 1 for an illustrative example for

d = 3. For a vector t = (t1, . . . , td), a t-deletion refers to the

combination of ti xi-deletions for i ∈ {1, . . . , d}. We show

that a code can correct t-deletions if and only if it can correct

t-insertions. We extend this result to combinations of insertion

and deletions, i.e., we show that a code can correct t-deletions

if and only if it can correct any combination of tdel-deletions

and t
ins-insertions such that tdel+ t

ins = t. We show that the

number of xi-errors (insertions plus deletions) must remain

the same for the equivalence to hold.

II. NOTATION AND PRELIMINARIES

Denote the q-ary alphabet by Σq , {0, . . . , q − 1} and the

set of integers {1, . . . , n} by [n]. Moreover, denote the set of

d-dimensional arrays, in short called arrays, by Σ
⊗

d
i=1 ni

q =
Σn1×···×nd

q , Σn1
q × · · · × Σnd

q with entries in Σq. We

abbreviate Σn⊗d

q , Σ
⊗

d
i=1 n

q , if ni = nj for all i, j ∈ [d]. Let

(x1, . . . , xd) describe the axes of the d-dimensional space. For

two-dimensional arrays an x1-deletion corresponds to a col-

umn deletion and an x2-deletion to a row deletion. See Fig. 1

for an illustration in the 3-dimensional space. A t-deletion

http://arxiv.org/abs/2208.05412v1

x2

x1

x3

(x2, x3)-plane

(a) x1-deletion

x2

x1

x3

(x1, x3)-plane

(b) x2-deletion

x2

x1

x3

(x1, x2)-plane

(c) x3-deletion

Fig. 1: Illustration of all possible plane deletion or insertion

in a 3-dimensional array.

where t ∈ Z
d
≥0 corresponds to the combination of ti xi-

deletions for i ∈ [d], resulting in an array X̃ ∈ Σ
⊗d

i=1(n−ti)
q .

Moreover, a t-insdel where t = t
ins + t

del corresponds to the

combination of t
del-deletions and t

ins-insertions resulting in

an array X̃ ∈ Σ
⊗

d
i=1(n+(tinsi −tdeli))

q .

For X ∈ Σn⊗d

q and t
(d) ∈ Z

d
≥0, the set of arrays resulting

from a t
(d)-deletion in X is called the deletion “ball” and is

denoted by D
d
t
(X). We define a t

(d)-deletion correcting code

C ⊆ Σn⊗d

q as the code that can correct any t
(d)-deletion for

all X ∈ C. The all-zero vector with “1” in the i-th position is

denoted by ei. The 1
(d) denotes the all-one vector of length d.

Vectors t of the form t = (t, . . . , t) are denoted by t1(d). For

such vectors we denote the deletion ball by D
d
t1(X). The t-

insertion and the insertion balls Id
t
(X) and I

d
t1(X) are defined

similarly. Moreover, the set of arrays resulting from t
(d)-insdel

in X is called the insertion-deletion “ball” and denoted by

ID
d
t
(X). We define a t

(d)-insdel correcting code C ⊆ Σn⊗d

q

as the code that can correct any t
(d)-insdel for all X ∈ C.

For an integer t ≥ 0, a t(d)-deletion refers to the collection

of all possible t-deletions such that
∑d

i=1 ti = t. We define a

t(d)-deletion correcting code C ⊆ Σn⊗d

q as the code that can

correct any t(d)-deletion for all X ∈ C. The same notation is

used for insertions. For an integer a, we define δa(x) to be

equal to one if x = a and zero otherwise.

For j ∈ [d], the projection Pj projects an array X ∈

Σ
⊗d

i=1 ni

q along the xj -th axis to an array Pj(X) ∈ Σ

⊗i6=j

i∈[d]
ni

q
nj .

The projection Pj preserves the order of the axes, i.e., it

projects X from the space with axes (x1, . . . , xd) onto the

space with axes (x1, . . . , xj−1, xj+1, . . . , xd). Moreover, we

denote by P−1
j the inverse projection, or the expansion, of

an array X ∈ Σ

⊗i6=j

i∈[d]
ni

q
nj along the xj-th axis to obtain

an array P−1
j (X) ∈ Σ

⊗
d
i=1 ni

q . The inverse projection P−1
j

also preserves the order of the dimensions (x1, . . . , xd). For

example, given an array X ∈ Σn×n
qn in the (x1, x3) space,

the inverse projection P−1
2 (X) expands each entry of X to a

vector in Σn
q along x2 to obtain P−1

2 (X) ∈ Σn×n×n
q .

Next we state in our notation two preliminary results derived

in [20], [23] for the 2-dimensional case. Lemma 1 is used as

a building block of our proofs.

