
ar
X

iv
:2

20
2.

03
97

7v
1 

 [
cs

.I
T

] 
 8

 F
eb

 2
02

2

List Decoding of Quaternary Codes

in the Lee Metric

Marcus Greferath

School of Mathematics and Statistics

University College Dublin

Dublin, Republic of Ireland

marcus.greferath@ucd.ie

Jens Zumbrägel

Faculty of Computer Science and Mathematics

University of Passau

Passau, Germany

jens.zumbraegel@uni-passau.de

Abstract—We present a list decoding algorithm for quaternary
negacyclic codes over the Lee metric. To achieve this result, we
use a Sudan-Guruswami type list decoding algorithm for Reed-
Solomon codes over certain ring alphabets. Our decoding strategy
for negacyclic codes over the ring Z4Z4Z4 combines the list decoding
algorithm by Wu with the Gröbner basis approach for solving a
key equation due to Byrne and Fitzpatrick.

Index Terms—Codes over rings, negacyclic codes, list decoding,
polynomial factorization, interpolation, lifting.

I. INTRODUCTION

It has been observed in the literature, that cyclic codes over

the alphabet Z4 equipped with the Lee distance often have a

larger minimum distance and a better decoding capability than

predicted by their “designed distance”. For this reason a list

decoding approach is suggested, although technical difficulties

due to zero divisors in rings are to be expected.

Codes over integer residue rings equipped with the Lee

metric have currently received increasing attention in the

community. This stems on one hand from the fact, that

McEliece type cryptosystems based on the Lee metric may

offer increased security but lack so far the availability of

good codes. On the other hand, connections between lattice-

based cryptography and coding theory are gaining attention,

a connection which is established by the Lee metric as it

approximates the Euclidean distance on lattices.

In this paper, we present a list decoding algorithm for

quaternary negacyclic codes with Lee distance. To arrive there,

we employ a Sudan-Guruswami type list decoding algorithm

for Reed-Solomon codes over ring alphabets. Note that this

part is related to work by Armand [1], [2] (see also [10]),

while our setup and factorisation algorithm slightly differs. For

negacyclic codes over the ring Z4 (cf. [12], [5]), our decoding

strategy combines the list decoding algorithm by Wu [13] with

the Gröbner basis approach for solving a key equation due to

Byrne and Fitzpatrick [4].

II. PRELIMINARIES

Let p be a prime and let m and r be positive integers.

We denote by Fpm the finite field with pm elements and

let GR(pr,m) be the Galois ring of characteristic pr and

degree m. The latter can be constructed as the quotient ring

Zpr [X ]/(f) with monic polynomial f ∈ Zpr [X ] of degree m

such that f mod p in Zp[X ] is irreducible. The Galois ring

GR(pr,m) is a local ring with maximal ideal (p) such that

all its ideals form a chain {(pi) | 0 ≤ i ≤ r}, and one has the

canonical homomorphism onto the residue field

µ : GR(pr,m) −→ Fpm .

A. Hensel lifting

Hensel lifting is important for both the construction of

Galois rings and the factorisation of polynomials over such

rings. The setup actually applies to a quite general situation,

following [8, Ch. 15]. By a ring we mean a commutative ring

with identity.

Elements g, h in a ring R are called Bézout-coprime if

sg + th = 1 for certain s, t ∈ R. Note that for principal

ideal domains this definition amounts to the usual notion of

coprimeness of having no common factor. But in general it

is stronger; in fact, coprime elements need not be Bézout-

coprime, consider e.g. 2, X ∈ Z4[X ] or X,Y ∈ F2[X,Y ].
Now let R be a ring and a ∈ R. The basic Hensel step

allows to lift a polynomial factorisation over the quotient ring

R/(a) to a factorisation over the quotient ring R/(a2). More

precisely, suppose that we have f∗ ∈ (R/(a2))[X ] and g, h ∈
(R/(a))[X ], with h monic, being Bézout-coprime such that

f∗ mod a = g ·h ,

then we find g∗, h∗ ∈ (R/(a2))[X ], with h∗ monic, still

Bézout-coprime such that

f∗ = g∗ ·h∗ .

