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Abstract

We study the problem of multi-access coded caching (MACC): a central server has N files, K (K ≤ N ) caches

each of which stores M out of the N files, K users each of which demands one out of the N files, and each

user accesses z caches. The objective is to jointly design the placement, delivery, and user-to-cache association, to

optimize the achievable rate. This problem has been extensively studied in the literature under the assumption that

a user accesses only one cache. However, when a user accesses more caches, this problem has been studied only

under the assumption that a user accesses z consecutive caches with a cyclic wrap-around over the boundaries. A

natural question is how other user-to-cache associations fare against the cyclic wrap-around user-to-cache association.

A bipartite graph can describe a general user-to-cache association. We identify a class of bipartite graphs that, when

used as a user-to-cache association, achieves either a lesser rate or a lesser subpacketization than all other existing

MACC schemes using a cyclic wrap-around user-to-cache association. The placement and delivery strategy of our

MACC scheme is constructed using a combinatorial structure called maximal cross resolvable design.

I. INTRODUCTION

Consider the following scenario. A cellular cell is deployed with a base station (BS), and several access points

(APs) are distributed within the cell. APs typically have a small coverage area than BS, cater to fewer users than

BS, and may have a wire-line connection to the internet backbone. Each AP is served with memory and acts as a

cache. This paper uses the word AP and cache alternatively, indicating the same device functionality.

A large number of files are stored with the BS. There are users in the cell connected (wireless) to the BS. A user

may request to download files from the BS. Each user is also connected to one or more APs. The APs fetch data

(before knowing the users’ demands) from the BSs when internet traffic is low – this is called the cache placement

phase. This cache filling strategy is centralized, meaning that the BS decides which cache stores which parts of

the files. Furthermore, the cache filling strategy is uncoded, meaning that the data placed at the APs are copies of

segments of the files present at the BS.
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User-to-cache association is a list that specifies which users access which caches. The central server may decide

the user-to-cache association. The users inform of their demands (a demand is a request for a single file) to the

BS. Based on a predetermined delivery strategy, the BS broadcasts a set of files to all users to fulfill their demands

of the users. The term delivery load quantifies the number of files broadcast by the BS. The goal is to design the

placement and the delivery policy such that the least pressure is put on the internet traffic during peak hours, which

amounts to minimizing the number of files broadcast during peak hours. We assume that very high-speed links

connect a user to the APs it accesses. Hence, the burden on the internet traffic is due to the files broadcast by the

BS. Furthermore, we assume that the number of files is much more than the number of users. Hence, it is beneficial

to minimize the delivery load assuming all users demand distinct files.

From the works conducted in the literature towards solving this problem, we see a trade-off between the delivery

load and the size of the files. As in, a delivery load may be achievable only if the size of each file is greater than a

certain value. Shanmugam et al. in [3] established a trade-off between the size of the files and the delivery load. Yan

et al. in [4] also showed a trade-off between file size and delivery load, albeit for a particular placement. The size

of the file is quantified by a term called subpacketization level. If a solution to the problem has a subpacketization

level F , the solution requires each file to be split into F subfiles. Furthermore, the higher the subpacketization level,

the more computations are necessary to decode at the users. So it is also beneficial to minimize the subpacketization

level.

Traditionally, the content has been cached based on the file’s popularity. Maddah-Ali and Niesen, in the seminal

paper [1], showed that by jointly designing the cache placement phase and the file delivery phase, an additional

gain (coding gain) can be achieved. The work of [1] significantly improved the previous caching schemes (which

may be referred to as caching schemes with uncoded delivery). Maddah-Ali et al. also showed a trade-off between

the memory size of the caches and the achievable rate. Furthermore, they showed that the rate achieved by their

scheme is within 12 times the information-theoretic optimum value. The same authors provided a decentralized

solution to the coded caching problem in [2].

Maddah-Ali and Niesen’s caching model inherently assumes that each user accesses only one cache. We call such

schemes as dedicated cache coded coding schemes. If a user can connect to several APs available in its vicinity,

then restricting the user to connect to only one AP may not be the best choice. Since granting access to multiple

APs does not require extra hardware, such a scheme may provide better performance at the cost of more signaling.

Hachem et al. in [6] improvised the model (considered in [1]) to include scenarios where a user accesses more

than one cache. They called this problem as the multi-access coded caching (MACC) problem. In their model, there

are K caches and K users, each user accesses z consecutive caches with a cyclic wrap-around over the boundaries,

and each cache is accessed by z caches. We call such a user-to-cache association a cyclic wrap-around user-to-cache

association. Hachem et al. showed a MACC scheme for any cache memory size M files and access degree z.

Subsequently, all works on MACC (which considers the number of users to be the same as the number of caches)

assume a cyclic wrap-around user-to-cache association. However, reference [6] quotes the following: “we assume

also for simplicity that the caches are arranged linearly and that users connect to di consecutive caches, with a

cyclic wrap-around for symmetry.” Although we acknowledge that studying a simpler version of a problem can
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provide significant insights, until now, to the best of our knowledge, no work has justified the assumption of cyclic

wrap-around user-to-cache association with any reason other than simplicity.

A bipartite graph can represent a general user-to-cache association of the MACC problem. It is an open problem

to find out which bipartite graph provides the best performance when used as a user-to-cache association. The

criteria for best performance may vary with applications–most applications would likely desire to achieve the least

delivery load possible for a given upper limit on the subpacketization level.

A. State of the art

Hachem et al. were the first to study the MACC problem [6]. They studied the problem assuming a cyclic

wrap-around user-to-cache association. Subsequent to the work of Hachem et al., the MACC problem under the

assumption of a cyclic wrap-around user-to-cache association has been studied by the following authors in the

respective references: Serbetci et al. in [7], Reddy et al. in [8] and [13], Cheng et al. in [9], Sasi et al. in [10] and

[11], Mahesh et al. in [12].

There have been some works in the literature that studied a version of the MACC problem where the number

of users is more than the number of caches. Katyal et al. in [14] studied a version of a MACC problem where

the user-to-cache association is decided by combinatorial structure called cross resolvable design (CRD). Using the

CRD, they constructed a MACC scheme for this problem. The authors identified two infinite classes of CRDs from

the existing literature in combinatorial designs and showed the performance of the MACC schemes constructed

using these CRDs. Subsequent to [14], Muralidhar et al. in [15] showed a generalization of the scheme in [14]. In

reference [16], Muralidhar et al. showed a new class of CRDs and the corresponding MACC schemes constructed

using these CRDs.

Muralidhar et al. in [17] studied a MACC problem where the user-to-cache association mimics the combination

network, which is well-studied in the network coding literature. They showed that a generalization of the MAN

scheme provides a solution to this problem. Recently Brunero et al. in [18] studied a generalization of the user-

to-cache association considered by [17]. They showed a solution and proved that it achieves the optimal delivery

load under uncoded placement. The authors of [18] also address a scenario where the server is unaware of the

user-to-cache association during cache placement.

It is to be noted that the works of [14]–[18] do not intersect with our work except for the trivial cases, which is

when either each user accesses only one cache or each user accesses all caches. For the rest of this document, we

limit ourselves to MACC problems where the number of users is the same as caches.

B. Contributions

1) We identify a class of bipartite graphs. If the server chooses the user-to-cache association (which can be

represented by a bipartite graph) of the MACC problem from this class of bipartite graphs, we show a MACC

scheme that provides a solution to the MACC problem. This contribution is shown in Theorem 2 of Section VI.
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2) We show that our MACC scheme achieves a better trade-off between the achievable rate and subpacketization

level compared to all other existing MACC schemes, at least for some memory sizes. The comparison is shown

in Section VI-B.

3) The placement and delivery strategy of our MACC scheme is based on a combinatorial design called maximal

cross resolvable design (MCRD). In Theorem 1 of Section IV we show a construction of MCRDs with general

parameters.

C. Organization of the paper

In Section II we state the system model. In Section III we reproduce some definitions and lemmas from

the literature on graph theory. In Section IV we first reproduce the definition of MCRD from the literature on

combinatorial design theory, and then show a construction of MCRDs with general parameters. In Section V

we isolate a class of user-to-cache association bipartite graphs. In Section VI we show our MACC scheme. In

Section VI-B we compare our scheme with other relevant MACC schemes. In Section VII we provide two examples

of the placement and delivery strategy of our MACC scheme. The paper is concluded in Section VIII.

II. SYSTEM MODEL

There is a central server, K caches, and K users. Let U = {k1, k2, . . . , kK} be the set of the users, and

C = {c1, c2, . . . , cK} be the set of caches. So we have |U | = |C| = K .

Definition 1. A user-to-cache association bipartite graph is a bipartite graph G = (U,C,E) where U ∪ C is the

vertex set of G, sets U and C are disjoint, every edge in E connects one vertex in U to another vertex in C, an

edge connects u ∈ U to v ∈ C if and only if user u accesses cache c.

The central server decides a user-to-cache association bipartite graph such that each user accesses z ≥ 1 caches.

Here z is called the access degree.

The central server contains N files W 1,W 2, . . . ,WN . Each file W i is split into F subfiles W i(1),W i(2), . . . ,W i(F ).

Here F is called the subpacketization level. The number j in W i(j) is called as the index of the subfile W i(j).

Each subfile contains s bits. Each of the K caches can store MF subfiles in its memory. The ratio M/N is called

normalized memory size. It is assumed that each user can instantaneously download the contents of the caches it

accesses.

We describe a (K, z,M,R) multi-access coded caching scheme with uncoded placement. There are two phases:

the placement phase and the delivery phase. The placement phase comes first. During the placement phase, the

cache memory is filled up without knowing the users’ future demands. Each cache ci for 1 ≤ i ≤ K stores MF

subfiles out of the NF subfiles available with the server. That is, if Zi denote the content of the cache ci, then

Zi ⊆ {W 1(1),W 1(2), . . . ,WN(F )} and |Zi| = MF .

During the delivery phase, each user makes a demand of a single file. Say the user ki for 1 ≤ i ≤ K demands the

file W dki where 1 ≤ dki
≤ N . On knowing the demands of all users, the server uses a function (called encoding

function)

f(dk1
,dk2

,...,dkK
) : 2

sNF → 2sRF (1)
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to broadcast R files. Here R is called the (achievable) rate or the delivery load. Each user ki for 1 ≤ i ≤ K uses

a function (called decoding function)

f(ki,dk1
,dk2

,...,dkK
) : 2

sRF × 2zsMF → 2sF (2)

in an attempt to retrieve its demanded file of F subfiles from the RF subfiles broadcast by the server and the

memory contents of the z caches that user ki accesses.

Suppose each user can successfully retrieve its demanded file using the R files broadcast by the server and the

memory contents of the z caches it accesses. In that case, the placement and delivery policy and the user-to-cache

association together is called a (K, z,M,R) MACC scheme. The objective is to jointly optimize the achievable

rate (R files) and the subpacketization level by designing the placement and delivery policy and the user-to-cache

association. The coding gain of a (K, z,M,R) MACC scheme is the number of users who benefit from each

transmission made by the server during the delivery phase.

III. PRELIMINARIES ON GRAPH THEORY

An edge e of a graph is said to connect vertex u to vertex v if and only if one end point of the edge is u and

the other edge point of the edge is v. Equivalently, one can say that the edge e is adjacent to vertices u and v.

Definition 2. Bipartite graph: A bipartite graph G = (V1, V2, E) is such that V1 ∩ V2 = ∅, and there does not exist

any edge that is adjacent to two vertices in Vi for i = 1, 2.

Definition 3. Matching of a bipartite graph G = (V1, V2, E): a matching is a subset E′ ⊆ E such that if e1, e2 ∈ E

then there exists no vertex v ∈ V1 ∪ V2 such that both e1 and e2 are adjacent to v. The size of a matching is the

number of edges in the matching.

Definition 4. Vertex cover of a matching of a bipartite graph G = (V1, V2, E): let E′ ⊆ E be a matching of the

bipartite graph G = (V1, V2, E). Vertex cover of E′ is the set of all vertices that are adjacent to some edge in E′.

Vertex cover of E′ is denoted by ν(E′).

Definition 5. Partial matching of a bipartite graph G = (V1, V2, E): let E′ ⊆ E be a matching of the bipartite

graph G = (V1, V2, E). If ν(E′) ⊆ V1 ∪ V2 then E′ ⊆ E is a partial matching of G = (V1, V2, E).

Definition 6. Perfect matching of a bipartite graph G = (V1, V2, E): let E′ ⊆ E be a matching of the bipartite

graph G = (V1, V2, E). If ν(E′) = V1 ∪ V2 then E′ ⊆ E is a perfect matching of G = (V1, V2, E).

IV. MAXIMAL CROSS RESOLVABLE DESIGNS

Definition 7. A design (X,A) is an ordered tuple of two finite sets X and A ∈ 2X . The elements of the set X

are called points. The elements of the set A are called blocks. Each block in A is a subset of X . Any two blocks

in A contain the same number of points.

Example 1. Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}, and A = {{1, 2, 3, 4}, {1, 5, 6, 7}, {1, 8, 9, 10},

{2, 11, 12, 13}, {3, 14, 15, 16}, {4, 5, 6, 7}, {8, 9, 10, 11}, {12, 13, 14, 15}}. Then (X,A) is a design.
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Definition 8. A parallel class P of a design (X,A) is a subset of A such that P partitions X .

Example 2. In Example 1, P = {{1, 8, 9, 10}, {2, 11, 12, 13}, {3, 14, 15, 16}, {4, 5, 6, 7}} is a parallel class.

Since any two blocks has the same number of elements, and each parallel class partitions X , any two parallel

class must have the same number of blocks. We denote the number of blocks in a parallel class by b. In Example 2,

b = 4.

Definition 9. A design (X,A) is a resolvable design if for some positive integer m, the design has m parallel

classes P1,P2, . . . ,Pm such that P1,P2, . . . ,Pm partitions A.

Example 3. It can be seen that the design (X,A) considered in Example 1 is not resolvable.

Example 4. Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}. And A = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12},

{13, 14, 15, 16}, {1, 2, 9, 13}, {5, 6, 10, 14}, {3, 7, 11, 15}, {4, 8, 12, 16}}. Then (X,A) is a design. Consider the two

parallel classes of (X,A).

P1 = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}

P2 = {{1, 2, 9, 13}, {5, 6, 10, 14}, {3, 7, 11, 15}, {4, 8, 12, 16}}.

It can be seen that each sets P1 and P2 partition X , and they together partition A. So (X,A) is a resolvable design.

For this design, b = 4.

Definition 10. A resolvable design (X,A) with m parallel classes is called a maximal cross resolvable design

(MCRD) if for some positive integer µm, any m blocks chosen from m distinct parallel classes have µm elements

in common. That is, if for some ordering of the blocks in parallel class Pi the j th block is denoted by B(i, ji)

for 1 ≤ i ≤ m, 1 ≤ ji ≤ b, then for any 1 ≤ ji ≤ b, | ∩m
i=1 B(i, ji)| = µm. The integer µm is called mth cross

intersection number.