Theorem 1. [23, Theorem 1] A code C ⊆ Σn×n
q is a t(2)-

deletion correcting code if and only if it is a t(2)-insertion

correcting code, i.e., for any arrays X,Y ∈ Σn×n
q ,

D
2
t
(X) ∩ D

2
t
(Y) 6= ∅ if and only if I

2
t
(X) ∩ I

2
t
(Y) 6= ∅.

for any choice of t ∈ Z
2
≥0 such that t1 + t2 = t.

Lemma 1. [20] For a positive integer m and i, j ∈
[2], any two arrays X ∈ Σ

(m+δ1(i))×(m+δ2(i))
q and Y ∈

Σ
(m+δ1(j))×(m+δ2(j))
q , it holds that

D
2
ei
(X) ∩ D

2
ej
(Y) 6= ∅ ⇔ I

2
ej
(X) ∩ I

2
ei
(Y) 6= ∅.

III. SYMMETRIC INSERTION/DELETION EQUIVALENCE

In this section we prove the following theorem.

Theorem 2. A code C ⊆ Σn⊗d

q is a t1(d)-deletion-correcting

code if and only if it is a t1(d)-insertion-correcting code.

To prove Theorem 2 we need three intermediate results.

In Claim 1, we show that t
(d)-deletions and t

(d)-insertions

in an array X are not affected by the projection Pκ(X) and

the inverse projection P−1
κ (X) such that tκ = 0. We then

extend Lemma 1 to the d-dimensional space, cf., Lemma 2,

and use it as a building block in our proofs. In particular,

we use Lemma 2 to prove Theorem 3 showing that a code

is a 1
(d)-deletion-correcting code if and only if it is a 1

(d)-

insertion-correcting code. Having the aforementioned results,

proving Theorem 2 follows by showing that for any X,Y ∈
Σn⊗d

q , Dd
t1(X)∩Dd

t1(Y) 6= ∅ if and only if Idt1(X)∩Idt1(Y) 6=
∅. The proof holds by using the exact same steps as in the proof

of [20, Corollary 2], but extended to the d-dimensional space

and is given in Appendix A.

We start with the first intermediate result.

Claim 1. For any two vectors r1, r2 ∈ N
d such that there

exists a κ ∈ [d] for which r1,κ = r2,κ = 0 and any two arrays

X ∈ Σ
⊗

d
i=1(n+r1,i)

q , Y ∈ Σ
⊗

d
i=1(n+r2,i)

q , it holds that,

D
d
r1
(X) ∩D

d
r2
(Y) 6= ∅ ⇔

D
d−1
Pκ(r1)

(Pκ(X)) ∩ D
d−1
Pκ(r2)

(Pκ(Y)) 6= ∅,

where κ denotes the κ-th dimension in the d-dimensional space

and Pκ(rj) ∈ N
d−1 is equal to rj with the zero deleted in

the κ-th position for j = 1, 2.

The same statement holds for the insertion case.

Proof. We first prove the “if” part. Let D ∈ D
d
r1
(X)∩Dd

r2
(Y)

and D
′ ∈ D

d−1
Pκ(r1)

(Pκ(X)) ∩ D
d−1
Pκ(r2)

(Pκ(Y)). The κ-th

dimension is not affected by a deletion in both arrays X and Y.

Therefore, the deletions do not affect the mapping of the q-ary

symbols to qn-ary symbols along the axis xκ, when using the

projection function. Thus, the (d− 1)-dimensional hyperplane

deletions in X,Y correspond to (d − 2)-dimensional hyper-

plane deletions in the respective projected arrays. Hence, we

have P−1
κ (D′) = D.

We now prove the “only if” part. By expanding the qn-ary

symbols to q-ary symbols along the xκ-th axis, i.e., by apply-

ing the inverse projection, the (d−2)-dimensional hyperplane

deletions in Pκ(X),Pκ(Y) transform to (d− 1)-dimensional

hyperplane deletions in X,Y with no xκ-deletions. This

follows from the definition of the projections.

We now state and prove the second intermediate result.

Lemma 2. For positive integers m1, . . . ,md and i, j ∈

[d], for any two arrays X ∈ Σ
⊗d

ℓ=1(mℓ+δℓ(i))
q and Y ∈

Σ
⊗d

ℓ=1(mℓ+δℓ(j))
q it holds that,

D
d
ei
(X) ∩ D

d
ej
(Y) 6= ∅ ⇔ I

d
ej
(X) ∩ I

d
ei
(Y) 6= ∅.

Proof. We only show the “if” part. The “only if” part is

proven similarly. We prove the statement by induction over

the dimensions. The two-dimensional case, i.e., d = 2, was

already shown in [20] and is recalled in Lemma 1. To illustrate

the proof techniques used in the proof and in this work, we

choose the three-dimensional case as the base case of the

induction. Without loss of generality, we show that

D
d
e1
(X) ∩ D

d
e2
(Y) 6= ∅ ⇔ I

d
e2
(X) ∩ I

d
e1
(Y) 6= ∅.

Base case d = 3: We show that

D
3
e1
(X) ∩ D

3
e2
(Y) 6= ∅ ⇔ I

3
e2
(X) ∩ I

3
e1
(Y) 6= ∅.