Furthermore, given s, t ∈ (R/(a))[X ] such that sg + th = 1
we can also compute elements s∗, t∗ ∈ (R/(a2))[X ] satisfying

s∗g∗+ t∗h∗ = 1. The details are given in Algorithm 1 (cf. [8,

Alg. 15.10]).

Applying the algorithm repeatedly, we can lift this way

factorisations modulo a to factorisations modulo a2, a4, a8,

etc.

B. Bivariate polynomial factorisation

Due to zero divisors in general rings one cannot expect

their polynomials to have as nice factorisation properties

and algorithms as in the field case. Simple examples like

http://arxiv.org/abs/2202.03977v1


Algorithm 1: Hensel step

Input : f∗ ∈ (R/(a2))[X ] and

g, h, s, t ∈ (R/(a))[X ], h monic

such that f∗ mod a = gh and sg + th = 1
Output: g∗, h∗, s∗, t∗ ∈ (R/(a2))[X ], h∗ monic

such that f∗ = g∗h∗ and s∗g∗ + t∗h∗ = 1

1 coerce g, h, s, t into (R/(a2))[X ]

2 e = f∗ − gh
3 q, r = quo rem(se, h) (note that a | e, q, r)

4 g∗ = g + te+ qg; h∗ = h+ r

5 b = sg∗ + th∗ − 1
6 c, d = quo rem(sb, h∗) (note that a | b, c, d)

7 s∗ = s− d; t∗ = t− tb− cg∗

8 return g∗, h∗, s∗, t∗

X ·X = (X+2)·(X+2) ∈ Z4[X ] already show a non-unique

factorisation behaviour. However, provided that the factors can

be mapped into square-free Bézout-coprime factors, say in the

univariate polynomial ring over a field, we are able to obtain

a factorisation by Hensel lifting.

For the list decoding at hand we are interested in the

factorisation of a bivariate polynomial Q ∈ R[X,Y ] over a

Galois ring R := GR(pr,m). Note that for Hensel lifting one

cannot simply use a factorisation as a bivariate polynomial

over its residue field F := Fpm , as the prime factors in

F [X,Y ] will usually not be Bézout-coprime.

In the following we describe an adaption of the Zassenhaus

factorisation method (cf. [8, Sec. 15.6]) to work over Galois

rings. The idea is to use Hensel lifting on two levels, first for

lifting a univariate polynomial factorisation in F [X ] to R[X ],
and then for lifting the factorisation in (R[Y ]/(Y −u))[X ] ∼=
R[X ] to one in (R[Y ]/(Y −u)ℓ)[X ], from which we may

deduce the factorisation in R[X,Y ]. Details follow.

Algorithm 2: Bivariate polynomial factorisation

Input : Q ∈ R[X,Y ]
Output: factorisation Q = Q1 ·...·Qt into irreducibles

1 choose u ∈ R such that µQ(X,u) ∈ F [X ] is

square-free

2 factorise µQ(X,u) = dg1 ·...·gs over F
3 use Hensel lifting to obtain Q(X,u) = cf1 ·...·fs

over R
4 use Hensel lifting to obtain Q = CF1 ·...·Fs over

R[Y ]/(Y −u)ℓ

5 combine factors to obtain Q = Q1 ·...·Qt over R[Y ]

1) Given Q ∈ R[X,Y ], we compute a univariate polyno-

mial Qu := Q(X,u) ∈ R[X ] for some u ∈ R and

consider its reduction Qu := µ(Qu) ∈ F [X ], which we

can factorise by classical methods. If the polynomial Qu

is square-free, so that there are no repeated factors, we

proceed; otherwise we try a different choice of u.