Example 5. The resolvable design shown in Example 4 is not a maximal cross resolvable design as: between

B(1, 1) = {1, 2, 3, 4}, B(2, 1) = {1, 2, 9, 13} we have |B(1, 1) ∩B(2, 1)| = 2, but between B(1, 2) = {5, 6, 7, 8}

and B(2, 1) = {1, 2, 9, 13} we have B(1, 2) ∩B(2, 1) = 0.

Example 6. Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}. And A = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12},

{13, 14, 15, 16}, {1, 5, 9, 13}, {2, 6, 10, 14}, {3, 7, 11, 15}, {4, 8, 12, 6}}. Then (X,A) is a design. Consider the two

parallel classes of (X,A).

P1 = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}

P2 = {{1, 5, 9, 13}, {2, 6, 10, 14}, {3, 7, 11, 15}, {4, 8, 12, 16}}.

It can be seen that each sets P1 and P2 partition X , and they together partition A. Furthermore, the cardinality of

the intersection between any two blocks selected from the two distinct parallel classes is always 1. So the design

is a maximal cross resolvable design (MCRD) with µ2 = 1.
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Lemma 1. Let (X,A) be an MCRD with m parallel classes and µm = 1. Furthermore, say each parallel class

contains b blocks. Then, each block has exactly bm−1 elements. Moreover, |X | = bm.

The proof of Lemma 1 is deferred till Appendix A-A.

We consider a function I : {1, 2, . . . , b}m → X defined as I(l1, l2, . . . , lm) = ∩m
n=1B(n, ln). The set

{l1, l2, · · · , li−1, li+1, · · · , lm} can be chosen in bm−1 ways, and for each such choice there is one instance of the

set I(l1, l2, . . . , li−1, j, li+1, . . . , lm) = ∩m
n=1,n6=iB(n, ln) ∩B(i, j).

Corollary 1. Let (X,A) be an MCRD with m parallel classes. For 1 ≤ i ≤ m, 1 ≤ j ≤ b, say B(i, j) is the j th

block in the ith parallel class for some ordering of the parallel classes and the blocks in each parallel class. Then

B(i, j) = ∪b
l1=1 ∪

b
l2=1 · · · ∪

b
li−1=1 ∪

b
li+1=1 · · · ∪

b
lm=1 I(l1, l2, . . . , li−1, j, li+1, . . . , lm). (3)

The proof of Corollary 1 is deferred to Appendix A-B.

Example 7. In Example 6, as per Lemma 1, m = 2, b = 4, µm = 1, and each block has µmbm−1 = 4 elements.

In congruence to Corollary 1, we have:

∪4
l=1I(1, l) = ∪4

l=1B(1, 1) ∩B(2, l)

= {B(1, 1) ∩B(2, 1)} ∪ {B(1, 1) ∩B(2, 2)} ∪ {B(1, 1) ∩B(2, 3)} ∪ {B(1, 1) ∩B(2, 4)}

= B(1, 1) ∩ {B(2, 1) ∪B(2, 2) ∪B(2, 3) ∪B(2, 4)}

= B(1, 1) ∩X = B(1, 1).

Example 8. Let X = {1, 2, . . . , 27}. And A be the sets contained in the following parallel classes P1, P2, P3.

P1 = {{1, 2, 3, 4, 5, 6, 7, 8, 9}, {10, 11, 12, 13, 14, 15, 16, 17, 18}, {19, 20, 21, 22, 23, 24, 25, 26, 27}}

P2 = {{1, 2, 3, 10, 11, 12, 19, 20, 21}, {4, 5, 6, 13, 14, 15, 22, 23, 24}, {7, 8, 9, 16, 17, 18, 25, 26, 27}

P3 = {{1, 4, 7, 10, 13, 16, 19, 22, 25}, {2, 5, 8, 11, 14, 17, 20, 23, 26}, {3, 6, 9, 12, 15, 18, 21, 24, 27}.

It can be seen (X,A) is a design with b = 3, µ3 = 1. Consistent with Lemma 1, each block has µ3b
2 elements.

Furthermore, in congruence to Corollary 1 we have:

∪3
l2=1 ∪

3
l3=1 I(1, l2, l3)

= ∪3
l2=1{I(1, l2) ∩B(3, 1)} ∪ {I(1, l2) ∩B(3, 1)} ∪ {I(1, l2) ∩B(3, 1)}

= ∪3
l2=1I(1, l2) ∩ {B(3, 1) ∪B(3, 2) ∪B(3, 3)}

= ∪3
l2=1I(1, l2) = ∪3

l2=1{B(1, 1) ∩B(2, l2)}

= B(1, 1) ∩ {B(2, 1) ∪B(2, 2) ∪B(2, 3)} = B(1, 1).

Theorem 1. For any positive integer m, n, and b, there exists an MCRD (X,A) with X = {1, 2, . . . , nbm},

|A| = mb, m parallel classes, b blocks in each parallel class, and µm = n.

The proof of Theorem 1 is shown in Appendix B.
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V. A CLASS OF USER-TO-CACHE ASSOCIATION BIPARTITE GRAPHS

Let m and b be integers where K = mb. Consider the class of all user-to-cache association bipartite graphs

G = (U,C,E) that follows the following three conditions C1, C2, C3.

• Condition C1: G = (U,C,E) is a disjoint union of m user-to-cache association bipartite graphs Gi =

(Ki, Ci, Ei) for 1 ≤ i ≤ m such that |Ki| = |Ci| = b, if j 6= i, Ki ∩Kj = ∅, Ci ∩ Cj = ∅.

• Condition C2: For 1 ≤ i ≤ m the vertices Ci can be partitioned into z disjoint subsets C(i,1), C(i,2), . . . , C(i,z)

such that (i) for 1 ≤ l ≤ z− 1 the subset C(i,l) contains ⌊ b
z
⌋ vertices, the subset C(i,z) contains b− (z− 1)⌊ b

z
⌋

vertices; (ii) any vertex u ∈ Ki connects to at most one vertex in C(i,l) for 1 ≤ l ≤ z.

• Condition C3: There is a perfect matching in Gi for 1 ≤ i ≤ m.

k(1,1) k(1,2) k(1,3) k(1,4)

c(1,1) c(1,3) c(1,4)c(1,2)

k(2,1) k(2,2) k(2,3) k(2,4)

c(2,1) c(2,3) c(2,4)c(2,2)

Fig. 1. An example user-to-cache association bipartite graph G = (U,C,E) that satisfies conditions C1, C2, C3. There are 8 users U =

{k(i, j) | 1 ≤ i ≤ 2, 1 ≤ j ≤ 4}, 8 caches C = {c(i, j) | 1 ≤ i ≤ 2, 1 ≤ j ≤ 4}, b = 4, m = 2, and we have z = 2. A vertex labeled by

k(i, j) is connected to a vertex labeled by c(i, j) if and only if user k(i, j) accesses cache c(i, j). For instance, user k(1, 1) accesses caches

c(1, 1) and c(1, 3).

Figure 1 shows an example user-to-cache association bipartite graph that satisfies conditions C1, C2, C3.

As a result of condition C1, a user k ∈ Ki cannot access any caches from Cj for j 6= i. As it will be shown in

Section D-B, condition C1 enforces a matching of size m, which in turn allows our scheme to achieve a coding

gain of m: in our delivery algorithm, each transmission from the central server will be useful to one user in each

Ki for 1 ≤ i ≤ m.

Let the j th user for 1 ≤ j ≤ b in Ki be denoted by k(i, j) (for some ordering of the users in Ki). So

Ki = {k(i, 1), k(i, 2), . . . , k(i, b)}. Similarly, let the j th cache for 1 ≤ j ≤ b in Ci be denoted by c(i, j) (for some

ordering of the caches in Ci). So Ci = {c(i, 1), c(i, 2), . . . , c(i, b)}.

Conditions C2, C3 apply on Gi = (Ki, Ci, Ei) for 1 ≤ i ≤ m. Condition C2 ensures that each user accesses

at most z caches. Furthermore, a user k(i, j) can access at most one cache in C(i,l) for 1 ≤ l ≤ z. Specifically,

if (k(i, j), c(i, j1)), (k(i, j), c(i, j2)) ∈ Ei and c(i, j1) ∈ C(i,n1), c(i, j2) ∈ C(i,n2), then C(i,n1) 6= C(i,n2). Note,

caches contained in C(i,z) are the caches that are in Ci but not in the sets C(i,l) for 1 ≤ l ≤ z − 1. The intuitive

reasoning behind such partitioning is as follows. In the placement phase, we will place contents such a way that

caches belonging to the separate partitions will never have any files in common; and caches belonging to the same

partition may have files in common. Condition C2 helps maximize the local coding gain.
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Condition C3 ensures that there is some set Mi ⊆ Ei such that for each user k(i, j) there is exactly one

cache c(i, j′) such that (k(i, j), c(i, j′)) ∈ Mi, and for each cache c(i, l) there is only one user k(i, l′) such that

(k(i, l′), c(i, l)) ∈ Mi. So, condition C3 ensures that there is a bijection fMi
from Ki to Ci: if (u, v) ∈ Mi, u

maps to v.

VI. MAIN RESULT AND COMPARISONS

Theorem 2. Consider a MACC problem with K users, K caches, access degree z, such that for some integers m

and b where K = mb the user-to-cache association bipartite graph satisfies the conditions C1, C2, C3. Let the

central server have N files where N ≥ K , and the cache memory size be M files. For M = tN
b

(t ∈ N) and a

subpacketization level bm a rate of R files is achievable where

R = (b− tz) for 1 ≤ t ≤ ⌊
b

z
⌋

R = (b− (z − 1)⌊
b

z
⌋ − t) for ⌊

b

z
⌋ < t < b − (z − 1)⌊

b

z
⌋

R = 0 for t ≥ b− (z − 1)⌊
b

z
⌋.

The proof of Theorem 2 shown in Appendix D.

A. Rate-subpacketization trade-off

It can be seen from Theorem 2 that the achievable rate increases with b. Since K = mb, increasing m decreases b,

and thereby the achievable rate decreases with increasing m. On the other hand, the subpacketization level increases

exponentially with m and increases polynomially with b. So our scheme has a trade-off: reducing rate leads to a

higher subpacketization, and reducing subpacketization leads to a higher rate. It is to be noted that our scheme

requires z ≤ b, and so decreasing b limits the value of z.

B. Comparison

In this subsection, we compare the rate and subpacketization level of our scheme with the MACC schemes shown

in references [6]–[13], and show that at least for some memory sizes our scheme achieves either a lesser rate or a

lesser subpacketization.

The scheme shown in [7] is denoted by SPE scheme, the scheme in [8] is denoted by RK scheme, the scheme

in [9] is denoted by NT scheme, the scheme in [13] is denoted by SICPS scheme, the scheme in [10] is denoted

by SR1 scheme, the scheme in [11] is denoted by SR2 scheme, and the scheme in [12] is denoted by MR scheme.

Consider the case when K = 100 and z = 5. For every m and b such that mb = 100 Theorem 2 shows a

solution. Fig. 2a shows the plot of achievable rate R against normalized cache memory size M/N and Fig. 2b

shows the plot of base 10 logarithm of subpacketization level against the M/N . In Fig. 2a, the point (0, 100) is

trivially achieved, the point (1/50, 45) is achieved for b = 50, the point (1/25, 20) is achieved for b = 25, the point

(1/20, 15) is achieved for b = 20, the point (1/10, 5) is achieved for b = 10, and the point (1/5, 0) is achieved

for any legitimate value of b. To note that the user-to-cache association bipartite graph depends upon b. So, for
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instance, the user-to-cache association bipartite graph when b = 50 is different from the user-to-cache association

bipartite graph when b = 25.

Fig. 2a shows that our scheme may achieve a better rate than SPE scheme, SR1 scheme, SR2 scheme, MR

scheme, and RK scheme for some ranges of M/N . On the other hand, Figure 2b shows that our scheme achieves

a lesser subpacketization level than NT scheme, SICPS scheme, and RK scheme for some values of M/N .

At M/N = 0.1 our scheme achieves R = 5 files, NT scheme achieves R ≈ 4.5 files, SICPS scheme achieves

R ≈ 4.3 files, while at the same value of M/N the three schemes achieve a subpacketization level 1010, 1012.8,

1011.1 respectively (approximate values for the latter two).

While the memory-rate trade-off curve of the NT scheme and the SICPS scheme (In Fig. 2a) is below our

scheme for the entire range of M/N , the RK scheme and the SR1 scheme seems to have a crossover point after

M/N = 0.16. For clarity, we show these proximal points in Table VI-B.

TABLE I

SOME PROXIMAL POINTS IN FIG. 2A SHOWN FOR CLARITY.

M/N SR1 Scheme RK Scheme Our Scheme

0.16 3.4965 4 2

0.17 1.6953 2.25 1.5

0.18 0.9528 1 1

0.19 0.2103 0.25 0.5

0.2 0 0 0

In Table VI-B we show the achievable rate and subpacketization level of all the relevant schemes. It has been

shown in [9] that their NT scheme performs at least as good as the scheme in [6] in both achievable rate and

subpacketization level for all memory sizes, and hence the latter scheme is not considered for comparison. Some

of the equations in Table VI-B are sizable, in such cases the reader has been referred to see the equation in the

original paper.

For the rest of this section t ∈ {1, 2, . . . , ⌊ b
z
⌋}, t′ ∈ {1, 2, . . . , ⌊K

z
⌋}, and t′′ ∈ {1, 2, . . . ,K}. It is to be noted

that in Table VI-B the SR2 scheme is applicable only if t′′ divides K and (K − t′′z + t′′) divides K; and SR1

scheme is applicable only if gcd(t′′,K) = 1.

1) Comparison with the SPE scheme: Due to the complexity of equation (2) of [7] we could not provide an

analytical comparison between the achievable rate of the SPE scheme and our scheme. For the case considered in

Fig. 2a it can be seen that our scheme achieves a lesser rate for a large range of the normalized memory size.

For a comparison of the subpacketization level, if in our scheme we take m = 1, then b = K and at M
N

= 2
K

our

scheme achieves a lesser (linear) subpacketization level than the SPE scheme (though it is at the cost of a lesser

coding gain and thus a higher rate).