For X ∈ Σ
(n+1)×n×n
q and Y ∈ Σ

n×(n+1)×n
q let D ∈

D
3
e1
(X) ∩ D

3
e2
(Y). Since the deletion does not affect both

arrays along the axis x3, then we can project along this axis

to transform the given three-dimensional deletion problem to

a two-dimensional deletion problem by Claim 1. Thus, the e1-

deletion in X converts to a row deletion in P3(X) and the e2-

deletion in Y to a column deletion in P3(Y). Hence, it holds

that P3(D) ∈ D
2
e1
(P3(X)) ∩ D

2
e2
(P3(Y)). By Lemma 1, we

have the following statement

D
2
e1
(P3(X)) ∩ D

2
e2
(P3(Y)) 6= ∅

⇔ I
2
e2
(P3(X)) ∩ I

2
e1
(P3(Y)) 6= ∅.

Therefore, there exists a P3(I) ∈ I
2
e2
(P3(X)) ∩ I

2
e1
(P3(Y)).

Let I = P−1
3 (P3(I)), by Claim 1 the previous statement is

equivalent to stating that there exists a I ∈ I
3
e2
(X) ∩ I

3
e1
(Y).

This results from applying the inverse projection P−1
3 (·) on

the respective arrays, transforming the row/column insertions

in the two-dimensional space to e1-/e2-insertion in the three-

dimensional space; thus concluding the base case.

Induction hypothesis: For a positive integer d − 1 assume

that it holds that

D
d−1
e1

(X) ∩ D
d−1
e2

(Y) 6= ∅ ⇔ I
d−1
e2

(X) ∩ I
d−1
e1

(Y) 6= ∅.

Induction step: Given the induction hypothesis we show that

the equivalence holds also for d, i.e.,

D
d
e1
(X) ∩ D

d
e2
(Y) 6= ∅ ⇔ I

d
e2
(X) ∩ I

d
e1
(Y) 6= ∅,

and let D ∈ D
d
e1
(X)∩D

d
e2
(Y). To apply Claim 1 and use the

induction hypothesis, we project the arrays on an axis different

than the ones affected by a deletion. For the given case, we

have d − 2 available axes to project on. Assume we project

on the axis xκ, where κ ∈ [d] \ {1, 2}. Thus, we transform

the (d− 1)-dimensional hyperplane deletion in X and Y to a

Y , X
0,3

X , X
3,0

D , X
0,0

I , X
3,3

X
2,0

X
1,0

X
0,1

X
0,2

X
1,1

X
2,1

X
1,2

X
2,2

X
3,1

X
3,2

X
1,3

X
2,3

e1

e1

e1

e1

e1

e1

e1

e1

e2

e2

e2

e2

e2

e2

e2

e2

e3

e3

e3

e3

e3

e3

e3

e3

L2

L2

L2

L2

L2

L2

L2

L2

L2

Fig. 2: A flow chart of the proof of Theorem 3 for d = 3.

Given a array D ∈ D
d
1
(X) ∩ D

d
1
(Y), we show the existence

I ∈ I
d
1
(X)∩ I

d
1
(Y). Given the existence of X, Y, D, and the

orange arrays one can show by Lemma 2 the existence of the

green and purple marked arrays and the array I. Since X,Y

and I are connected via the purple arrays as shown one can

conclude the equivalence.

(d−2)-dimensional hyperplane deletion in Pκ(X) and Pκ(Y)
(c.f. Claim 1). Therefore, we can write that

D
d
e1
(X) ∩D

d
e2
(Y) 6= ∅,

⇔ D
d−1
e1

(Pκ(X)) ∩ D
d−1
e2

(Pκ(Y)) 6= ∅,

⇔ I
d−1
e2

(Pκ(X)) ∩ I
d−1
e1

(Pκ(Y)) 6= ∅,

where the last equivalence follows from the induction hy-

pothesis. Hence, there exists a Pκ(I) ∈ I
d−1
e2

(Pκ(X)) ∩
I
d−1
e1

(Pκ(Y)). Due to the fact that we have projected on an

axis xκ 6= x1, x2 and given Claim 1, we can interpret the

(d−2)-dimensional hyperplane insertion in Pκ(X) and Pκ(Y)
as a (d− 1)-dimensional hyperplane insertion in X and Y by

applying the inverse projection P−1
κ (·) to the projected arrays.

By the above observations we conclude that there exists a

I ∈ I
d
e2
(X) ∩ I

d
e1
(Y) if there exists D ∈ D

d
e1
(X) ∩ D

d
e2
(Y)

and conclude the “if” part of the proof.

We now show the equivalence of 1
(d)-insertion and 1

(d)-

deletion-correcting codes by using the results of Claim 1

and Lemma 2.

Theorem 3. A code C ⊆ Σn⊗d

q is a 1
(d)-deletion-correcting

code if and only if it is a 1
(d)-insertion-correcting code.