2) In the prime factorisation Qu = dg1·...·gs over F (with

d ∈ F and the gi monic), products of distinct factors

are coprime and thus Bézout-coprime, since F [X ] is a

principal ideal domain. Thus we may apply multifactor

Hensel lifting (cf. [8, Alg. 15.17]) using the basic Hensel

step (Algorithm 1) to obtain a factorisation of Qu =
cf1 ·...·fs ∈ R[X ] into irreducibles, where µfi = gi for

all i.
3) Given a factorisation of Qu = cf1 · ... ·fs in R[X ] into

distinct Bézout-coprime irreducibles (with c ∈ R and

the fi monic), we apply Hensel lifting over the polyno-

mial ring R[Y ] using the modulus a := Y −u to arrive

at a factorisation Q = CF1·...·Fs in (R[Y ]/(Y−u)ℓ)[X ]
for some large enough ℓ.

4) We combine the factors C,F1, . . . , Fs into products

Q1, . . . , Qt (with t ≤ s) such that Q = Q1 ·...·Qt holds

in R[X,Y ], a step which is necessary as the quotient

ring may introduce additional factors. Since there is a

bound in the Y -degree of the coefficients of the actual

factors Qi, we can find them by computing products of

1, 2, 3, . . . factors until the bound is satisfied.

We summarise our bivariate polynomial factorisation

method in Algorithm 2. Notice that all steps are polynomial

time except possibly for the last combine-factors step, which

however seems to be very efficient in practice. We leave a more

thorough study of the factoring algorithm for future work.

III. LIST DECODING OF REED-SOLOMON CODES

OVER RINGS

List decoding of Reed-Solomon and related codes over

Galois rings has been considered by Armand [1], [2], while

our setup and factorisation algorithm is slightly different. See

also [10] for list decoding of Reed-Solomon codes over more

general rings. We briefly present here the main concepts for

Galois rings, as required subsequently.

Let R := GR(pr,m) be a Galois ring of characteristic pr

and degree m, and let ϑ ∈ R be an element of multiplicative

order pm−1. Such an element can be obtained by taking the

defining polynomial f ∈ Zpr [X ] of R to be the Hensel lift of

a primitive polynomial over Zp of degree m and then letting ϑ
be the class of X modulo f .

The set T := {ϑi | 0 ≤ i < pm−1} ∪ {0} ⊆ R then

maps bijectively onto the residue field Fpm under the canonical

map µ, and is called Teichmüller set.

Definition 1. Given n ≤ pm and 1 ≤ k ≤ n as well as

α1, . . . , αn ∈ T distinct, we define the [n, k] Reed-Solomon

code over R as the evaluation code

C :=
{

ev(f) :=
(

f(α1), . . . , f(αn)
)

| f ∈ R[X ], deg f < k
}

.

Lemma 2. The (Hamming) minimum distance of C equals

d := n− k+1, thus the code is maximum distance separable.

Proof. Suppose that c = ev(f) ∈ C has weight < d, so

that f ∈ R[X ] has at least k zeros, say (w.l.o.g.) α1, . . . , αk.



Writing f =
∑k−1

i=0 fiX
i it follows that (f0, . . . , fk−1)V = 0

for the Vandermonde matrix V := (αj
i)ij , with

detV =
∏

i<j

(αj−αi)

a unit in R, since µ detV =
∏

i<j(µαj−µαi) 6= 0. Therefore,

f = 0 and thus c = 0.

We can in fact correct error weights beyond half the

minimum distance by adapting the list decoding approach by

Sudan [11], as described next. It consists of an interpolation

step which produces a bivariate polynomial Q ∈ R[X,Y ], and

a factorisation step using Algorithm 2 by which the codewords

within the list decoding radius are obtained.

For the interpolation step we fix a finite set S of indices

(i, j) describing terms X iY j , and require that S has more

than n elements. Given a received word y ∈ Rn we consider

the interpolation problem

Q(αi, yi) = 0 for 1 ≤ i ≤ n ,

where Q =
∑

(i,j)∈S cijX
iY j ∈ R[X,Y ] with the coefficients

cij ∈ R to be determined. This is a linear system with more

variables than equations and thus contains a nonzero solution.