2) Comparison with the RK scheme, NT scheme, and SICPS scheme: Comparison of the achievable rate: It

has been shown in [13] that the achievable rate of the SICPS scheme is lesser than that of the RK scheme and

NT scheme. However, due to the complexity of equation (6) of [13] prescribing the achievable rate of the SICPS
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Fig. 2. Comparison of rate and subpacketization level of Our Scheme, the RK scheme, the SICPS scheme, the NT scheme, the SPE scheme,

the SR1 scheme, the SR2 scheme, and the MR scheme for MACC problem with K = 100, z = 5. The subpacketization level in Fig. 2b is

shown in log10 scale. It is to be noted that the achievable points in Fig. 2b are connected by a line for aesthetics.
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TABLE II

COMPARISON OF SCHEMES

M/N Rate Subpacketization level

Our Scheme t
b

b− tz bm

SPE Scheme 2
K

see eqn. (2) of [7]
K(K−2z+2)

4

RK Scheme t′

K

(K−t′z)2

K
K
t′

(

K−t′z+t′−1
t′−1

)

NT Scheme same as above K−t′z
t′+1

K
(

K−t′z+t′

t′

)

SICPS Scheme same as above see eqn. (6) of [13] K
t′

(

K−t′z+t′−1
t′−1

)

SR1 Scheme t′′

K
see Theorem 1 of [10] cK (1 ≤ c ≤ K)

SR2 Scheme same as above
(K−t′′z)(K−t′′z+t′′)

2K
K

MR Scheme 1
K

1
K
⌈ K(K−z)

2+⌊ z
K−z+1

⌋+⌊ z−1
K−z+1

⌋
⌉ K

scheme, we are not able to provide an analytical comparison. For the example considered in Fig. 2a, it can be seen

that the achievable rate of the NT scheme and the SICPS scheme is less than our scheme, but the rate of the RK

scheme is higher than our scheme for the most part of the memory region.

Lemma 2. At M
N

= t
b
= t′

K
where M

N
< min{ 1

b
⌊ b
z
⌋, 1

K
⌊K

z
⌋, K−b

Kz
} our scheme achieves a lesser rate than that of

the RK scheme.

The proof is shown in Appendix C-A.

At M
N

= t
b
= t′

K
where t

b
< min{ 1

b
⌊ b
z
⌋, 1

K
⌊K

z
⌋}, the NT scheme achieves a rate

m(b−tz)
mt+1 , whereas our scheme

achieves a rate (b − tz). So the achievable rate of the NT scheme is lesser by a factor of (t + 1
m
) = b(M

N
+ 1

K
).

So for a given M
N

and K , the less the value of b the less is the gap between the rate of our scheme and the NT

scheme.

Comparison of the Subpacketization level: We show that even though the SICPS scheme and the NT scheme

achieve a lesser rate than our scheme, at least for some values M
N

our scheme achieves a lesser subpacketization

level. Analytical comparison of the subpacketization level of these two schemes with our schemes is complicated

due to the disparate nature of the closed form expression of the respective subpacketization levels, and hence we

could provide an analytical result only under a restricted setting.

Lemma 3. At M
N

= 1
b

= m
K

if b ≥
√

K(z − 1) + 1, b > z, and m ≤ ⌊K
z
⌋ our scheme achieves a lesser

subpacketization level than the RK scheme, NT scheme, and the SICPS scheme.

The proof is shown in Appendix C-B. For the case considered in Fig. 2b it can be seen that our scheme achieves

a lesser subpacketization level than these two schemes at several values M
N

.

3) Comparison with the SR1 scheme: For the SR1 scheme the non-trivial corner points has M
N

= t′′

K
. For our

scheme the non-trivial corner points are M
N

= t
b
= mt

K
. So for the M

N
value of the two schemes to coincide we

must have t′′

K
= t

b
, which leads to t′′ = mt. However, in such a case gcd(t′′,K) = gcd(mt,mb) ≥ m. So unless

m = 1 and gcd(t, b) = 1, the M
N

value of the two schemes do not coincide.
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Due to the complexity of the achievable rate expression of the SR1 scheme and its disparity with our scheme,

we could only provide the following analytical comparison under a restricted setting.

Lemma 4. For some positive integers m1,m2 such that both m1 and m2 divides K , m1 < m2, b1 = K
m1

, b2 = K
m2

,

b1, b2 ≥ z, λ ∈ R, 0 ≤ λ ≤ 1, t′′ = m1 + λ(m2 − m1), t
′′ 6= K−1

z
, gcd(t′′,K) = 1, at M

N
= t′′

K
our scheme

achieves a better rate than the SR2 scheme if

b1 + λ(b2 − b1) ≤
(K − t′′z)(K − t′′z + 2)

K + 2
+ z.

The proof is shown in Appendix C-C.

For example, for K = 100, z = 5, if we take m1 = 4, m2 = 10, λ = 1
2 , then all the conditions of Lemma 4 gets

satisfied, and for the point t′′

K
= 7

100 the lemma claims that our scheme achieves a lesser rate. Indeed, at M
N

= 7
100 ,

the SR1 scheme a rate of 32 files, whereas our scheme achieves a rate of 12.5 files (the point ( 7
100 , 12.5) lies on

the line connecting the points ( 1
25 , 20) and ( 1

10 , 5)). (The comparison is shown in Fig. 2a.)

4) Comparison with the SR2 scheme:

Lemma 5. At M
N

= t
b
= t′′

K
where t divides b, (b − tz + t) divides b, and t ≤ ⌊ b

z
⌋ our scheme achieves a lesser

rate than that of the SR2 scheme when M
N

≤ m−2
m(z−1) .

The proof is shown in Appendix C-D.

For example, for K = 120, z = 5, at M
N

= 15
120 , the SR1 scheme achieves a rate 11.25 files, whereas our scheme

for t = 3, b = 24,m = 5 achieves a rate 9 files. For the case considered in Fig. 2a, for no M
N

= t
b

the conditions t

divides b and (b− tz + t) divides b satisfied, so the plot of the rate achieved by the SR2 scheme is a straight line

connecting the points (0, 100) and (1/5, 0).

The SR2 scheme has a subpacketization level of K . For b = K and m = 1 our scheme also produces a scheme

with subpacketization level K . If the subpacketization of our scheme and the SR2 scheme is kept the same, then

SR2 scheme achieves a lesser rate.

5) Comparison with the MR scheme:

Lemma 6. At M
N

= 1
b

where K = mb and m ≥ 3, our scheme achieves a lesser rate than the MR scheme.

The proof is shown in Appendix C-E. For m = 2 the rates of our scheme and the MR scheme are equal. In

Fig. 2a it can be seen that for M
N

> 1
50 our scheme achieves a lesser rate.

VII. EXAMPLES

A. First Example: K = 8, z = 2, M
N

= 1
4

In the first example, we consider a MACC problem with K = 8, z = 2, M
N

= 1
4 . For b = 4, m = 2, let

G = (U,C,E) shown in Fig. 1 be the user-to-cache association bipartite graph. It is to be noted that there are

other user-to-cache association bipartite graphs as well that satisfies the criteria set by this example problem. We

have U = K1 ∪K2 where K1 = {k(1, 1), k(1, 2), k(1, 3), k(1, 4)}, K2 = {k(2, 1), k(2, 2), k(2, 3), k(2, 4)}. And,

C = C1 ∪ C2 where C1 = {c(1, 1), c(1, 2), c(1, 3), c(1, 4)}, C2 = {c(2, 1), c(2, 2), c(2, 3), c(2, 4)}.



14

Condition C3 ensures the existence of a bijection fMi
from Ki to Ci. Let us consider the following bijection

fM1(k(1, 1)) = c(1, 1), fM1(k(1, 2)) = c(1, 2), fM1(k(1, 3)) = c(1, 4), fM1(k(1, 4)) = c(1, 3), fM2(k(2, 1)) =

c(2, 4), fM2(k(2, 2)) = c(2, 3), fM2(k(2, 3)) = c(2, 2), fM2(k(2, 4)) = c(2, 1).

The map fMi
could have been defined in other ways as well. For instance, we could have defined fM1(k(1, 1)) =

c(1, 3), fM1(k(1, 2)) = c(1, 4), fM1(k(1, 3)) = c(1, 1), fM1(k(1, 4)) = c(1, 2).

As per condition C2, Ci = C(i,1) ∪ C(i,2), where

C(i,1) = {c(i, 1), c(i, 2)}, C(i,2) = {c(i, 3), c(i, 4)} for 1 ≤ i ≤ 2.

For i = 1, 2, j = 1, 2, 3, 4, set Ck(i,j) denotes the set of caches user k(i, j) accesses. We have

Ck(1,1) = {c(1, 1), c(1, 3)}, Ck(1,2) = {c(1, 2), c(1, 4)}, Ck(1,3) = {c(1, 1), c(1, 4)}, Ck(1,4) = {c(1, 2), c(1, 3)},

Ck(2,1) = {c(2, 1), c(2, 4)}, Ck(2,2) = {c(2, 2), c(2, 3)}, Ck(2,3) = {c(2, 2), c(2, 4)}, Ck(2,4) = {c(2, 1), c(2, 3)}.

We consider the following MCRD to be used for placement and delivery.

P1 = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}

P2 = {{1, 5, 9, 13}, {2, 6, 10, 14}, {3, 7, 11, 15}, {4, 8, 12, 16}}.

It is to be noted that we could have used any MCRD which has m = 2 parallel classes, b = 4 blocks in each

parallel class, and µ2 = 1. Let

B(1, 1) = {1, 2, 3, 4}, B(1, 2) = {5, 6, 7, 8}, B(1, 3) = {9, 10, 11, 12}, B(1, 4) = {13, 14, 15, 16}

B(2, 1) = {1, 5, 9, 13}, B(2, 2) = {2, 6, 10, 14}, B(2, 3) = {3, 7, 11, 15}, B(2, 4) = {4, 8, 12, 16}.

Partition sets P1 and P2 as following

P(i,1) = {B(i, 1), B(i, 2)},P(i,2) = {B(i, 3), B(i, 4)} for 1 ≤ i ≤ 2.

Placement: Split each file into bm = 16 subfiles. A cache stores the subfiles indexed by the elements of some

of the blocks of the MCRD considered above. Let the cache c(i, j) store the subfiles (of all files) indexed by the

elements of the blocks contained in Bc(i,j), where

Bc(i,j) = {B(i, j)} for 1 ≤ i ≤ 2, 1 ≤ j ≤ 4. (4)

Let Bk(i,j) denote the set of blocks such that if B ∈ Bk(i,j) then for some cache c(i, j′) ∈ Ck(i,j) we have

B ∈ Bc(i,j′). So we have

Bk(1,1) = {B(1, 1), B(1, 3)}, Bk(1,2) = {B(1, 2), B(1, 4)}, Bk(1,3) = {B(1, 1), B(1, 4)},

Bk(1,4) = {B(1, 2), B(1, 3)}, Bk(2,1) = {B(2, 1), B(2, 4)}, Bk(2,2) = {B(2, 2), B(2, 3)},

Bk(2,3) = {B(2, 2), B(2, 4)}, Bk(2,4) = {B(2, 1), B(2, 3)}.

We now construct a new graph that we call as the demand graph Ḡ = (V1, V2, Ē) shown in Fig. 3. We have

for l = 1, 2, Vl = {v(l,i,j)|1 ≤ i ≤ 2, 1 ≤ j ≤ 4}. There is a bijection from the vertices in V1 to the caches in
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v(1,2,1)

v(2,1,1)
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Fig. 3. The demand graph Ḡ = (V1, V2, Ē) for the user-to-cache association bipartite graph G = (U,C,E) shown in Fig. 1 when M
N

= 1
4

(set Bc(i,j) defined in equation (4)). An edge connects v(1,i,j) to v(2,i′ ,j∗) if and only if i = i′ and the set B
f
−1
Mi

(c(i,j))
does not contain

the block B(i, j∗).

C, and there is another bijection from the vertices in V2 to the blocks in P1 ∪ P2. Say for i = 1, 2, 1 ≤ j ≤ 4,

the vertex v(1,i,j) maps to the cache c(i, j), similarly, say that the vertex v(2,i,j) maps to the block B(i, j). For

i = 1, 2, 1 ≤ j ≤ 4 there exists an edge in Ē connecting vertex v(1,i,j) ∈ V1 to vertex v(2,̄i,j∗) ∈ V2 if and only if

i = ī and B(i, j∗) /∈ Bk(i,j′) where k(i, j′) = f−1
Mi

(c(i, j)).

We define a map f(i,j) : {1, 2} → {1, 2, 3, 4} \ {l |B(i, l) ∈ Bk(i,j)} for 1 ≤ i ≤ 2, 1 ≤ j ≤ 4 as following.

f(1,1)(1) = 2, f(1,1)(2) = 4, f(1,2)(1) = 1, f(1,2)(2) = 3, f(1,3)(1) = 2, f(1,3)(2) = 3,

f(1,4)(1) = 1, f(1,4)(2) = 4, f(2,1)(1) = 2, f(2,1)(2) = 3, f(2,2)(1) = 1, f(2,2)(2) = 4,

f(2,3)(1) = 1, f(2,3)(2) = 3, f(2,4)(1) = 2, f(2,4)(2) = 4.

We define a partial matching Mn
j1,j2

for n = 1, 2, 1 ≤ j1, j2 ≤ 4 as following.

Mn
j1,j2

= {(v(1,i,ji), v(2,i,f(i,j′
i
)(n))

) | i = 1, 2} where k(i, j′i) = f−1
Mi

(c(i, ji)).

So we have

M1
1,1 = {(v(1,1,1), v(2,1,2)), (v(1,2,1), v(2,2,2))} M1

1,2 = {(v(1,1,1), v(2,1,2)), (v(1,2,2), v(2,2,1))}

M1
1,3 = {(v(1,1,1), v(2,1,2)), (v(1,2,3), v(2,2,1))} M1

1,4 = {(v(1,1,1), v(2,1,2)), (v(1,2,4), v(2,2,2))}

M1
2,1 = {(v(1,1,2), v(2,1,1)), (v(1,2,1), v(2,2,2))} M1

2,2 = {(v(1,1,2), v(2,1,1)), (v(1,2,2), v(2,2,1))}

M1
2,3 = {(v(1,1,2), v(2,1,1)), (v(1,2,3), v(2,2,1))} M1

2,4 = {(v(1,1,2), v(2,1,1)), (v(1,2,4), v(2,2,2))}

M1
3,1 = {(v(1,1,3), v(2,1,1)), (v(1,2,1), v(2,2,2))} M1

3,2 = {(v(1,1,3), v(2,1,1)), (v(1,2,2), v(2,2,1))}

M1
3,3 = {(v(1,1,3), v(2,1,1)), (v(1,2,3), v(2,2,1))} M1

3,4 = {(v(1,1,3), v(2,1,1)), (v(1,2,4), v(2,2,2))}

M1
4,1 = {(v(1,1,4), v(2,1,2)), (v(1,2,1), v(2,2,2))} M1

4,2 = {(v(1,1,4), v(2,1,2)), (v(1,2,2), v(2,2,1))}

M1
4,3 = {(v(1,1,4), v(2,1,2)), (v(1,2,3), v(2,2,1))} M1

4,4 = {(v(1,1,4), v(2,1,2)), (v(1,2,4), v(2,2,2))}

M2
1,1 = {(v(1,1,1), v(2,1,4)), (v(1,2,1), v(2,2,4))} M2

1,2 = {(v(1,1,1), v(2,1,4)), (v(1,2,2), v(2,2,3))}

M2
1,3 = {(v(1,1,1), v(2,1,4)), (v(1,2,3), v(2,2,4))} M2

1,4 = {(v(1,1,1), v(2,1,4)), (v(1,2,4), v(2,2,3))}

M2
2,1 = {(v(1,1,2), v(2,1,3)), (v(1,2,1), v(2,2,4))} M2

2,2 = {(v(1,1,2), v(2,1,3)), (v(1,2,2), v(2,2,3))}
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M2
2,3 = {(v(1,1,2), v(2,1,3)), (v(1,2,3), v(2,2,4))} M2

2,4 = {(v(1,1,2), v(2,1,3)), (v(1,2,4), v(2,2,3))}

M2
3,1 = {(v(1,1,3), v(2,1,4)), (v(1,2,1), v(2,2,4))} M2

3,2 = {(v(1,1,3), v(2,1,4)), (v(1,2,2), v(2,2,3))}

M2
3,3 = {(v(1,1,3), v(2,1,4)), (v(1,2,3), v(2,2,4))} M2

3,4 = {(v(1,1,3), v(2,1,4)), (v(1,2,4), v(2,2,3))}

M2
4,1 = {(v(1,1,4), v(2,1,3)), (v(1,2,1), v(2,2,4))} M2

4,2 = {(v(1,1,4), v(2,1,3)), (v(1,2,2), v(2,2,3))}

M2
4,3 = {(v(1,1,4), v(2,1,3)), (v(1,2,3), v(2,2,4))} M2

4,4 = {(v(1,1,4), v(2,1,3)), (v(1,2,4), v(2,2,3))}.