Proof. We provide an illustration of the proof for the case of

d = 3 in Fig. 2. Assume there exists an array D ∈ Σ
(n−1)⊗d

q

such that D ∈ D
d
1
(X) ∩ D

d
1
(Y). For simplicity of notation,

we fix the order of the deletions in X and Y to obtain D to

be an xd-deletion first, then an xd−1-deletion and so on until

making an x1-deletion. Note that the proof can be replicated

for any ordering by the comprehensiveness of Lemma 2 which

is our main building block. To prove the statement, we build a

grid-like structure with axes i, j ∈ [d] and arrays as grid points

denoted by X
i,j . We define Xd,0 , X, X0,d , Y, and X

0,0 ,

D. For fixed j = 0, let the series of arrays {Xi,0}di=0 be

defined such that Xi−1,0 ∈ D
d
ei
(Xi,0) for i = {1, . . . , d}. We

define the series of arrays {X0,j}dj=0 similarly for fixed i = 0.

The strategy of the proof will show the existence of arrays Xi,j

for any i, j ∈ [d] such that Xd,d ∈ I
d
1
(Xd,0) ∩ I

d
1
(X0,d).

By the definition of the series we have that X
0,0 ∈

D
d
e1
(X1,0) ∩ D

d
e1
(X0,1). By Lemma 2 there exists an array

X
1,1 ∈ I

d
e1
(X1,0) ∩ I

d
e1
(X0,1). From that it follows that

X
1,0 ∈ D

d
e2
(X2,0)∩D

d
e1
(X1,1). By applying again Lemma 2

we have that there exists an array X
2,1 ∈ I

d
e1
(X2,0) ∩

I
d
e2
(X1,1). For j = 1, by repeating the aforementioned

strategy we can show the existence of the series of arrays

{Xi,1}di=2. Given this series of arrays one can show the

existence {Xi,2}di=1, where j = 2 and given the starting

statement X
0,1 ∈ D

d
e1
(X1,1) ∩ D

d
e2
(X0,2). Therefore by

consecutively incrementing j ∈ [0, d − 1] and for each j

incrementing consecutively i ∈ [0, d − 1], then for each pair

(i, j) by Lemma 2 one has the following equivalence: Given

X
i,j ∈ D

d
ei
(Xi+1,j) ∩ D

d
ej
(Xi,j+1) there exists an array

X
i+1,j+1 ∈ I

d
ej
(Xi+1,j) ∩ I

d
ei
(Xi,j+1). Therefore, we have

proven the existence of an array X
d,d ∈ I

d
1
(Xd,0) ∩ I

d
1
(X0,d)

which concludes the proof.

IV. EQUIVALENCE OF INSERTION AND DELETIONS

CORRECTING CODES: GENERAL CASE

In this section we show the the equivalence of t(d)-insertions

and t
(d)-deletions in d-dimensional arrays for any number

of (d − 1)-dimensional hyperplane insertions and deletions,

respectively, i.e., we show the equivalence of t
(d)-deletion-

correcting codes with t
(d)-insertion-correcting codes for any

t
(d) ∈ Z

d
≥0. The proof follows similar steps as the one used

by the authors in [23] for the two-dimensional case.

Theorem 4. A code C ⊆ Σn⊗d

q is a t
(d)-deletion-correcting

code if and only if it is a t
(d)-insertion-correcting code.

Proof. For notational convenience we define the vector cj ,

(c1, . . . , cj−1, 0, cj+1, . . . , cd) ∈ N
d. In this proof, the vector

t
(d) can be written as t

(d) = tj1
(d) + c

j , tj,c, where tj =
mini∈[d] ti and ci , ti − tj for i ∈ [d], to emphasize the

composition. Without loss of generality, we show the proof

for j = 1, since by symmetry the proof holds for all j ∈ [d],
and write t , t1. Let t′ ,

∑d
i=1 ci, the proof proceeds by

induction over t′. For simplicity, we fix in some parts of the

proof the order of the xi-deletions. That serves for a better

presentation of the proofs and incurs no loss of generality.

In the proof the contraposition is shown, i.e., we show that

D
d
t1,c

(X)∩Dd
t1,c

(Y) 6= ∅ if and only if Id
t1,c

(X)∩Id
t1,c

(Y) 6= ∅.

We only show the “if” part since the “only if” part follows

by using similar arguments.

Base case
∑d

i=1 ci = 1: For the reader’s convenience, a

flowchart of the proof for d = 3 is presented in Fig. 3. There

are d− 1 possibilities for c1 such that
∑d

i=1 ci = 1. We show

X Y

CkCk

Bk−1

Bk

Ck−1

C3

C2

C1

Gk

Gk+1

Ck+1

eκ

eo1

eκeκ

eo2

eok−1

t1-deletion

Bk−2

B1

B2

B0 = F0

eκ

eκ

eok−1

eκ

L2

eκ

L2

L2

eo2

eo1

eκ

L2

eκ

Fk

Fk−1

t1-insertion

Thm 2.