Such a solution can be obtained using Smith normal form,

which is available over Galois rings as these are chain rings

(cf. [6, Sec. 2-D]).

Concretely, for a list error radius t we let

S := {(i, j) | i+ (k−1)j ≤ n− t} .

The next result shows that the interpolation polynomial Q
carries information on all codewords within distance ≤ t.

Lemma 3. Suppose that y = c + e with c = ev(f) ∈ C for

f ∈ R[X ], deg f < k, and e an error vector of weight ≤ t.
Then Q(X, f) = 0.

Proof. Considering h := Q(X, f) =
∑

(i,j)∈S cijX
if j ∈

R[X ], then since deg f < k and by the definition of S, we

see that deg h ≤ n − t. On the other hand, we have yi =
ci = f(αi) and thus h(αi) = Q(αi, f(αi)) = Q(αi, yi) = 0
whenever ei = 0, so for at least n− t values αi. As in the

proof of Lemma 2 we can use the Vandermonde determinant

and the fact that the µαi are distinct to deduce that h = 0.

Example 4. Consider the [64, 6] Reed-Solomon code over

R := GR(4, 6) defined by the full Teichmüller set. While the

minimum distance is d = 59 by Lemma 2 and thus the unique

decoding radius is 29, we can list decode up to radius t = 41.

Indeed, the set S := {(i, j) | i+5j ≤ 23} is of cardinality 65,

so we can conpute an interpolation polynomial Q and in light

of Lemma 3 find the list of codewords by factorising this

bivariate polynomial using Algorithm 2.

A. Multiplicities

We can also apply the Guruswami-Sudan list decoding ap-

proach [7] incorporating multiplicities to the present situation.

For this we alter the interpolation step such that every (αi, yi)
should be a zero Q ∈ R[X,Y ] with multiplicity e, which

means that for Q(X + αi, Y + yi) every coefficient of X iY j

with i + j < e vanishes. This amounts to 1
2e(e+1) linear

conditions for each point, so that we require the set S to have

more than 1
2e(e+1)n elements. But now, if there are t errors,

the polynomials f for every codeword within this radius the

polynomial h := Q(X, f) ∈ R[X ] has n−t roots with multi-

plicity at least e, i.e., (X − α)e | h. This forces h to be zero,

provided that we take S := {(i, j) | i + (k−1)j ≤ e(n−t)},

as the next result shows.

Lemma 5. Let h ∈ R[X ] be a polynomial of degree < ke
such that (X−αi)

e | h for at least k distinct αi ∈ T . Then h
equals zero.

Proof. Over the residue field we have (X−µαi)
e | µh, where

the µαi ∈ F are distinct, hence we can argue by degrees to

deduce µh = 0. Therefore, h = ph̃ and we may view the

polynomial h̃ over GR(pr−1,m) with deg h̃ = deg h and still

have (X−µαi)
e | µh̃ over the corresponding residue field.

Continuing this way, we see that h = 0.

Example 6. Consider the [64, 6] Reed-Solomon code over

R := GR(4, 6) from Example 4. Using multiplicity e = 2,

i.e., double roots, we can now list decode up to radius t = 43.

We take a set S := {(i, j) | i+5j ≤ 42} of cardinality

198 > 3·64, which guarantees the existence of an interpolation

polynomial Q. Then every codeword polynomial f within the

decoding radius satisfies Q(X, f) = 0, so we can find these

again by factoring Q with Algorithm 2.

IV. A JUMP INTO THE BYRNE-FITZPATRICK ALGORITHM

The Byrne-Fitzpatrick algorithm [3], [4] can be used to

solve key equations over Galois rings R. It considers for

U ∈ R[Z] the solution modules

Mk :=
{

(f, g) ∈ R[Z]2 | Uf ≡ g mod Zk
}

,

and given a Gröbner basis for Mk refines it to a Gröbner basis

for Mk+1. The method is dubbed “solution by approxima-

tions” and is reminiscent of the Berlekamp-Massey algorithm.

Recently, the algorithm was adapted to work also over skew

polynomials over Galois rings [9].