For each matchings Mn
j1,j2

for n = 1, 2, 1 ≤ j1, j2 ≤ 4, we transmit one subfile Y n
j1,j2

. For a matching Mn
j1,j2

=

{(v(1,1,j1), v(2,1,j∗1 )), (v(1,2,j2), v(2,2,j∗2 ))}, define Sn,1
j1,j2

= B(1, j∗1 )∩B(2, j2) and Sn,2
j1,j2

= B(1, j1)∩B(2, j∗2 ). We

transmit the following subfiles

Y n
j1,j2

= W
d
f
−1
M1

(c(1,j1))
(Sn,1

j1,j2
) +W

d
f
−1
M2

(c(2,j2))
(Sn,2

j1,j2
) for 1 ≤ n ≤ 2, 1 ≤ j1, j2 ≤ 4.

The transmissions Y n
j1,j2

along with the set Sn,i
j1,j2

for n, i = 1, 2, 1 ≤ j1, j2 ≤ 4, are shown in the following.

S1,1
1,1 = B(1, 2) ∩B(2, 1) = {5}, S1,2

1,1 = B(1, 1) ∩B(2, 2) = {2}, Y 1
1,1 = W d(1,1)(5) +W d(2,4)(2) (5)

S1,1
1,2 = B(1, 2) ∩B(2, 2) = {6}, S1,2

1,2 = B(1, 1) ∩B(2, 1) = {1}, Y 1
1,2 = W d(1,1)(6) +W d(2,3)(1)

S1,1
1,3 = B(1, 2) ∩B(2, 3) = {7}, S1,2

1,3 = B(1, 1) ∩B(2, 1) = {1}, Y 1
1,3 = W d(1,1)(7) +W d(2,2)(1)

S1,1
1,4 = B(1, 2) ∩B(2, 4) = {8}, S1,2

1,4 = B(1, 1) ∩B(2, 2) = {2}, Y 1
1,4 = W d(1,1)(8) +W d(2,1)(2)

S1,1
2,1 = B(1, 1) ∩B(2, 1) = {1}, S1,2

2,1 = B(1, 2) ∩B(2, 2) = {6}, Y 1
2,1 = W d(1,2)(1) +W d(2,4)(6)

S1,1
2,2 = B(1, 1) ∩B(2, 2) = {2}, S1,2

2,2 = B(1, 2) ∩B(2, 1) = {5}, Y 1
2,2 = W d(1,2)(2) +W d(2,3)(1)

S1,1
2,3 = B(1, 1) ∩B(2, 3) = {3}, S1,2

2,3 = B(1, 2) ∩B(2, 1) = {5}, Y 1
2,3 = W d(1,2)(3) +W d(2,2)(5)

S1,1
2,4 = B(1, 1) ∩B(2, 4) = {4}, S1,2

2,4 = B(1, 2) ∩B(2, 2) = {6}, Y 1
2,4 = W d(1,2)(4) +W d(2,1)(6)

S1,1
3,1 = B(1, 1) ∩B(2, 1) = {1}, S1,2

3,1 = B(1, 3) ∩B(2, 2) = {10}, Y 1
3,1 = W d(1,4)(1) +W d(2,4)(10)

S1,1
3,2 = B(1, 1) ∩B(2, 2) = {2}, S1,2

3,2 = B(1, 3) ∩B(2, 1) = {9}, Y 1
3,2 = W d(1,4)(2) +W d(2,3)(9)

S1,1
3,3 = B(1, 1) ∩B(2, 3) = {3}, S1,2

3,3 = B(1, 3) ∩B(2, 1) = {9}, Y 1
3,3 = W d(1,4)(3) +W d(2,2)(9)

S1,1
3,4 = B(1, 1) ∩B(2, 4) = {4}, S1,2

3,4 = B(1, 3) ∩B(2, 2) = {10}, Y 1
3,4 = W d(1,4)(4) +W d(2,1)(10)

S1,1
4,1 = B(1, 2) ∩B(2, 1) = {5}, S1,2

4,1 = B(1, 4) ∩B(2, 2) = {14}, Y 1
4,1 = W d(1,3)(5) +W d(2,4)(14)

S1,1
4,2 = B(1, 2) ∩B(2, 2) = {6}, S1,2

4,2 = B(1, 4) ∩B(2, 1) = {13}, Y 1
4,2 = W d(1,3)(6) +W d(2,3)(13)

S1,1
4,3 = B(1, 2) ∩B(2, 3) = {7}, S1,2

4,3 = B(1, 4) ∩B(2, 1) = {13}, Y 1
4,3 = W d(1,3)(7) +W d(2,2)(13)

S1,1
4,4 = B(1, 2) ∩B(2, 4) = {8}, S1,2

4,4 = B(1, 4) ∩B(2, 2) = {14}, Y 1
4,4 = W d(1,3)(8) +W d(2,1)(14)

S2,1
1,1 = B(1, 4) ∩B(2, 1) = {13}, S2,2

1,1 = B(1, 1) ∩B(2, 4) = {4}, Y 2
1,1 = W d(1,1)(13) +W d(2,4)(4)

S2,1
1,2 = B(1, 4) ∩B(2, 2) = {14}, S2,2

1,2 = B(1, 1) ∩B(2, 3) = {3}, Y 2
1,2 = W d(1,1)(14) +W d(2,3)(3)

S2,1
1,3 = B(1, 4) ∩B(2, 3) = {15}, S2,2

1,3 = B(1, 1) ∩B(2, 4) = {4}, Y 2
1,3 = W d(1,1)(15) +W d(2,2)(4)

S2,1
1,4 = B(1, 4) ∩B(2, 4) = {16}, S2,2

1,4 = B(1, 1) ∩B(2, 3) = {3}, Y 2
1,4 = W d(1,1)(16) +W d(2,1)(3)
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S2,1
2,1 = B(1, 3) ∩B(2, 1) = {9}, S2,2

2,1 = B(1, 2) ∩B(2, 4) = {8}, Y 2
2,1 = W d(1,2)(9) +W d(2,4)(8)

S2,1
2,2 = B(1, 3) ∩B(2, 2) = {10}, S2,2

2,2 = B(1, 2) ∩B(2, 3) = {7}, Y 2
2,2 = W d(1,2)(10) +W d(2,3)(7)

S2,1
2,3 = B(1, 3) ∩B(2, 3) = {11}, S2,2

2,3 = B(1, 2) ∩B(2, 4) = {8}, Y 2
2,3 = W d(1,2)(11) +W d(2,2)(8)

S2,1
2,4 = B(1, 3) ∩B(2, 4) = {12}, S2,2

2,4 = B(1, 2) ∩B(2, 3) = {7}, Y 2
2,4 = W d(1,2)(12) +W d(2,1)(7)

S2,1
3,1 = B(1, 4) ∩B(2, 1) = {13}, S2,2

3,1 = B(1, 3) ∩B(2, 4) = {12}, Y 2
3,1 = W d(1,4)(13) +W d(2,4)(12)

S2,1
3,2 = B(1, 4) ∩B(2, 2) = {14}, S2,2

3,2 = B(1, 3) ∩B(2, 3) = {11}, Y 2
3,2 = W d(1,4)(14) +W d(2,3)(11)

S2,1
3,3 = B(1, 4) ∩B(2, 3) = {15}, S2,2

3,3 = B(1, 3) ∩B(2, 4) = {12}, Y 2
3,3 = W d(1,4)(15) +W d(2,2)(12)

S2,1
3,4 = B(1, 4) ∩B(2, 4) = {16}, S2,2

3,4 = B(1, 3) ∩B(2, 3) = {11}, Y 2
3,4 = W d(1,4)(16) +W d(2,1)(11)

S2,1
4,1 = B(1, 3) ∩B(2, 1) = {9}, S2,2

4,1 = B(1, 4) ∩B(2, 4) = {16}, Y 2
4,1 = W d(1,3)(9) +W d(2,4)(16)

S2,1
4,2 = B(1, 3) ∩B(2, 2) = {10}, S2,2

4,2 = B(1, 4) ∩B(2, 3) = {15}, Y 2
4,2 = W d(1,3)(10) +W d(2,3)(15)

S2,1
4,3 = B(1, 3) ∩B(2, 3) = {11}, S2,2

4,3 = B(1, 4) ∩B(2, 4) = {16}, Y 2
4,3 = W d(1,3)(11) +W d(2,2)(16)

S2,1
4,4 = B(1, 3) ∩B(2, 4) = {12}, S2,2

4,4 = B(1, 4) ∩B(2, 3) = {15}, Y 2
4,4 = W d(1,3)(12) +W d(2,1)(15).

Each transmission benefits two users, for instance, from equation (5), since 2 ∈ B(1, 1), B(1, 1) ∈ Bc(1,1),

c(1, 1) ∈ Ck(1,1), user k(1, 1) knows W d(2,4)(2), so it can retrieve W d(1,1)(5); similarly, and since 5 ∈ B(2, 1),

B(2, 1) ∈ Bc(2,1), c(2, 1) ∈ Ck(2,4), user k(2, 4) knows W d(1,1)(5), so it can retrieve W d(2,4)(2). After all the

above transmissions, it can be verified that all the users can retrieve its demanded files.

B. Second Example: K = 14, z = 3, M
N

= 2
7

k(i,1) k(i,2) k(i,3) k(i,4) k(i,5) k(i,6) k(i,7)

c(i,3)c(i,2) c(i,4) c(i,5) c(i,6)c(i,1) c(i,7)

Fig. 4. Let the graph shown in the figure be denoted by Ji. The user-to-cache association bipartite graph J = (U,C,E) considered in the

second example in Section VII-B is the disjoint union of J1 and J2. It can be verified that J = (U,C, E) satisfies conditions C1, C2, C3 for

b = 7, m = 2, z = 3.

In the second example, we consider a MACC problem with K = 14, z = 3, M
N

= 2
7 . For b = 7, m = 2, z = 3,

let the user-to-cache association bipartite graph be J = (U,C,E), an abstraction of which is shown in Fig. 4. It

is to be noted that there are other user-to-cache association bipartite graphs that satisfies the criteria set by this

example problem. We have U = K1 ∪ K2 where for i = 1, 2, Ki = {k(i, j) | 1 ≤ j ≤ 7}. And, C = C1 ∪ C2

where for i = 1, 2, Ci = {c(i, j)|1 ≤ j ≤ 7}.
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Let us consider the following definition of fMi
: for i = 1, 2, 1 ≤ j ≤ 7, fMi

(k(i, j)) = c(i, j). As per condition

C2, Ci = C(i,1) ∪ C(i,2) ∪ C(i,3), where

C(i,1) = {c(i, 1), c(i, 2)}, C(i,2) = {c(i, 3), c(i, 4)}, C(i,3) = {c(i, 5), c(i, 6), c(i, 7)} for 1 ≤ i ≤ 2.

For i = 1, 2, 1 ≤ j ≤ 7, set Ck(i,j) denotes the set of caches user k(i, j) accesses. We have

Ck(i,1) = {c(i, 1), c(i, 3), c(i, 5)}, Ck(i,2) = {c(i, 2), c(i, 3), c(i, 5)}, Ck(i,3) = {c(i, 2), c(i, 3), c(i, 5)},

Ck(i,4) = {c(i, 2), c(i, 4), c(i, 5)}, Ck(i,5) = {c(i, 2), c(i, 3), c(i, 5)}, Ck(i,6) = {c(i, 2), c(i, 3), c(i, 6)},

Ck(i,7) = {c(i, 2), c(i, 3), c(i, 7)}.

We consider the MCRD with the following parallel classes to be used for placement and delivery.

Pi = {B(i, j) | 1 ≤ j ≤ 7} for i = 1, 2 where

B(1, 1) = {1, 2, 3, 4, 5, 6, 7}, B(1, 2) = {8, 9, 10, 11, 12, 13, 14}, B(1, 3) = {15, 16, 17, 18, 19, 20, 21},

B(1, 4) = {22, 23, 24, 25, 26, 27, 28}, B(1, 5) = {29, 30, 31, 32, 33, 34, 35}, B(1, 6) = {36, 37, 38, 39, 40, 41, 42},

B(1, 7) = {43, 44, 45, 46, 47, 48, 49}, B(2, 1) = {1, 8, 15, 22, 29, 36, 43}, B(2, 2) = {2, 9, 16, 23, 30, 37, 44},

B(2, 3) = {3, 10, 17, 24, 31, 38, 45}, B(2, 4) = {4, 11, 18, 25, 32, 39, 46}, B(2, 5) = {5, 12, 19, 26, 33, 40, 47},

B(2, 6) = {6, 13, 20, 27, 34, 41, 48}, B(2, 7) = {7, 14, 21, 28, 35, 42, 49}.

Partition sets P1 and P2 as following

P(i,1) = {B(i, 1), B(i, 2)},P(i,2) = {B(i, 3), B(i, 4)},P(i,3) = {B(i, 5), B(i, 6), B(i, 7)} for 1 ≤ i ≤ 2.

Placement: Split each file into bm = 49 subfiles. The cache c(i, j) stores the subfiles (of all files) indexed by

the elements of the blocks contained in Bc(i,j), where for i = 1, 2,

Bc(i,1) = Bc(i,2) = {B(i, 1), B(i, 2)}, Bc(i,3) = Bc(i,4) = {B(i, 3), B(i, 4)},

Bc(i,5) = Bc(i,6) = {B(i, 5), B(i, 6)}, Bc(i,7) = {B(i, 5), B(i, 7)}.