Fk−2

F2

F1

euk−1

eu1

eu2

G1

Gk−1

G3

G2

eκ eκ

L2

eκ

eκeκ

eκ eu1

L2

eκ

L2

eκ

eu2

eκ euk−1

L2

L2

Fig. 3: A flow chart of the proof of Theorem 4 for d = 3. Given

an array Ck+1 ∈ D
d
t1,c

(X)∩D
d
t1,c

(Y), we show the existence

Gk+1 ∈ I
d
t1,c

(X) ∩ I
d
t1,c

(Y). Given the existence of X, Y,

Ck+1 and the orange arrays one can show by Lemma 2 the

existence of the green marked arrays and then by Theorem

2 and Lemma 2 the existence of brown and purple marked

arraysand the array Gk+1.

the proof steps for c
1 = eκ, i.e., there is a combination of

t1(d)-deletions and an extra xκ-deletion for κ ∈ [d].

For any two arrays X,Y ∈ Σn⊗d

q , assume there exists a

array D such that D ∈ D
d
t1,c

(X)∩Dd
t1,c

(Y). Let k = dt, define

the array Bk such that Bk ∈ D
d
t1(X) and D ∈ D

d
eκ
(Bk) due

to the choice of c1. For simplicity, we define C1 ∈ D
d
eκ
(Y).

Let o ∈ [d]k denote the vector whose entries oi denote the

series of xoi-deletions to obtain D from C1 and fix ok = κ.

We define the series of arrays {Cs}
k+1
s=1 such that

Cs ∈

{
D

d
eκ
(Cs−1) if s = 1 or s = k + 1

D
d
eos−1

(Cs−1) otherwise.

where C0 , Y and Ck+1 , D. We show that there exists a

series of arrays {Bs}
k−1
s=0 , resulting from hyperplane insertions

starting from Bk and leading to an array B0 ∈ Σn⊗d

q , such that

Bk ∈ D
d
t1(X) ∩ D

d
t1(B0). By the aforementioned definitions

we have that Ck+1 ∈ D
d
eκ
(Bk)∩Dd

eκ
(Ck). By Lemma 2, there

exists a Bk−1 ∈ I
d
eκ
(Bk) ∩ I

d
eκ
(Ck). Applying Lemma 2 se-

quentially shows the existence of the series of arrays {Bs}
k−1
s=0 ,

i.e., by Lemma 2 for each Cs+1 ∈ D
d
eκ
(Bs) ∩ D

d
eos

(Cs)

there exists a Bs−1 ∈ Ieos
(Bs)∩ I

d
eκ
(Cs) for s ∈ {k, . . . , 1}.

Hence, we show the existence of an array B0 ∈ Σn⊗d

q such

that Bk ∈ D
d
t1(X) ∩ D

d
t1(B0).

By Theorem 2, the existence of Bk implies the existence

of an array Fk ∈ I
d
t1(X) ∩ I

d
t1(B0), i.e., obtained by a t1(d)-

insertion in B0. Let u ∈ [d]k denote the vector whose entries

ui denote the series of xui
-insertions to obtain Fk from B0

and fix uk = κ. We define the arrays {Fs}ks=1 such that

Fs ∈

{
I
d
eκ
(Fs−1) if s = k

I
d
eus

(Fs−1) otherwise,

where F0 , B0. Noting that C1 ∈ D
d
eκ
(B0)∩Dd

eκ
(Y) and ap-

plying Lemma 2, there exists an array G1 ∈ I
d
eκ
(B0)∩Ideκ

(Y),
which means that F0 ∈ D

d
eu1

(F1)∩Dd
eκ
(G1). By sequentially

applying Lemma 2 we can show the existence of the series

of arrays {Gs}
k+1
s=1 such that Gk+1 ∈ I

d
t1,c

(X) ∩ I
d
t1,c

(Y).

Meaning by the fact that Fs−1 ∈ D
d
eus

(Fs) ∩ D
d
eκ
(Gs)

there exists an array Gs+1 ∈ I
d
eκ
(Fs) ∩ I

d
eus

(Gs) for s ∈
{1, . . . , k}. Hence, we have shown that if there exists an

array Ck+1 ∈ D
d
t1,c

(X)∩D
d
t1,c

(Y), then there exists an array

Gk+1 ∈ I
d
t1,c

(X) ∩ I
d
t1,c

(Y), which concludes the base case.

Induction hypothesis: Given any vector c
1 such that∑d

i=1 ci = t′, and two arrays X,Y ∈ Σn⊗d

q it holds that

D
d
t1,c

(X) ∩ D
d
t1,c

(Y) 6= ∅ ⇔ I
d
t1,c

(X) ∩ I
d
t1,c

(Y) 6= ∅,

where t1,c , t1+ c
1.