More specifically, one considers a term order on the set of

terms (Zj , 0) and (0, Zj), j = 0, 1, 2, . . . , so that leading term

and leading monomial of a nonzero pair (f, g) ∈ R[Z]2 are

defined. Given a module M ⊆ R[Z]2, a set B ⊆ M is called

Gröbner basis for M if for each (f, g) ∈ M there exists a

Gröbner basis element such that its leading monomial divides

the leading monomial of (f, g).
Now given a Gröbner basis Bk for Mk, to construct

a Gröbner basis Bk+1 for Mk+1 one computes for each

(fi, gi) ∈ Bk the discrepancy

ζi := (Ufi − gi)k ∈ R ,

where the subscript denotes the k-th coefficient. Then if ζi = 0
we put (fi, gi) into Bk+1. Otherwise, we look for some

(fj , gj) ∈ Bk with smaller leading term such that ζj | ζi,
say ζi = qζj for some q ∈ R, in which case we put



(fi, gi)−q(fj, gj) into Bk+1; if there is none, we put Z(fi, gi)
into Bk+1.

In order to adapt the list decoding approach by Wu [13], we

are interested in the following question: Given a Gröbner basis

for Mk, how can we construct a Gröbner basis for Mk+ℓ

with ℓ > 1? Thus we deal with a “jump” in the solution-

by-approximations method. At this point we are unable to

fully solve this problem, but we outline a method to construct

elements in Mk+ℓ satisfying certain degree constraints, which

will be sufficient for the list decoding approach.

Lemma 7. Given Gröbner basis elements (fi, gi) and (fj, gj)
in Bk with leading coefficient a unit in R, there exist

polynomials a, b ∈ R[Z] with unit leading coefficient and

deg a+ deg b ≤ ℓ such that a(fi, gi)− b(fj , gj) ∈ Mk+ℓ.

Proof. To address the problem at hand, we introduce for

(fi, gi) ∈ Bk the discrepancy polynomials

hi :=
ℓ−1
∑

λ=0

(Ufi − gi)k+λ ∈ R[Z] .

Then we look for an expression ahi − bhj = 0 mod Zℓ for

some a, b ∈ R[Z] of low degree, in which case we have

a(fi, gi)−b(fj, gj) ∈ Mk+ℓ. Such a pair (a, b) can in turn be

found by computing a Gröbner basis for the solution module

N :=
{

(a, b) ∈ R[Z]2 | ahi − bhj ≡ 0 mod Zℓ
}

by a (slight adaption) of the Byrne-Fitzpatrick algorithm.

In the decoding scenario described in the next section we

do not know the discrepancy polynomials and thus cannot

compute the polynomials a and b directly, but we are able

to deduce these by a list decoding approach.

V. LIST DECODING OF QUATERNARY NEGACYLIC CODES

Let n > 1 be an odd integer. By a quaternary negacyclic

code of length n we mean an ideal in the ring Z4[X ]/(Xn −
1). Such codes have been investigated by Wolfman [12], who

examined their structure. We equip the ring Z4 with the Lee

weight w(x) := min(x, 4−x) and build upon the algebraic

decoding of Lee errors [5]. Notice that the map induced by

X 7→ −X sends any negacyclic code isometrically onto a

cyclic code, though the negacyclic representation offers some

advantage regarding decoding.

As in the case of BCH codes we can specify negacyclic

codes in terms of roots. For this we choose a Galois ring

R := GR(4,m) such that n | 2m−1 together with an element ϑ
of order 2m−1 (see Section III). Then there exists an element β
of order n and we fix a root α := −β of order 2n, satisfying

αn = −1.

Definition 8. The quaternary negacyclic code with t roots

α, α3, . . . , α2t−1 is given by

C :=
{

c ∈ Z4[X ]/(Xn+1) | c(α2i−1) = 0 for 1 ≤ i ≤ t
}

.