So we have for i = 1, 2,

Bk(i,1) = Pi \B(i, 7), Bk(i,2) = Pi \B(i, 7), Bk(i,3) = Pi \B(i, 7), Bk(i,4) = Pi \B(i, 7),

Bk(i,5) = Pi \B(i, 7), Bk(i,6) = Pi \B(i, 7), Bk(i,7) = Pi \B(i, 6).

We now construct a new graph that we call as the demand graph J̄ = (V1, V2, Ē), an abstraction of which is

shown in Fig. 5. We have for l = 1, 2, Vl = {v(l,i,j)|1 ≤ i ≤ 2, 1 ≤ j ≤ 7}. There is a bijection from the vertices

in V1 to the caches in C, and there is another bijection from the vertices in V2 to the blocks in P1 ∪ P2. Say

for i = 1, 2, 1 ≤ j ≤ 7, the vertex v(1,i,j) maps to the cache c(i, j), similarly, say that the vertex v(2,i,j) maps

to the block B(i, j). For i = 1, 2, 1 ≤ j ≤ 7 there exists an edge in Ē connecting vertex v(1,i,j) ∈ V1 to vertex

v(2,̄i,j∗) ∈ V2 if and only if i = ī and B(i, j∗) /∈ Bk(i,j′) where k(i, j′) = f−1
Mi

(c(i, j)).
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v(1,i,1) v(1,i,2) v(1,i,3)

v(2,i,1) v(2,i,2) v(2,i,3)

v(1,i,4) v(1,i,5) v(1,i,6) v(1,i,7)

v(2,i,5) v(2,i,6) v(2,i,7)v(2,i,4)

Fig. 5. Let the graph shown in the figure be denoted by J̄i. The demand graph J̄ = (V1, V2, Ē) for the user-to-cache association bipartite

graph J = (U,C,E) considered in the second example in Section VII-B is the disjoint union of J̄1 and J̄2. An edge connects v(1,i,j) to

v(2,i′,j∗) if and only if i = i′ and the set B
f
−1
Mi

(c(i,j))
does not contain the block B(i, j∗).

We define a map f(i,j) : {1} → {1, 2, 3, 4, 5, 6, 7}\ {l |B(i, l) ∈ Bk(i,j)} for 1 ≤ i ≤ 2, 1 ≤ j ≤ 7 as following.

f(i,j)(1) = 7 for i = 1, 2, 1 ≤ j ≤ 6

f(i,7)(1) = 6 for i = 1, 2.

We define a partial matching M1
j1,j2

for 1 ≤ j1, j2 ≤ 7 as following.

M i
j1,j2

= {(v(1,i,ji), v(2,i,f(i,j′
i
)(1))

) | i = 1, 2} where k(i, j′i) = f−1
Mi

(c(i, ji)).

So we have

M1
j1,j2

= {(v(1,1,j1), v(2,1,7)), (v(1,2,j2), v(2,2,7))} for 1 ≤ j1, j2 ≤ 6

M1
j1,7 = {(v(1,1,j1), v(2,1,7)), (v(1,2,7), v(2,2,6))} for 1 ≤ j1 ≤ 6

M1
7,j2 = {(v(1,1,7), v(2,1,6)), (v(1,2,j2), v(2,2,7))} for 1 ≤ j1 ≤ 6

M1
7,7 = {(v(1,1,7), v(2,1,6)), (v(1,2,7), v(2,2,6))}.

For each matching M1
j1,j2

for 1 ≤ j1, j2 ≤ 7, we transmit one subfile Y 1
j1,j2

. For a matching M1
j1,j2

=

{(v(1,1,j1), v(2,1,j∗1 )), (v(1,2,j2), v(2,2,j∗2 ))}, define S1,1
j1,j2

= B(1, j∗1 )∩B(2, j2) and S1,2
j1,j2

= B(1, j1)∩B(2, j∗2 ). We

transmit the following subfiles

Y 1
j1,j2

= W
d
f
−1
M1

(c(1,j1))
(S1,1

j1,j2
) +W

d
f
−1
M2

(c(2,j2))
(S1,2

j1,j2
) for 1 ≤ j1, j2 ≤ 7.

The transmissions Y 1
j1,j2

along with the set S1,i
j1,j2

for i = 1, 2, 1 ≤ j1, j2 ≤ 7, are shown in the following.

S1,1
1,1 = B(1, 7) ∩B(2, 1) = {43}, S1,2

1,1 = B(1, 1) ∩B(2, 7) = {7}, Y 1
1,1 = W d(1,1)(43) +W d(2,1)(7)

S1,1
1,2 = B(1, 7) ∩B(2, 2) = {44}, S1,2

1,2 = B(1, 1) ∩B(2, 7) = {7}, Y 1
1,2 = W d(1,1)(44) +W d(2,2)(7)

S1,1
1,3 = B(1, 7) ∩B(2, 3) = {45}, S1,2

1,3 = B(1, 1) ∩B(2, 7) = {7}, Y 1
1,3 = W d(1,1)(45) +W d(2,3)(7)

S1,1
1,4 = B(1, 7) ∩B(2, 4) = {46}, S1,2

1,4 = B(1, 1) ∩B(2, 7) = {7}, Y 1
1,4 = W d(1,1)(46) +W d(2,4)(7)

S1,1
1,5 = B(1, 7) ∩B(2, 5) = {47}, S1,2

1,5 = B(1, 1) ∩B(2, 7) = {7}, Y 1
1,5 = W d(1,1)(47) +W d(2,5)(7)

S1,1
1,6 = B(1, 7) ∩B(2, 6) = {48}, S1,2

1,6 = B(1, 1) ∩B(2, 7) = {7}, Y 1
1,6 = W d(1,1)(48) +W d(2,6)(7)
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S1,1
1,7 = B(1, 7) ∩B(2, 7) = {49}, S1,2

1,7 = B(1, 1) ∩B(2, 6) = {6}, Y 1
1,7 = W d(1,1)(49) +W d(2,7)(6)

S1,1
2,1 = B(1, 7) ∩B(2, 1) = {43}, S1,2

2,1 = B(1, 2) ∩B(2, 7) = {14}, Y 1
2,1 = W d(1,2)(43) +W d(2,1)(14)

S1,1
2,2 = B(1, 7) ∩B(2, 2) = {44}, S1,2

2,2 = B(1, 2) ∩B(2, 7) = {14}, Y 1
2,2 = W d(1,2)(44) +W d(2,2)(14)

S1,1
2,3 = B(1, 7) ∩B(2, 3) = {45}, S1,2

2,3 = B(1, 2) ∩B(2, 7) = {14}, Y 1
2,3 = W d(1,2)(45) +W d(2,3)(14)

S1,1
2,4 = B(1, 7) ∩B(2, 4) = {46}, S1,2

2,4 = B(1, 2) ∩B(2, 7) = {14}, Y 1
2,4 = W d(1,2)(46) +W d(2,4)(14)

S1,1
2,5 = B(1, 7) ∩B(2, 5) = {47}, S1,2

2,5 = B(1, 2) ∩B(2, 7) = {14}, Y 1
2,5 = W d(1,2)(47) +W d(2,5)(14)

S1,1
2,6 = B(1, 7) ∩B(2, 6) = {48}, S1,2

2,6 = B(1, 2) ∩B(2, 7) = {14}, Y 1
2,6 = W d(1,2)(48) +W d(2,6)(14)

S1,1
2,7 = B(1, 7) ∩B(2, 7) = {49}, S1,2

2,7 = B(1, 2) ∩B(2, 6) = {13}, Y 1
2,7 = W d(1,2)(48) +W d(2,7)(13)

S1,1
3,1 = B(1, 7) ∩B(2, 1) = {43}, S1,2

3,1 = B(1, 3) ∩B(2, 7) = {21}, Y 1
3,1 = W d(1,3)(43) +W d(2,1)(21)

S1,1
3,2 = B(1, 7) ∩B(2, 2) = {44}, S1,2

3,2 = B(1, 3) ∩B(2, 7) = {21}, Y 1
3,2 = W d(1,3)(44) +W d(2,2)(21)

S1,1
3,3 = B(1, 7) ∩B(2, 3) = {45}, S1,2

3,3 = B(1, 3) ∩B(2, 7) = {21}, Y 1
3,3 = W d(1,3)(45) +W d(2,3)(21)

S1,1
3,4 = B(1, 7) ∩B(2, 4) = {46}, S1,2

3,4 = B(1, 3) ∩B(2, 7) = {21}, Y 1
3,4 = W d(1,3)(46) +W d(2,4)(21)

S1,1
3,5 = B(1, 7) ∩B(2, 5) = {47}, S1,2

3,5 = B(1, 3) ∩B(2, 7) = {21}, Y 1
3,5 = W d(1,3)(47) +W d(2,5)(21)

S1,1
3,6 = B(1, 7) ∩B(2, 6) = {48}, S1,2

3,6 = B(1, 3) ∩B(2, 7) = {21}, Y 1
3,6 = W d(1,3)(48) +W d(2,6)(21)

S1,1
3,7 = B(1, 7) ∩B(2, 7) = {49}, S1,2

3,7 = B(1, 3) ∩B(2, 6) = {20}, Y 1
3,7 = W d(1,3)(49) +W d(2,7)(20)

S1,1
4,1 = B(1, 7) ∩B(2, 1) = {43}, S1,2

4,1 = B(1, 4) ∩B(2, 7) = {28}, Y 1
4,1 = W d(1,4)(43) +W d(2,1)(28)

S1,1
4,2 = B(1, 7) ∩B(2, 2) = {44}, S1,2

4,2 = B(1, 4) ∩B(2, 7) = {28}, Y 1
4,2 = W d(1,4)(44) +W d(2,2)(28)

S1,1
4,3 = B(1, 7) ∩B(2, 3) = {45}, S1,2

4,3 = B(1, 4) ∩B(2, 7) = {28}, Y 1
4,3 = W d(1,4)(45) +W d(2,3)(28)

S1,1
4,4 = B(1, 7) ∩B(2, 4) = {46}, S1,2

4,4 = B(1, 4) ∩B(2, 7) = {28}, Y 1
4,4 = W d(1,4)(46) +W d(2,4)(28)

S1,1
4,5 = B(1, 7) ∩B(2, 5) = {47}, S1,2

4,5 = B(1, 4) ∩B(2, 7) = {28}, Y 1
4,5 = W d(1,4)(47) +W d(2,5)(28)

S1,1
4,6 = B(1, 7) ∩B(2, 6) = {48}, S1,2

4,6 = B(1, 4) ∩B(2, 7) = {28}, Y 1
4,6 = W d(1,4)(48) +W d(2,6)(28)

S1,1
4,7 = B(1, 7) ∩B(2, 7) = {49}, S1,2

4,7 = B(1, 4) ∩B(2, 6) = {27}, Y 1
4,7 = W d(1,4)(49) +W d(2,7)(27)

S1,1
5,1 = B(1, 7) ∩B(2, 1) = {43}, S1,2

5,1 = B(1, 5) ∩B(2, 7) = {35}, Y 1
5,1 = W d(1,5)(43) +W d(2,1)(35)

S1,1
5,2 = B(1, 7) ∩B(2, 2) = {44}, S1,2

5,2 = B(1, 5) ∩B(2, 7) = {35}, Y 1
5,2 = W d(1,5)(44) +W d(2,2)(35)

S1,1
5,3 = B(1, 7) ∩B(2, 3) = {45}, S1,2

5,3 = B(1, 5) ∩B(2, 7) = {35}, Y 1
5,3 = W d(1,5)(45) +W d(2,3)(35)

S1,1
5,4 = B(1, 7) ∩B(2, 4) = {46}, S1,2

5,4 = B(1, 5) ∩B(2, 7) = {35}, Y 1
5,4 = W d(1,5)(46) +W d(2,4)(35)

S1,1
5,5 = B(1, 7) ∩B(2, 5) = {47}, S1,2

5,5 = B(1, 5) ∩B(2, 7) = {35}, Y 1
5,5 = W d(1,5)(47) +W d(2,5)(35)

S1,1
5,6 = B(1, 7) ∩B(2, 6) = {48}, S1,2

5,6 = B(1, 5) ∩B(2, 7) = {35}, Y 1
5,6 = W d(1,5)(48) +W d(2,6)(35)

S1,1
5,7 = B(1, 7) ∩B(2, 7) = {49}, S1,2

5,7 = B(1, 5) ∩B(2, 6) = {34}, Y 1
5,7 = W d(1,5)(49) +W d(2,7)(34)
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S1,1
6,1 = B(1, 7) ∩B(2, 1) = {43}, S1,2

6,1 = B(1, 6) ∩B(2, 7) = {42}, Y 1
6,1 = W d(1,6)(43) +W d(2,1)(42)

S1,1
6,2 = B(1, 7) ∩B(2, 2) = {44}, S1,2

6,2 = B(1, 6) ∩B(2, 7) = {42}, Y 1
6,2 = W d(1,6)(44) +W d(2,2)(42)

S1,1
6,3 = B(1, 7) ∩B(2, 3) = {45}, S1,2

6,3 = B(1, 6) ∩B(2, 7) = {42}, Y 1
6,3 = W d(1,6)(45) +W d(2,3)(42)

S1,1
6,4 = B(1, 7) ∩B(2, 4) = {46}, S1,2

6,4 = B(1, 6) ∩B(2, 7) = {42}, Y 1
6,4 = W d(1,6)(46) +W d(2,4)(42)

S1,1
6,5 = B(1, 7) ∩B(2, 5) = {47}, S1,2

6,5 = B(1, 6) ∩B(2, 7) = {42}, Y 1
6,5 = W d(1,6)(47) +W d(2,5)(42)

S1,1
6,6 = B(1, 7) ∩B(2, 6) = {48}, S1,2

6,6 = B(1, 6) ∩B(2, 7) = {42}, Y 1
6,6 = W d(1,6)(48) +W d(2,6)(42)

S1,1
6,7 = B(1, 7) ∩B(2, 7) = {49}, S1,2

6,7 = B(1, 6) ∩B(2, 6) = {41}, Y 1
6,7 = W d(1,6)(49) +W d(2,7)(41)

S1,1
7,1 = B(1, 6) ∩B(2, 1) = {36}, S1,2

7,1 = B(1, 7) ∩B(2, 7) = {49}, Y 1
7,1 = W d(1,7)(36) +W d(2,1)(49)

S1,1
7,2 = B(1, 6) ∩B(2, 2) = {37}, S1,2

7,2 = B(1, 7) ∩B(2, 7) = {49}, Y 1
7,2 = W d(1,7)(37) +W d(2,2)(49)

S1,1
7,3 = B(1, 6) ∩B(2, 3) = {38}, S1,2

7,3 = B(1, 7) ∩B(2, 7) = {49}, Y 1
7,3 = W d(1,7)(38) +W d(2,3)(49)

S1,1
7,4 = B(1, 6) ∩B(2, 4) = {39}, S1,2

7,4 = B(1, 7) ∩B(2, 7) = {49}, Y 1
7,4 = W d(1,7)(39) +W d(2,4)(49)

S1,1
7,5 = B(1, 6) ∩B(2, 5) = {40}, S1,2

7,5 = B(1, 7) ∩B(2, 7) = {49}, Y 1
7,5 = W d(1,7)(40) +W d(2,5)(49)

S1,1
7,6 = B(1, 6) ∩B(2, 6) = {41}, S1,2

7,6 = B(1, 7) ∩B(2, 7) = {49}, Y 1
7,6 = W d(1,7)(41) +W d(2,6)(49)

S1,1
7,7 = B(1, 6) ∩B(2, 7) = {42}, S1,2

7,7 = B(1, 7) ∩B(2, 6) = {48}, Y 1
7,7 = W d(1,7)(42) +W d(2,7)(48).