Induction step: Assume that the induction hypothesis holds

for all values 0 ≤
∑d

i=1 ci = t′ where c1 = 0. We prove that

the hypothesis holds for
∑d

i=1 ci +1 = t′ +1, i.e., by adding

an extra hyperplane deletion. Let the extra deletion be an xκ-

deletion and define t
′
1,c = (t, t+c2, . . . , t+cκ+1, . . . , t+cd).

Assume that there exists an array D such that D ∈ D
d
t
′
1,c
(X)∩

D
d
t
′
1,c
(Y). Let k′ = dt+ t′+1, then we defined the arrays Bk′

and Ck′ such that Bk′ ∈ D
d
t1,c

(X) and Ck′ ∈ D
d
t1,c

(Y). The

rest of the proof follows from the base case, by using k′ instead

of k and therefore is omitted due to space limitations.

By considering the collections of all t(d)-deletion-correcting

codes such that
∑d

i=1 ti = t we have the following corollary.

Corollary 1. A code C ⊆ Σn⊗d

q is a t(d)-deletion-correcting

code if and only if it is a t(d)-insertion-correcting code.

V. INSDEL EQUIVALENCE

So far we have only considered the equivalence between

insertion and deletion correcting codes. In this section we

are going to discuss the equivalence between t
(d)-deletion

and t
(d)-insdel correcting codes. First, we need the following

claim.

Claim 2. For positive integers m1, . . . ,md, i ∈ [d], a vector

r
i = (0, . . . , 0, ri, 0, . . . , 0), and any two arrays X,Y ∈

Σ
⊗d

ℓ=1 mℓ

q it holds that

D
d
ri(X) ∩ D

d
ri(Y) 6= ∅ ⇔ ID

d
ri(X) ∩ ID

d
ri(Y) 6= ∅.

Proof. We only show the “if” part, since the “only if” part

follows by similar arguments. Let D ∈ D
d
ri(X)∩D

d
ri(Y). We

define a consecutive series of projections of an array X along

the axes in a set I ⊆ [d] by PI(X). Let I = [d]\{i}, we have

PI(X),PI(Y) ∈ Σn
qn(d−1) . Since we do not project along

the axis affected by deletions we can transform the (d − 1)-
hyperplane deletions to symbol deletions in PI(X),PI(Y)
by Claim 1. Thus, there exits a PI(D) ∈ D

1
ri
(PI(X)) ∩

D
1
ri
(PI(Y)) such that P−1

I (PI(D)) = D. Hence, by [7] there

exists a PI(I) ∈ ID
1
ri
(PI(X)) ∩ ID

1
ri
(PI(Y)). According to

Claim 1 it follows that there exists a P−1
I (PI(I)) = I ∈

ID
d
ri(X)∩ ID

d
ri(Y), since all entries of ri are zero except the

i-th position.

It is important to note that the position of ri within the

vector r
i must remain the same for any equivalence. This

means that xi-deletions are only equivalent to xi-insdels and

not to xj -insdels, j 6= i. We show this idea through a

counterexample for two-dimensional arrays.

Counterexample 1. The equivalence of a (1, 0)-deletion-

correcting code and a (0, 1)-deletion-correcting code does not

hold. To show this, we consider two arrays X,Y ∈ Σ3×3

and assume there exists an array D ∈ Σ2×3 such that

D ∈ D
2
1,0(X) ∩ D

2
1,0(Y) as follows.

X =



1 1 1
0 1 0
0 1 1


 , Y =



1 0 1
0 1 0
0 0 1


 , D =



1 1
0 0
0 1


 ,

where D is obtained by deleting the second column from X

and Y. Since more than one row of X and Y are different, we

see that D2
0,1(X)∩D2

0,1(Y) = ∅ and therefore the equivalence

does not hold.

Given this result, we show that the insertion/deletion equiva-

lence holds if one fixes a number of insdel for each dimension

to be deleted.

Lemma 3. For positive integers m1, . . . ,md, i ∈ [d], a vector

t = (t1, . . . , td) ∈ N
d, and any two arrays X,Y ∈ Σ

⊗d
ℓ=1 mℓ

q

it holds that,

D
d
t
(X) ∩D

d
t
(Y) 6= ∅ ⇔ ID

d
t
(X) ∩ ID

d
t
(Y) 6= ∅.

Proof. We only show the “only if” part, since the “if” part

follows by similar arguments. Let tins = (tins1 , tins2 , . . . , tinsd)
and t

del = (tdel1 , tdel2 , . . . , tdeld) such that t = t
ins + t

del.

Assume that there exists an array I ∈ Σ
⊗

d
i=1(mi+(tinsi −tdeli))

q

such that I ∈ ID
d
t
(X) ∩ ID

d
t
(Y). The order of deletions and

insertions matters here, therefore we define X
′ and Y

′ to

be the arrays resulting from t
del-deletion, i.e., it holds that

X
′ ∈ D

d
tdel

(X) and Y
′ ∈ D

d
tdel

(Y). It then follows that

I ∈ I
d
tins

(X′) ∩ I
d
tins

(Y′). By Theorem 4, there exists an

array D ∈ Σ
⊗d

i=1(mi−(tinsi +tdeli))
q such that D ∈ D

d
tins

(X′) ∩
D

d
tins

(Y′) and as a result D ∈ D
d
t
(X) ∩ D

d
t
(Y).