It is shown [5, Thm. 1] that the code C has minimum

Hamming distance ≥ 2t+1, so this clearly holds for the

minimum Lee distance, too. An algebraic decoding method for

TABLE I
PARAMETERS OF NEGACYCLIC CODES OF LENGTH n, DESIGNED

ERROR-CORRECTING CAPABILITY t, AND RANK k (I.E., SIZE 4k ).

n t k 2t+1 dLee

15 1 11 3 3
2 7 5 5
3 5 7 10

31 1 26 3 4
2 21 5 7
3 16 7 12
5 11 11 16
7 6 15 26

errors up to Lee weight t was devised [5], based on a Gröbner

basis algorithm by Byrne and Fitzpatrick [4]. However, it has

been observed that many such codes have a larger minimum

Lee distance than 2t+1 (see Table I), which motiviates a list

decoding approach.

A. The key equation

Here we adjust the list decoding method of Wu [13] to the

present situation. The central idea of this algorithm is to start

with a Berlekamp-Massey solution to the key equation, and to

“refine” it afterwards by formulating a list decoding problem.

We recall therefore the key equation for negacyclic codes and

outline its algebraic decoding.

For an error vector e ∈ Z4[X ]/(Xn+1) we define the error

locator polynomial

σ :=
n−1
∏

i=0

(1−XiZ)w(ei) ∈ R[Z] ,

with Xi := α−i if ei = 1, 2 and Xi := −α−i if ei = 3, so that

(1−XiZ)w(ei) equals 1−αiZ if ei = 1, (1±αiZ)2 if ei = 2
and 1+αiZ if ei = 3. Then the error pattern is completely

determined by the roots αi for 0 ≤ i < 2n of σ.

We also let the syndrome polynomial be s :=
∑t

i=1 y(α
2i−1)Z2i−1 =

∑t
i=1 e(α

2i−1)Z2i−1 ∈ R[Z], which

is known to the decoder. This polynomial determines an

odd polynomial u :=
∑t

i=1 u2i−1Z
2i−1 by the equation

s(u2 − 1) = Zu′, which in turn defines a polynomial

T :=
∑t

i=1 TiZ
i by the relation (1 + T (Z2))(1 + Zu) ≡ 1

(mod Z2t+2). We arrive at the key equation

(1 + T )ϕ ≡ ω (mod Zt+1) ,

from which we recover the even and the odd part of the error

locator polynomial σ by ω(Z2) = σe, ϕ(Z2) = σe + Zσo.

This key equation can be solved by considering the solution

module Mt+1 as in Section IV with U := 1+T and employing

the Gröbner basis approach [5].

B. List decoding

Even though we only know the syndrome polynomial up to

degree 2t−1 and thus the polynomial T in the key equation

up to degree t, we would like to correct more than t errors.

For this we pretend that we actually have access to more



syndromes and presume that we can set up a key equation

modulo Zt+1+ℓ.

Suppose that (ϕi, ωi) and (ϕj , ωj) have been computed as

Gröbner basis elements for Mk, then according to Lemma 7

there is a solution (Φ,Ω) for Mk+ℓ such that aϕi− bϕj = Φ
and aωi − bωj = Ω. Hence, for the error locator polynomial

there holds

Σ = Σe +Σo = Ω(Z2) + 1
Z (Φ(Z2)−Ω(Z2))

= a
(

ωi(Z
2) + 1

Z (ϕi(Z
2)−ωi(Z

2)
)

− b
(

ωj(Z
2) + 1

Z (ϕj(Z
2)−ωj(Z

2)
)

= aσi − bσj .

Therefore, whenever Σ(γ) = 0 then

σj

σi
(γ) =

a

b
(γ) ,

which holds for the τ > t roots γ of Σ. This is a rational

approximation problem: We look for a rational function of

small degree that interpolates at least τ out of 2n given values.

Such kind of problem has been addressed by the list decoding

algorithm by Wu [13], which we adapt by our list decoding

algorithm of Section III.

More precisely, in the list decoding setup we have the 2n
evaluation points αi for 0 ≤ i < 2n, and we have τ error

positions γ for which

(aσi−bσj)(γ) = 0 ,

with a, b ∈ R[Z] unknown of degree ≤ ℓ
2 , where ℓ := τ − t.