After all the above transmissions, it can be verified that all the users can retrieve its demanded files.

VIII. CONCLUSION

Most works on the MACC problem (which assumes the number of users to be the same as the number of caches)

in the literature assumes a cyclic wrap around the user-to-cache association, which has been introduced in [6]. A

natural question is whether some other user-to-cache association can provide better results. This question has been

studied very recently in [18] for the MACC problem where the number of users is more than the number of caches

(other than the trivial cases). We address this question for the MACC problem, which has the same number of users

and caches. We show that the user-to-cache associations considered in this paper can provide better results than all

other existing MACC schemes in some aspects.

APPENDIX A

PROOFS OF LEMMA 1 AND COROLLARY 1

A. Proof of Lemma 1

Proof: For 1 ≤ i ≤ m, 0 ≤ j ≤ b − 1, let B(i, j) be the j th block in the ith parallel class for some ordering

of the parallel classes and the blocks in each parallel class. For 1 ≤ n ≤ m, n 6= i, 1 ≤ ln ≤ b, we have

∩m
n=1,n6=iB(n, ln)∩B(i, j) = µm. Furthermore, if l 6= l′, then B(n, l)∩B(n, l′) = ∅, as blocks in the parallel class

Px partitions X . As a result, for 1 ≤ n ≤ m, n 6= i, 1 ≤ l′n ≤ b, if at least for some value of 1 ≤ x ≤ m, x 6= i,

we have lx 6= l′x, then {∩m
n=1,n6=iB(n, ln) ∩ B(i, j)} ∩ {∩m

n=1,n6=iB(n, l′n) ∩ B(i, j)} = ∅. Since for 1 ≤ n ≤ m,
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n 6= i, ln can be chose in b ways, there are bm−1 instances of the set ∩m
n=1,n6=iB(n, ln). Furthermore these sets

are all disjoint as argued above. With each such set, B(i, j) has µm distinct elements in common. So block B(i, j)

must have at least µmbm−1 distinct elements. Let V be the set of these µmbm−1 elements.

We now show that block B(i, j) does not contain any other element. Let a ∈ X be an element such that a /∈ V

but a ∈ B(i, j). Then in each parallel class Pn, 1 ≤ n ≤ m, n 6= i, there is a block B(n, ln), where 1 ≤ ln ≤ b,

such that a ∈ B(n, ln) (as blocks in Pn partitions X). So a ∈ ∩m
n=1,n≤iB(n, ln) ∩B(i, j). Then a must belong to

the set V . This contradicts the assumption that a /∈ V .

Since there are b blocks in each parallel class and each block has µmbm−1 elements, X must have exactly µmbm

elements.

B. Proof of Corollary 1

Proof: Even though the proof this corollary is contained in the proof Lemma 1, we provide an alternate

proof here. Say for any positive integer m, [m]i = {1, 2, . . . ,m} \ {i}. Let [x]i ⊆ [m]i where x ≤ m. Then,

I([x]i, j) = I({ly|y ∈ [x]i} ∪ j). We show the following results holds: I([x]i, j) = I([x − 1]i, j).

∪∀y∈[x] ∪
b
ly=1 I([x]i, j)

= ∪∀y∈[x−1] ∪
b
ly=1 ∪

b
lx=1{I([x− 1]i, j) ∩B(x, lx)}

= ∪∀y∈[x−1] ∪
b
ly=1 {I([x− 1]i, j) ∩B(x, 1)} ∪ {I([x− 1]i, j) ∩B(x, 2)} ∪ · · · ∪ {I([x− 1]i, j) ∩B(x,m)}

= ∪∀y∈[x−1] ∪
b
ly=1 I([x − 1]i, j) ∩ {B(x, 1) ∪B(x, 2) ∪ · · · ∪B(x,m)}

= ∪∀y∈[x−1] ∪
b
ly=1 I([x − 1]i, j) ∩X

= ∪∀y∈[x−1] ∪
b
ly=1 I([x − 1]i, j).

Similarly, it can be shown that I([x−1]i, j) = I([x−2]i, j). And hence I([x]i, j) = I([x−2]i, j). Thus, proceeding

in the same manner would yield I([x]i, j) = I([x− (x− 1)]i, j). For some w ∈ [x]i, we have I([x− (x− 1)]i, j) =

I(w, j). Now,

∪b
lw=1I(lw, j) = B(i, j) ∩ {B(w, 1) ∪B(w, 2) ∪ · · · ∪B(w,m)} = B(i, j) ∩X = B(i, j)

APPENDIX B

PROOF OF THEOREM 1

In reference [16] the authors show a new class of CRD. A special case of these CRDs result in MCRD. These

MCRDs has the same parameters as that claimed in this theorem. So there already exists a proof for the theorem.

In this section we provide an alternate proof. We remark that we have obtained our proof independently to [16].

We also state that our proof is motivated by the work of Tang and Ramamoorthy in [19].

For any positive integer q, let Zq be the ring of integers modulo q. Let Zm
q be the set of all m-length column

vectors over Zq . It can be seen that Zm
q has total qm distinct column vectors. Create a matrix M{m,q} by listing all
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of these qm distinct column vectors (in any arbitrary order) as columns of M{m,q}. Hence M{m,q} is an m× qm

matrix. For any matrix M , let M(i, j) denote the value at the ith row and j th column of M (with the row and

column indices starting from 1 and not 0). For 1 ≤ i ≤ m, l ∈ Zq we define the following mq sets.

B(i, l + 1) = {j | j ∈ {1, 2, . . . , qm} , Mm,q(i, j) = l}.

In words, B(i, l+1) contains all the column indices j such that the value of M{m,q} at the ith row and j th column

is l.

Lemma 7. For any 1 ≤ i ≤ m, and l ∈ Zq , set B(i, l+ 1) contains qm−1 elements, i.e. |B(i, l + 1)| = qm−1.

Proof: First note Zm
q is group under vector addition. Since all distinct vectors of Zm

q are present as a column

of M{m,q}, the columns of M{m,q} form a group. Let V l
i be the set of all columns of M{m,q} such that the value

at the ith row of all columns in V l
i is l ∈ Zq . It can be seen that V 0

i is a proper subgroup of Zm
q . Furthermore, V 0

i

has q cosets namely V 0
i , V

1
i , V

2
i , . . . , V

q−1
i . And, any of the qm column vectors of M{m,q} must be contained in

one of the q cosets V l
i for l = 0, 1, . . . , q − 1. As all cosets are of same size, each coset must have qm−1 column

vectors.

As B(i, l+ 1) contains all the column indices of the columns present in V l
i , it is immediate that |B(i, l+ 1)| =

qm−1.

From M{m,q}, we construct a design (X,A) where X = {1, 2, . . . , qm}, and A = {B(i, l + 1) | 1 ≤ i ≤ m, l ∈

Zq}.

Lemma 8. (X,A) is a resolvable design.

Proof: We fist define m parallel classes of (X,A). For 1 ≤ i ≤ m, let Pi = {B(i, l + 1) | l ∈ Zq}. Since the

ith row of every column must contain one value from Zq , each column index in {1, 2, . . . , qm} must be present in

exactly one set contained in Pi. Thus Pi partitions X .

Furthermore, as for 1 ≤ i ≤ m, l ∈ Zq , B(i, l + 1) ∈ Pi, the sets {P1,P2, . . . ,Pm} partitions A. So (X,A) is

a resolvable design.

Lemma 9. (X,A) is a maximal cross resolvable design (MCRD) with µm = 1.

Proof: We have already shown that (X,A) is a resolvable design. Say l1, l2, . . . , lm ∈ Zq be any m values

from Zq . We show that | ∩m
i=1 B(i, li + 1)| = 1.

Since every m-length vector over Zq appear exactly once as a column vector of M{m,q}, for some c ∈

{1, 2, . . . , qm}, the column vector at the cth column is
[

l1 l2 · · · lm

]T

. Hence c ∈ B(i, li +1) for 1 ≤ i ≤ m,

and as every vector occurs exactly once, there ∄ c′ ∈ {1, 2, . . . , qm}, c′ 6= c, and c′ ∈ B(i, li + 1) for 1 ≤ i ≤ m.

So ∩m
i=1B(i, li + 1) = c, and the lemma is proved.
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Example 9.

M{3,2} =











0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1











We have B(1, 1) = {1, 2, 3, 4}, B(1, 2) = {5, 6, 7, 8}, B(2, 1) = {1, 2, 5, 6}, B(2, 2) = {3, 4, 7, 8},

B(3, 1) = {1, 3, 5, 7}, B(3, 2) = {2, 4, 6, 8}. We now show the parallel classes.

P1 = {{1, 2, 3, 4}, {5, 6, 7, 8}}

P2 = {{1, 2, 5, 6}, {3, 4, 7, 8}}

P3 = {{1, 3, 5, 7}, {2, 4, 6, 8}}.

For X = {1, 2, . . . , 8}, A = {P1,P2,P3}, it can be seen that (X,A) is an MCRD with µ3 = 1.

Example 10.

M{4,2} =

















0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

















We have B(1, 1) = {1, 2, 3, 4, 5, 6, 7, 8},B(1, 2) = {9, 10, 11, 12, 13, 14, 15, 16},B(2, 1) = {1, 2, 3, 4, 9, 10, 11, 12},

B(2, 2) = {5, 6, 7, 8, 13, 14, 15, 16}, B(3, 1) = {1, 2, 5, 6, 9, 10, 13, 14}, B(3, 2) = {3, 4, 7, 8, 11, 12, 15, 16},

B(4, 1) = {1, 3, 5, 7, 9, 11, 13, 15}, B(4, 2) = {2, 4, 6, 8, 10, 12, 14, 16}. We now show the parallel classes.

P1 = {{1, 2, 3, 4, 5, 6, 7, 8}, {9, 10, 11, 12, 13, 14, 15, 16}}

P2 = {{1, 2, 3, 4, 9, 10, 11, 12}, {5, 6, 7, 8, 13, 14, 15, 16}}

P3 = {{1, 2, 5, 6, 9, 10, 13, 14}, {3, 4, 7, 8, 11, 12, 15, 16}}

P4 = {{1, 3, 5, 7, 9, 11, 13, 15}, {2, 4, 6, 8, 10, 12, 14, 16}}.

For X = {1, 2, . . . , 16}, A = {P1,P2,P3,P4}, it can be seen that (X,A) is an MCRD with µ4 = 1.

Example 11.

M3,3 =











0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2











We have B(1, 1) = {1, 2, 3, 4, 5, 6, 7, 8, 9}, B(1, 2) = {10, 11, 12, 13, 14, 15, 16, 17, 18}, B(1, 3) = {19, 20, 21, 22,

23, 24, 25, 26, 27}, B(2, 1) = {1, 2, 3, 10, 11, 12, 19, 20, 21}, B(2, 2) = {4, 5, 6, 13, 14, 15, 22, 23, 24}, B(2, 3) =

{7, 8, 9, 16, 17, 18, 25, 26, 27}, B(3, 1) = {1, 4, 7, 10, 13, 16, 19, 22, 25}, B(3, 2) = {2, 5, 8, 11, 14, 17, 20, 23, 26},

B(3, 3) = {3, 6, 9, 12, 15, 18, 21, 24, 27}. We now show the parallel classes.

P1 = {{1, 2, 3, 4, 5, 6, 7, 8, 9}, {10, 11, 12, 13, 14, 15, 16, 17, 18}, {19, 20, 21, 22, 23, 24, 25, 26, 27}}
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P2 = {{1, 2, 3, 10, 11, 12, 19, 20, 21}, {4, 5, 6, 13, 14, 15, 22, 23, 24}, {7, 8, 9, 16, 17, 18, 25, 26, 27}}

P3 = {{1, 4, 7, 10, 13, 16, 19, 22, 25}, {2, 5, 8, 11, 14, 17, 20, 23, 26}, {3, 6, 9, 12, 15, 18, 21, 24, 27}}.

For X = {1, 2, . . . , 27}, A = {P1,P2,P3}, it can be seen that (X,A) is an MCRD with µ3 = 1.

Example 12.

M{2,4} =





0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3





We have B(1, 1) = {1, 2, 3, 4}, B(1, 2) = {5, 6, 7, 8}, B(1, 3) = {9, 10, 11, 12}, B(1, 4) = {13, 14, 15, 16},B(2, 1) =

{1, 5, 9, 13}, B(2, 2) = {2, 6, 10, 14}, B(2, 3) = {3, 7, 11, 15}, B(2, 4) = {4, 8, 12, 16}. We now show the parallel

classes.

P1 = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}

P2 = {{1, 5, 9, 13}, {2, 6, 10, 14}, {3, 7, 11, 15}, {4, 8, 12, 16}}.

For X = {1, 2, . . . , 16}, A = {P1,P2}, it can be seen that (X,A) is an MCRD with µ2 = 1. We considered the

same design in Example 6.

We now construct an MCRD which has µm = n, where n ≥ 1. Construct a matrix Mn
{m,q} where each vector

belonging to Zm
q repeats in exactly n columns (in any arbitrary order). Hence Mn

{m,q} is an m× nqm matrix. For

1 ≤ i ≤ m, l ∈ Zq we re-define B(i, l + 1).

B(i, l + 1) = {j | j ∈ {1, 2, . . . , nqm} , Mn
m,q(i, j) = l}

The following lemma can be proven proceeding similarly to Lemma 7.

Lemma 10. For any 1 ≤ i ≤ m, and l ∈ Zq , set B(i, l+ 1) contains nqm−1 elements, i.e. |B(i, l+ 1)| = nqm−1.

From Mn
{m,q}, we construct a design (X,A) where X = {1, 2, . . . , nqm}, and A = {B(i, l+1) | 1 ≤ i ≤ m, l ∈

Zq}. Similar to Lemmas 8 and 9 it can be shown that (X,A) is an MCRD with µm = n.

Example 13.