REFERENCES

[1] R. Heckel, G. Mikutis, and R. N. Grass, “A characterization of the dna
data storage channel,” Scientific reports, vol. 9, no. 1, pp. 1–12, 2019.

[2] T. Buschmann and L. V. Bystrykh, “Levenshtein error-correcting bar-
codes for multiplexed dna sequencing,” BMC Bioinformatics, vol. 14,
no. 1, pp. 1–10, 2013.

[3] A. S. J. Helberg, Coding for the correction of synchronization errors.
PhD thesis, Randse Afrikaanse Universiteit, 1993.

[4] F. Sala, C. Schoeny, N. Bitouzé, and L. Dolecek, “Synchronizing files
from a large number of insertions and deletions,” IEEE Transactions on

Communications, vol. 64, no. 6, pp. 2258–2273, 2016.
[5] Y. M. Chee, H. M. Kiah, A. Vardy, and E. Yaakobi, “Coding for racetrack

memories,” IEEE Transactions on Information Theory, vol. 64, no. 11,
pp. 7094–7112, 2018.

[6] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet Physics Doklady, vol. 10, pp. 707–710,
1966.

[7] D. Cullina and N. Kiyavash, “An improvement to levenshtein’s upper
bound on the cardinality of deletion correcting codes,” IEEE Transac-

tions on Information Theory, vol. 60, no. 7, pp. 3862–3870, 2014.
[8] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single

asymmetric errors (in Russian),” Automatika i Telemkhanika, vol. 161,
no. 3, pp. 288–292, 1965.

[9] G. M. Tenengolts, “Nonbinary codes, correcting single deletion or
insertion (corresp.),” IEEE Transactions on Information Theory, vol. 30,
no. 5, pp. 766–769, 1984.

[10] V. Guruswami and C. Wang, “Deletion codes in the high-noise and
high-rate regimes,” IEEE Transactions on Information Theory, vol. 63,
pp. 1961–1970, Apr. 2017.

[11] J. Brakensiek, V. Guruswami, and S. Zbarsky, “Efficient low-redundancy
codes for correcting multiple deletions,” IEEE Transactions on Informa-
tion Theory, vol. 64, no. 5, pp. 3403–3410, 2017.

[12] S. K. Hanna and S. El Rouayheb, “Guess & check codes for deletions,
insertions, and synchronization,” IEEE Transactions on Information

Theory, vol. 65, no. 1, pp. 3–15, 2018.
[13] R. Gabrys and F. Sala, “Codes correcting two deletions,” IEEE Trans-

actions on Information Theory, vol. 65, pp. 965–974, Feb 2019.
[14] J. Sima, N. Raviv, and J. Bruck, “Two deletion correcting codes from

indicator vectors,” IEEE Transactions on Information Theory, vol. 66,
no. 4, pp. 2375–2391, 2020.

[15] J. Sima and J. Bruck, “On optimal k-deletion correcting codes,” IEEE
Transactions on Information Theory, vol. 67, no. 6, pp. 3360–3375,
2021.

[16] V. Guruswami and J. Håstad, “Explicit two-deletion codes with redun-
dancy matching the existential bound,” in Proceedings of the 2021 ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 21–32, SIAM,
2021.

[17] J. Sima, R. Gabrys, and J. Bruck, “Optimal systematic t-deletion
correcting codes,” IEEE International Symposium on Information Theory
(ISIT), 2020.

[18] A. Krishnamurthy, A. Mazumdar, A. McGregor, and S. Pal, “Trace
reconstruction: Generalized and parametrized,” European Symposium on

Algorithms, September 2019.
[19] S. Bakirtas and E. Erkip, “Database matching under column deletions,”

arXiv preprint arXiv:2105.09616, 2021.
[20] R. Bitar, L. Welter, I. Smagloy, A. Wachter-Zeh, and E. Yaakobi, “Criss-

cross insertion and deletion correcting codes,” IEEE Transactions on

Information Theory, vol. 67, no. 12, pp. 7999–8015, 2021.
[21] Y. M. Chee, M. Hagiwara, and V. Van Khu, “Two dimensional deletion

correcting codes and their applications,” IEEE International Symposium

on Information Theory (ISIT), 2021.
[22] M. Hagiwara, “Conversion method from erasure codes to multi-deletion

error-correcting codes for information in array design,” International
Symposium on Information Theory and Its Applications (ISITA), 2020.

[23] L. Welter, R. Bitar, A. Wachter-Zeh, and E. Yaakobi, “Multiple criss-
cross insertion and deletion correcting codes,” IEEE Transactions on

Information Theory (Early Access), 2022.