M2
{3,2} =











0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1











M2
{3,2} is the same as the first three rows of M4,2 considered in Example 10. For the same blocks and parallel classes

(P4 does not exists in this case), (X,A) is an MCRD with µ3 = 2, where X = {1, 2, . . . , 16}, A = {P1,P2,P3}.
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APPENDIX C

PROOFS OF LEMMAS 2, 3, 4, 5, 6

A. Proof of Lemma 2

Proof: Since t
b
< 1

b
⌊ b
z
⌋ our scheme achieves a rate b− tz. Then, the values M

N
where our scheme achieves a

lesser rate that the RK scheme must satisfy

b− tz ≤
(K −mtz)2

K
=⇒ b− tz ≤

(mb−mtz)2

mb
(6)

=⇒ b− tz ≤
m(b− tz)2

b
=⇒ 1 ≤

m(b− tz)

b
(7)

=⇒ b ≤ mb−mtz = K −mtz =⇒ t ≤
K − b

mz
=⇒

t

b
≤

K − b

Kz
.

In equation (6) t′ has been replaced by mt as t/b = t′/K (see Table VI-B). Since M
N

= t
b
, we have t

b
< 1

b
⌊ b
z
⌋,

which implies t
b
< 1

z
, or b− tz 6= 0, and hence equation (7) holds.

B. Proof of Lemma 3

Proof: The subpacketization level of the RK scheme and the SICPS scheme are equal. At M
N

= 1
b
= t′

K
the

SICPS scheme achieves a subapcketization level K
t′

(

K−t′z+t′−1
t′−1

)

= b
(

mb−mz+m−1
m−1

)

.

Let n and r be positive integers where n ≥ r.
(

n

r

)

=
n(n− 1)(n− 2) · · · (n− (r − 1))

r(r − 1)(r − 2) · · · (r − (r − 1))
=

n

r

(n− 1)

(r − 1)

(n− 2)

(r − 2)
· · ·

(n− (r − 1))

(r − (r − 1))

≥
n

r

n

r

n

r
· · ·

n

r
= (

n

r
)r. (8)

Since b ≥ z, we have mb−mz +m− 1 ≥ m− 1. Then, using equation (8) we have

b

(

mb−mz +m− 1

m− 1

)

= b(
mb−mz +m− 1

m− 1
)m−1.

Our scheme is guaranteed to achieve a lesser subpacketization than the SICPS scheme when

bm ≤ b(
mb−mz +m− 1

m− 1
)m−1 =⇒ bm−1 ≤ (

mb−mz +m− 1

m− 1
)m−1

=⇒ b ≤
mb−mz +m− 1

m− 1
=⇒ b(m− 1) ≤ mb−mz +m− 1 =⇒ mb− b ≤ mb−mz +m− 1

=⇒ b ≥ mz −m+ 1 = m(z − 1) + 1 =⇒ b ≥
K

b
(z − 1) + 1. (9)

Now,

√

K(z − 1) + 1 ≥
√

K(z − 1) =⇒ 1 ≥

√

K(z − 1)
√

K(z − 1) + 1

=⇒
√

K(z − 1) ≥
K(z − 1)

√

K(z − 1) + 1
=⇒

√

K(z − 1) + 1 ≥
K(z − 1)

√

K(z − 1) + 1
+ 1.

So b =
√

K(z − 1) + 1 satisfies equation (9). As the right hand side of equation (9) decreases with increasing b,

all values of b greater than or equal to
√

K(z − 1)+ 1 (where b must divide K as well) must satisfy equation (9).

Now, we know that
(

n

r

)

≥
(

n−1
r−1

)

. So the subpacketization level of the NT scheme is always at least as much as

the SCIPS scheme. This completes the proof of the lemma.
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C. Proof of Lemma 4

Proof: It can be seen that for our scheme the corner points ( 1
b1
, b1 − z) and ( 1

b2
, b2 − z) are achievable. So

any point (x, y) on the straight line connecting the two points is also achievable. We have

y = −b1b2x+ b2 + b1 − z. (10)

Let (x, y) be the point such that

x =
1

b1
+ λ(

1

b2
−

1

b1
) =

m1 + λ(m2 −m1)

K
=

t′′

K
. (11)

Since m1 and m2 are such that gcd(t′′,K) = 1, at M
N

= x the SR1 scheme has a non-trivial achievable corner

point.

It can be seen from [10] that if K − t′′z is even, then the SR1 scheme achieves a rate

RSR1 =

K−t′′z
∑

r=K−t′′z+2
2

2

1 + ⌈ t′′z
r
⌉
.

And if K − t′′z > 1 is odd (the case K − t′′z = 1 never arise due to the conditions set in the statement of the

lemma), then the SR1 scheme achieves a rate

RSR1 =
1

1 + ⌈ 2t′′z
K−t′′z+1⌉

+
K−t′′z
∑

r=K−t′′z+3
2

2

1 + ⌈ t′′z
r
⌉
.

So irrespective of whether K − t′′z > 1 is odd or even, we have

RSR1 ≥
K−t′′z
∑

r=K−t′′z+2
2

2

1 + ⌈ t′′z
r
⌉
≥

K−t′′z
∑

r=K−t′′z+2
2

2

1 + t′′z
r

+ 1
= (K − t′′z)

2

2 + t′′z
K−t′′z+2

2

=
(K − t′′z)(K − t′′z + 2)

K + 2
. (12)

Equation (12) has also been shown to hold in reference [9]. So for our scheme achieves a lesser rate at least when

y ≤
(K − t′′z)(K − t′′z + 2)

K + 2

=⇒ −b1b2x+ b2 + b1 − z ≤
(K − t′′z)(K − t′′z + 2)

K + 2
(13)

=⇒ −b2 − λ(b1 − b2) + b2 + b1 − z = b1 − λ(b1 − b2)− z ≤
(K − t′′z)(K − t′′z + 2)

K + 2
. (14)

Equations (13) and (14) hold due to equations (10) and (11) respectively.

D. Proof of Lemma 5

Proof: The rate achieved by the SR2 scheme is

(mb −mtz)(mb−mtz +mt)

2mb
=

(b− tz)(mb−mtz +mt)

2b
.

For M
N

≤ 1
b
⌊(⌋ b

z
) our scheme achieves a lesser rate if

b− tz ≤
(b− tz)(mb−mtz +mt)

2b

=⇒ 2b ≤ mb−mt(z − 1) =⇒ t ≤
mb− 2b

m(z − 1)

=⇒
t

b
≤

m− 2

m(z − 1)
.
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E. Proof of Lemma 6

For z < K
2 , the MR scheme achieves a rate 1

K
⌈K(K−z)

2 ⌉ files at M
N

= 1
K

. Trivially the point ( 1
K
⌈K

z
⌉, 0) is also

achievable. It can be seen that the line connecting these two achievable points is above the line connecting the

points ( 1
K
, K−z

2 ) and (1
z
, 0). If the point (x, y) is on the line connecting the latter two points then 2y = −Kzx+K .

So at M
N

= 1
b

for b < K our scheme achieves a lesser rate if

2(b− z) ≤ −Kz
1

b
+K =⇒ 2b− 2z ≤ −mbz

1

b
+mb =⇒ z(m− 2) ≤ b(m− 2) =⇒ z ≤ .b (15)

Equation (15) holds when m 6= 2. Since z ≤ b always holds for our scheme, it means that at M
N

= 1
b
, for b < K

and m ≥ 3, our scheme achieves a lesser rate.

APPENDIX D

PROOF OF THEOREM 2

We use a lot of notations in the proof. To enhance the readability of the paper, we have listed the most relevant

notations in Table D.

Without loss of generality (w.l.o.g.) we assume that for 1 ≤ l ≤ z−1, C(i,l) = {c(i, y+1), c(i, y+2), . . . , c(i, y+

⌊ b
z
⌋)} where y = (l−1)⌊ b

z
⌋, and C(i,z) = {c(i, y+1), c(i, y+2), . . . , c(i, b)} where y = (z−1)⌊ b

z
⌋. The reasoning

behind this w.l.o.g. statement is that we can always re-label the caches to achieve the above segregation.

Lemma 11. For 1 ≤ i ≤ m, 1 ≤ j ≤ b, cache c(i, j) ∈ C(i,n) for n = min{⌈ j
x
⌉, z} where x = ⌊ b

z
⌋.

Proof:

Case 1. j > (z − 1)⌊ b
z
⌋.

In this case we know that c(i, j) ∈ C(i,z). As j

x
> z − 1, we have n = z, and hence the lemma hold for this

case.

Case 2. 1 ≤ j ≤ (z − 1)⌊ b
z
⌋.

If c(i, j) ∈ C(i,l) for 1 ≤ l ≤ z − 1 then (l − 1)⌊ b
z
⌋ < j ≤ l⌊ b

z
⌋. This implies (l − 1) < j

x
≤ l (as 1 ≤ z ≤ b).

Hence, ⌈j/x⌉ = l.

In Gi = (Ki, Ci, Ei), a vertex u ∈ Ki can choose a vertex in C(i,l) in ⌊ b
z
⌋ ways if 1 ≤ l ≤ z − 1 and in

b− (z− 1)⌊ b
z
⌋ ways if l = z. So total number of possible user-to-cache associations that satisfy conditions C1 and

C2 is (⌊ b
z
⌋z−1(b − (z − 1)⌊ b

z
⌋))bm.

For each user k(i, j) where 1 ≤ i ≤ m, 1 ≤ j ≤ b, we use the notation Ck(i,j) to denote the set of caches user

k(i, j) accesses. Equivalently, Ck(i,j) is the set of all vertices in Ci such that there exists an edge in Ei that connects

the user k(i, j) to the vertex. Note, condition C3 ensures that fMi
(k(i, j)) ∈ Ck(i,j) for 1 ≤ i ≤ m, 1 ≤ j ≤ b.

In Section VII we show the placement and delivery of the MACC problem whose user-to-cache association is

given by the bipartite graph shown in Fig. 1.
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TABLE III

NOTATIONS AND THEIR SIGNIFICANCE

Notation Range Significance

m N mb caches, users, partitioned into m disjoint sets of b caches, users respectively; MCRD has m

parallel classes, subpacketization level is bm.

b N mb caches, users, partitioned into m disjoint sets of b caches, users respectively; each parallel

class of MCRD has b blocks, subpacketization level is bm.

z 1 ≤ z ≤ b Each user accesses z caches.

W i 1 ≤ i ≤ N The N files at the server. Each file W i is split into bm subfiles: W i(1), W i(2), . . . ,W i(bm).

Ki 1 ≤ i ≤ m mb users partitioned into m disjoint sets K1, K2, . . . , Km each having b users.

k(i, j) 1 ≤ i ≤ m, 1 ≤ j ≤ b j th user in Ki for some ordering of the users in Ki.

Ci 1 ≤ i ≤ m mb caches partitioned into m disjoint sets C1, C2, . . . , Cm each having b caches.

c(i, j) 1 ≤ i ≤ m, 1 ≤ j ≤ b j th cache in Ci for some ordering of the caches in Ci.

C(i,l) 1 ≤ i ≤ m, 1 ≤ l ≤ z Set Ci is partitioned into z disjoints sets C(i,1), C(i,2), . . . , C(i,z) . Set C(i,l) for 1 ≤ l ≤ z − 1

contains ⌊b/z⌋ caches. Set C(i,z) contains b− (z − 1)⌊b/z⌋ caches.

Ck(i,j) 1 ≤ i ≤ m, 1 ≤ j ≤ z Ck(i,j) is the set of caches user k(i, j) accesses. Ck(i,j) ⊆ Ci. For 1 ≤ l ≤ z,

|C(i,l) ∩Ck(i,j)| = 1.

fMi
1 ≤ i ≤ m fMi

: {1, 2, . . . , b} → {1, 2, . . . , b}. The set {fMi
(k(i, 1)), fMi

(k(i, 2)), . . . , fMi
(k(i, b))} is

a system of distinct representatives of the sets Ck(i,1), Ck(i,2), . . . , Ck(i,b) where

fMi
(k(i, j)) ∈ Ck(i,j) for 1 ≤ j ≤ b and fMi

(k(i, j1)) 6= fMi
(k(i, j2)).

Pi 1 ≤ i ≤ m We consider MCRDs with m parallel classes denoted by P1,P2, . . . ,Pm.

B(i, j) 1 ≤ i ≤ m, 1 ≤ j ≤ b Each parallel class Pi has b blocks B(i, 1), B(i, 2), . . . , B(i, b).

P(i,l) 1 ≤ i ≤ m, 1 ≤ l ≤ z Set Pi is partitioned into z disjoints sets P(i,1),P(i,2), . . . ,P(i,z). Set P(i,l) for 1 ≤ l ≤ z − 1

contains ⌊b/z⌋ blocks. Set P(i,z) contains b− (z − 1)⌊b/z⌋ blocks.

t, t′, tz N If cache c ∈ C(i,l) where 1 ≤ l ≤ z − 1, then c stores t′ blocks belonging to P(i,l). If cache

c ∈ C(i,z), then c stores tz blocks belonging to P(i,z). Value of t is provided with the coded

caching problem. If 1 ≤ t ≤ ⌊b/z⌋, t′ = tz = t. If ⌊b/z⌋ < t < b− (z − 1)⌊ b
z
⌋,

t′ = ⌊b/z⌋, tz = t. If t ≥ b− (z − 1)⌊ b
z
⌋, t′ = ⌊b/z⌋, tz = b− (z − 1)⌊ b

z
⌋.

Bc(i,j) 1 ≤ i ≤ m, 1 ≤ j ≤ b Bc(i,j) ⊆ Pi. During placement, cache c(i, j) stores the subfiles indexed by the blocks contained

in Bc(i,j) . If c(i, j) ∈ C(i,l) where 1 ≤ l ≤ z − 1, Bc(i,j) contains B(i, j) and another t′ − 1

blocks from P(i,l). If c(i, j) ∈ C(i,z), Bc(i,j) contains B(i, j) another tz − 1 blocks from P(i,z).

Bk(i,j) 1 ≤ i ≤ m, 1 ≤ j ≤ b Set Bk(i,j) denotes the set of blocks whose contents are the indices of the subfiles stored in the

caches accessed by user k(i, j). Since k(i, j) accesses the caches in Ck(i,j) , and each cache

c(x, y) stores the subfiles indexed by the elements of the blocks contained in Bc(x,y), we have

Bk(i,j) = ∪c(x,y)∈Ck(i,j)
Bc(x,y).

f(i,j) 1 ≤ i ≤ m, 1 ≤ j ≤ b f(i,j) : {1, 2, . . . , b− t′(z − 1)− tz} → {1, 2, . . . , b} \ {l |B(i, l) ∈ Bk(i,j)}.

fi,j({1, 2, . . . , b− t′(z − 1)− tz}) is the set of all integers l such that B(i, l) /∈ Bk(i,j) .

A. Placement

Let (X,A) be a maximal cross resolvable design (MCRD) with m parallel classes, b blocks in each parallel

class, X = {1, 2, . . . , bm}, |A| = mb, and µm = 1. The existence of such an MCRD is guaranteed by Theorem 1.

As per Lemma 1, each block in A has exactly bm−1 elements. Let P1,P2, . . . ,Pm be the m parallel classes of

(X,A). Let B(i, 1), B(i, 2), . . . , B(i, b) be the b blocks contained in the parallel class Pi.