APPENDIX

In this section, we provide a proof of Theorem 2, i.e., we

prove that a code C ⊆ Σn⊗d

q is a t1(d)-deletion-correcting code

if and only if it is a t1(d)-insertion-correcting code.

The proof requires the following intermediate results.

Claim 3. For any two arrays X1,Xt+1 ∈ Σn⊗d

q , Dd
t1(X1) ∩

D
d
t1(Xt+1) 6= ∅ if and only if there exist t − 1 arrays

X2, . . . ,Xt ∈ Σn⊗d

q such that Dd
1
(Xi) ∩ D

d
1
(Xi+1) 6= ∅ for

all 1 ≤ i ≤ t.

Proof. We prove the “if” part by induction over t. The proof

for the “only if” part follows similarly and is omitted. First,

we define the base case of the induction, then the induction

hypothesis and finally the induction step.
Base case t = 1: This is a trivial case in which the

statement is already satisfied, i.e., there are no intermediate

arrays since D
d
1
(X1) ∩D

d
1
(X2) 6= ∅.

Induction hypothesis: Assume that the statement holds for

a given t ∈ [n−2]. That is, there exist two arrays X1,Xt+1 ∈
Σn⊗d

q that satisfy D
d
t1(X1)∩Dd

t1(Xt+1) 6= ∅ and there exist t−

1 arrays X2, . . . ,Xt ∈ Σn⊗d

q such that Dd
1
(Xi)∩Dd

1
(Xi+1) 6=

∅ for all 1 ≤ i ≤ t.
Induction step: We show that the statement holds for

t + 1. Let X1,Xt+2 ∈ Σn⊗d

q be such that D
d
(t+1)1(X1) ∩

D
d
(t+1)1(Xt+2) 6= ∅. Define the two arrays X1,Xt+1 ∈

Σ
(n−1)⊗d

q that result from 1
(d)-deletion form X1 and Xt+2

respectively, i.e., X1 ∈ D
d
1
(X1) and Xt+1 ∈ D

d
1
(Xt+2) and

D
d
t1(X1)∩D

d
t1(Xt+1) 6= ∅ . Then, by the induction hypothesis,

there exist t − 1 arrays X2, . . . ,Xt ∈ Σ
(n−1)⊗d

q such that

D
d
1
(Xi) ∩ D

d
1
(Xi+1) 6= ∅ for all 1 ≤ i ≤ t.

Then, by Theorem 3 we deduce that Id
1
(Xi)∩Id1(Xi+1) 6= ∅

for 1 ≤ i ≤ t, therefore, there exist t arrays X2, . . . ,Xt+1 ∈
Σn⊗d

q such that for all 2 ≤ i ≤ t + 1, it holds that

Xi ∈ I
d
1
(Xi−1) ∩ I

d
1
(Xi). By definition, X1 ∈ I

d
1
(X1) and

Xt+2 ∈ I
d
1
(Xt+1), combine with X2 ∈ I

d
1
(X1) and Xt+1 ∈

I
d
1
(Xt+1) derived from the aforementioned result, it holds that

X1 ∈ D
d
1
(X1)∩D

d
1
(X2) and Xt+1 ∈ D

d
1
(Xt+1)∩D

d
1
(Xt+2).

Consequently, we showed that for 1 ≤ i ≤ t+1 it holds that,

Xi ∈ D
d
1
(Xi) ∩ D

d
1
(Xi+1). (1)

This completes the “if” part of the proof.

Next we state a similar result for the insertion case.

Claim 4. For any two arrays X1,Xt+1 ∈ Σn⊗d

q , Idt1(X1) ∩
I
d
t1(Xt+1) 6= ∅ if and only if there exist t − 1 arrays

X2, . . . ,Xt such that Id
1
(Xi)∩Id1(Xi+1) 6= ∅ for all 1 ≤ i ≤ t.

Proof. Follows using similar statements as in Claim 3.

Theorem 2 can be proven using the results of Claim 3 and

Claim 4 as follows. For any two arrays X1,Xt+1 ∈ Σn⊗d

q ,

if D
d
t1(X1) ∩ D

d
t1(Xt+1) 6= ∅ then form Claim 3 we know

that there exist t − 1 arrays X2, . . . ,Xt ∈ Σn⊗d

q such that

D
d
1(Xi) ∩ D

d
1(Xi+1) 6= ∅ for all 1 ≤ i ≤ t. According to

Theorem 3, there exist t arrays X1, . . . ,Xt ∈ Σ
(n+1)⊗d

q ∈

Σ
(n⊗d

q such that for all 1 ≤ i ≤ t,

Xi ∈ I
d
1
(Xi) ∩ I

d
1
(Xi+1). (2)

Finally, by applying Claim 4 we conclude that I
d
t1(X1) ∩

I
d
t1(Xt+1) 6= ∅. The “only if” part follows similarly.