For 1 ≤ i ≤ m, 1 ≤ j ≤ b, for each cache c(i, j), we define a set Bc(i,j) ⊆ Pi; cache c(i, j) stores the subfiles
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Wn(l) for ∀n ∈ {1, 2, . . . , N} and l ∈ B(i, s) for ∀B(i, s) ∈ Bc(i,j) (i.e., the cache c(i, j) stores all files indexed

by the elements of the blocks contained in Bc(i,j)). Towards describing Bc(i,j), we segregate each parallel class in

the following way.

We partition the set of blocks in Pi for 1 ≤ i ≤ m into z disjoint subsets P(i,1),P(i,2), . . . ,P(i,z). For 1 ≤ l ≤

z − 1, the subset P(i,l) contains ⌊ b
z
⌋ blocks. Whereas, the subset P(i,z) contains b − (z − 1)⌊ b

z
⌋ blocks, i.e., the

blocks contained in P(i,z) are the blocks that are in Pi, but not in the sets P(i,l) for 1 ≤ l ≤ z− 1. Without loss of

generality (w.l.o.g.) we assume that, for 1 ≤ l ≤ z − 1, P(i,l) = {B(i, y+1), B(i, y+2), . . . , B(i, y+ ⌊ b
z
⌋} where

y = (l − 1)⌊ b
z
⌋, and P(i,z) = {B(i, y + 1), B(i, y + 2), . . . , B(i, b)} where y = (z − 1)⌊ b

z
⌋. Similar to Lemma 11

we have the following.

Lemma 12. For 1 ≤ i ≤ m, 1 ≤ j ≤ b, cache B(i, j) ∈ P(i,n) if and only if n = min{⌈ j

x
⌉, z} where x = ⌊ b

z
⌋.

We define two variables t′, tz . If 1 ≤ t ≤ ⌊b/z⌋, t′ = tz = t. If ⌊b/z⌋ < t < b− (z − 1)⌊ b
z
⌋, t′ = ⌊b/z⌋, tz = t.

If t ≥ b− (z − 1)⌊ b
z
⌋, t′ = ⌊b/z⌋, tz = b− (z − 1)⌊ b

z
⌋.

Due to Lemma 11 and Lemma 12, for 1 ≤ i ≤ m, 1 ≤ j ≤ b, if c(i, j) ∈ C(i,l), then B(i, j) ∈ P(i,l).

We now define Bc(i,j). For 1 ≤ i ≤ m, 1 ≤ j ≤ b, if c(i, j) ∈ C(i,l) where 1 ≤ l ≤ z − 1, Bc(i,j) contains

B(i, j) in addition to another t′− 1 arbitrarily chosen blocks from P(i,l); if c(i, j) ∈ C(i,z), Bc(i,j) contains B(i, j)

in addition to another tz − 1 arbitrarily chosen blocks from P(i,z).

Bc(i,j) =























B(i, j) ∪ {B(i, j1), B(i, j2), . . . , B(i, jt′−1)} ⊆ P(i,n) where n = ⌈j/⌊ b
z
⌋⌉, j /∈ {j1, j2 . . . , jt′−1}

if ⌈j/⌊ b
z
⌋⌉ < z.

B(i, j) ∪ {B(i, j1), B(i, j2), . . . , B(i, jtz−1)} ⊆ P(i,z), j /∈ {j1, j2 . . . , jtz−1} if ⌈j/⌊ b
z
⌋⌉ ≥ z.

(16)

Because each block contains bm−1 subfiles, if c(i, j) ∈ C(i,l) where 1 ≤ l ≤ z − 1 then c(i, j) stores bm−1Nt′

subfiles, and if c(i, j) ∈ C(i,z) then c(i, j) stores bm−1Ntz subfiles. Since t′, tz ≤ t and that each cache can store

upto M = tN
b

files, which is equivalent to Mbm subfiles or bm−1Nt subfiles, the placed content does not exceed

available cache memory size.

We have the following lemma as a result of Bc(i,j).

Lemma 13. For any 1 ≤ i ≤ m, 1 ≤ j1, j2 ≤ b, 1 ≤ l1, l2 ≤ z, l1 6= l2, if c(i, j1) ∈ C(i,l1) and c(i, j2) ∈ C(i,l2),

then Bc(i,j1) ∩Bc(i,j2) = ∅.

Proof: Since l1 6= l2 we have P(i,l1) 6= P(i,l2), and from Lemma 11 we have j1 6= j2. Sets P(i,l1) and P(i,l2)

are disjoint by definition. So from equation (16) we have Bc(i,j1) ∩Bc(i,j2) = ∅.

Note that our placement is partially flexible in nature (when 1 ≤ t < ⌊b/z⌋) in terms of which blocks are

contained in Bc(i,j).

B. Delivery

In this subsection, we show both the delivery scheme and the correctness of the delivery scheme.
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Lemma 14. User k(i, j) where 1 ≤ i ≤ m, 1 ≤ j ≤ b receives (t′(z − 1) + tz)b
m−1 subfiles of each file

W 1,W 2, . . . ,WN from the z caches contained in Ck(i,j).

Proof: Let Ck(i,j) = {c(i, j1), c(i, j2), . . . , c(i, jz)}. Due to condition C2, if c(i, jx) ∈ C(i,lx) and c(i, jy) ∈

C(i,ly) for x, y ∈ {1, 2, . . . , z}, x 6= y, then C(i,lx) 6= C(i,ly). Hence, as shown in Lemma 13, Bc(i,jx)∩Bc(i,jy) = ∅.

Hence, user k(i, j) receives (t′(z − 1))bm−1 subfiles of each file from {c(i, j1), c(i, j2), . . . , c(i, jz−1)} and an

additional (non-overlapping) tzb
m−1 subfiles of each file from c(i, jz) where c(i, jz) ∈ C(i,z).

Lemma 15. When t ≥ b− (z − 1)⌊ b
z
⌋, we have R = 0 files.

Proof: In this case we have t′ = ⌊b/z⌋ and tz = b− (z−1)⌊ b
z
⌋. As per Lemma 14, user k(i, j) for 1 ≤ i ≤ m,

1 ≤ j ≤ b receives (t′(z − 1) + tz)b
m−1 = bm subfiles of each file from the caches. As subpacketization level is

bm, every user receives all subfiles of all files at the server.

In the remaining part of this subsection, we show the delivery when t < b − (z − 1)⌊ b
z
⌋. For each user k(i, j)

where 1 ≤ i ≤ m, 1 ≤ j ≤ b, we define a set Bk(i,j) = ∪c(x,y)∈Ck(i,j)
Bc(x,y) (it is the set of blocks whose elements

are the indices of the subfiles stored by the caches accessed by user k(i, j)).

For 1 ≤ i ≤ m, 1 ≤ j ≤ b, each user k(i, j) needs to retrieve the subfiles indexed by the contents of the blocks

in Pi \Bk(i,j). For this purpose the users use the broadcast from the central server along with the contents of the

accessible caches. The central server broadcasts following the below procedure.

We now construct a new graph that we call the demand graph. For the user-to-cache association bipartite graph

G = (U,C,E) and the MCRD (X,A) based placement scheme (that is, Bc(i,j) is defined for all c(i, j) ∈ C), the

demand graph Ḡ = (V1, V2, Ē) is a bipartite graph where |V1| = |V2| = mb, and for each cache in C there is a

unique vertex in V1, for each block in A there is a unique vertex in V2. In other words, there is a bijection from

the vertices in V1 to the caches in C, and there is another bijection from the vertices in V2 to the blocks in A. Say

for l = 1, 2, Vl = {v(l,i,j)|1 ≤ i ≤ m, 1 ≤ j ≤ b}, and that the vertex v(1,i,j) maps to the cache c(i, j), similarly,

say that the vertex v(2,i,j) maps to the block B(i, j). There exists an edge in Ē connecting vertex v(1,i,j) ∈ V1 to

vertex v(2,̄i,j∗) ∈ V2 if and only if i = ī and B(i, j∗) /∈ Bk(i,j′) where k(i, j′) = f−1
Mi

(c(i, j)). The existence of

fMi
and its inverse is ensured by condition C3.

We now show that conditions C1 and C2 enforces (b− t′(z − 1)− tz)b
m partial matchings (each containing m

edges) of a certain kind on Ḡ. For 1 ≤ i ≤ m, l = 1, 2 we define the set V(l,i) = {v(l,i,j)|1 ≤ j ≤ b}. Each vertex

v(1,i,j) ∈ V(1,i) is adjacent to (b− t′(z − 1)− tz) edges as there are (b− t′(z − 1)− tz) blocks in Pi that are not

contained in Bf
−1
Mi

(c(i,j)).

To construct a partial matching of m edges, pick m vertices from V1 by selecting only one vertex from each

V(1,i) for 1 ≤ i ≤ m. There are b ways to choose a vertex from V(1,i), and hence bm ways to choose these m

vertices from V1. Consider one such chosen set to m vertices. For each chosen vertex v(1,i,ji) ∈ V(1,i), pick one

vertex v ∈ V(2,i) such that there is an edge connecting v(1,i,ji) and v. It can be seen that v can be chosen in

(b− t′(z − 1)− tz) ways.
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For 1 ≤ i ≤ m, 1 ≤ j ≤ b, for each user k(i, j) we define a bijection

f(i,j) : {1, 2, . . . , b− (t′(z − 1) + tz)} → {1, 2, . . . , b} \ {l |B(i, l) ∈ Bk(i,j)}.

The bijection f(i,j) can be defined arbitrarily without violating the domain, range, and bijectivity.For 1 ≤ n ≤

b− (t′(z − 1) + tz) define a set of partial matchings Mn as following

Mn = {Mn
j1,j2,...,jm

|1 ≤ ji ≤ b, 1 ≤ i ≤ m}, where

Mn
j1,j2,...,jm

= {(v(1,i,ji), v(2,i,f(i,j′
i
)(n))

) | 1 ≤ i ≤ m} where k(i, j′i) = f−1
Mi

(c(i, ji)).

It can be seen that Mn has bm matchings. Let M = ∪
b−(t′(z−1)+tz)
n=1 Mn. Hence, M has (b− (t′(z − 1) + tz))b

m

matchings.

During delivery, for each such partial matching in M we make one transmission, and each of these transmissions

benefit all m users associated with the matching (the association that is established by the inverse of fMi
acting

on the m chosen vertices (caches) from V1). Say for a matching in Mn
j1,j2,...,jm

∈ M the vertex v(1,i,ji) ∈ V(1,i)

connects to the vertex v(2,i,j∗
i
) ∈ V(2,i) for 1 ≤ i ≤ m. The transmission corresponding to this matching is given

in the following. For 1 ≤ i ≤ m compute the set Sn,i
j1,j2,...,jm

where

Sn,i
j1,j2,...,jm

= B(1, j1) ∩B(2, j2) ∩ · · · ∩B(i− 1, ji−1) ∩B(i, j∗i ) ∩B(i+ 1, ji+1) ∩ · · · ∩B(m, jm). (17)

Since in (X,A) we have µm = 1, set Sn,i
j1,j2,...,jm

for 1 ≤ i ≤ m is a singleton set. We transmit the following

(b− (t′(z − 1) + tz))b
m linear function of the subfiles to meet all users’ demands.

Y n
j1,j2,...,jm

=

m
∑

i=1

W
d
f
−1
Mi

(c(i,ji))(Sn,i
j1,j2,...,jm

) for 1 ≤ n ≤ b− (t′(z − 1) + tz), 1 ≤ j1, j2, . . . , jm ≤ b. (18)

Lemma 16. For the set Sn,i
j1,j2,...,jm

defined in equation (17), if e ∈ Sn,i
j1,j2,...,jm

, then

(i) e is not an element of any block contained in Bk(i,j′
i
) where k(i, j′i) = f−1

Mi
(c(i, ji)),

(ii) e is an element of some block in Bk(x,j′x)
where k(x, j′x) = f−1

Mx
(c(x, jx)) for 1 ≤ x ≤ m, x 6= i,

(iii) Using the transmission in equation (18) user k(i, j′i) retrieves the subfile W
dk(i,j′

i
)(Sn,i

j1,j2,...,jm
) where fMi

(k(i, j′i)) =

c(i, ji).

Proof: (i) Due to the construction of Ḡ = (V1, V2, Ē) we have B(i, j∗i ) /∈ Bk(i,j′
i
).

(ii) From equation (17), we also see that e ∈ B(x, jx) for all 1 ≤ x ≤ m, i 6= x. Due to equation (16),

B(x, jx) ∈ Bc(x,jx). We know user k(x, j′x) accesses the cache c(x, jx). So B(x, jx) ∈ Bk(x,j′x)
.

(iii) As per the proof of statement (ii), user k(i, j′i) knows any subfile indexed by the element contained in Sn,x
j1,j2,...,jm

for 1 ≤ x ≤ m, x 6= i. So in the sum of equation (18) user k(i, j′i) knows
∑m

x=1,x 6=iW
dk(x,j′x)(Sn,x

j1,j2,...,jm
). Hence

user k(i, j′i) can retrieve W
dk(i,j′

i
)(Sn,i

j1,j2,...,jm
).

Lemma 17. After making one transmission (given by equation (18)) for each partial matchings in M, each user

receives all subfiles of the file it demands.

Proof: Say for user k(i, j′i) for 1 ≤ i ≤ m, 1 ≤ j′i ≤ b, fMi
(k(i, j′i)) = c(i, ji). Let B(i, j∗i ) be a block such

that B(i, j∗i ) /∈ Bk(i,j′
i
). Then there exists an edge e connecting vertices v(1,i,ji) ∈ V1 and v(2,i,j∗

i
) ∈ V2. So for
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some 1 ≤ n ≤ b− (t′(z− 1)+ tz), f(i,j′
i
)(n) = j∗i . Let M(n,e) ⊆ Mn be the set of all matchings in Mn such that

M ∈ M(n,e) if and only if e ∈ M . It can be seen that |M(n,e)| = bm−1. Say the vertices of M(n,e) that belong

to V1 are v(1,1,j1), v(1,2,j2), . . . , v(1,m,jm).

There are bm−1 transmissions (given by equation (18)) for all matchings in M(n,e). Hence, as per statement (iii)

of Lemma 16 and equation (17), user k(i, j′i) can retrieve W
dk(i,j′

i
)(Sn,i

j1,j2,...,jm
) for 1 ≤ jl ≤ b, 1 ≤ l ≤ m, l 6= i.

Corollary 1 showed that the block B(i, j∗i ) = ∪1≤jl≤b,1≤l≤m,l 6=iS
n,i
j1,j2,...,jm

. Hence, after the transmissions

corresponding to all matchings in Mn, user k(i, j′i) receives all subfiles whose indices belong to B(i, j∗i ).

Since f(i,j′
i
) is onto, after the transmissions corresponding to all matchings in M, user k(i, j′i) receives all subfiles

whose indices belong to any block not contained in Bk(i,j′
i
).

As a result of Lemma 17, and as subpacketization level is bm, when t < b−(z−1)⌊ b
z
⌋, a rate of b−(t′(z−1)+tz)

files is achievable.
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