In the context of Section III this corresponds to an evaluation

code of length 2n, rank ℓ+1 and with 2n−τ “errors”. Taking

into account the particular form of the factors, a suitable set

of indices is

S :=
{

(i, j) | max{i, ⌊ ℓ
2⌋j} ≤ τ

2

}

,

which we require to have more than 2n elements in order to

solve the interpolation step (in the single-multiplicity e = 1
case). One technical difficulty arising is that

σj

σi
(γ) might

be infinity, in which case, following Wu [13], rather than

Q(γ,∞) = 0 we impose the linear condition Q̃(γ, 0) = 0
with Q̃ := Q(X, 1

Y )Y d the Y -reverse polynomial of Q.

The bivariate polynomial Q ∈ R[X,Y ] has then the prop-

erty that the degree of the numerator of Q(X, ab ) is at most τ .

Suppose for now that the µγj are distinct for the τ error

positions γi ∈ 〈α〉 (no “double error” occurs). In that case

we infer that Q(X, ab ) = 0 by a similar proof as Lemma 3,

and hence we have a factor bY −a | Q.

In the general case, following the strategy in [5, Sec. 7], we

consider the reduction modulo the residue field F and have τ
error locations (possibly with multiplicity) µγ such that

µσj

µσi
(µγ) =

µa

µb
(µγ) .

Using the list decoding algorithm over fields by Wu [13], we

can find µa and µb. Thus we compute µΣ, by which we deduce

all double errors ei = 2 by its double roots. Then we subtract a

vector consisting of only those double roots, by which we are

able to reduce the decoding problem to the first case without

double errors.

Observe that the cardinality of the set S equals

(⌊ τ
2 ⌋+1)(⌊ τ

2⌊ℓ/2⌋⌋+1) ,

which exceeds 2n provided that τ2 > 4nℓ = 4n(τ−t). Incor-

porating sufficient large multiplicities e, as in Section III-A,

it suffices to require τ2 > 2n(τ−t), or τ < n−
√

n(n−2t).
Therefore, we arrive at the following result.

Theorem 9. For a quaternary negacyclic code of length n
with t roots and designed distance d = 2t+1, the proposed

list decoding algorithm corrects all codewords within radius τ
from the received word, provided that

τ < n−
√

n(n−d) .

Example 10. Let n = 63 and consider a quaternary negacyclic

code with t = 16 roots and designed distance 2t + 1 = 33.

The algebraic decoding method [5] is thus able to correct up

to 16 Lee weight errors. With our list decoding approach (with

multiplicity e = 2) we can correct however up to τ = 19
Lee errors. For this we let S := {(i, j) | i, j ≤ 19} of size

400 > 3 · 2n, so we can construct a bivariate interpolation

polynomial Q ∈ R[X,Y ] of max-degree 19. Provided that no

double error occured, by factorising Q using Algorithm 2 and

looking for factors bY −a with deg a, deg b ≤ 1, we are able

to solve the list decoding problem. Otherwise, we employ the

strategy outlined above.

REFERENCES

[1] M. A. Armand, “List decoding of generalized Reed-Solomon codes over
commutative rings,” IEEE Trans. Inf. Theory 51, no. 1 (2005), pp. 411–
419

[2] M. A. Armand, “Improved list decoding of generalized Reed–Solomon
and alternant codes over Galois rings,” IEEE Trans. Inf. Theory 51, no. 2
(2005), pp. 728–733

[3] E. Byrne and F. Fitzpatrick, “Gröbner Bases over Galois Rings with an
Application to Decoding Alternant Codes,” J. Symbolic Computation 31
(2001), pp. 565–584

[4] E. Byrne and F. Fitzpatrick, “Hamming metric decoding of alternant
codes over Galois rings,” IEEE Trans. Inf. Theory 48, no. 3 (2002),
pp. 683–694

[5] E. Byrne, M. Greferath, J. Pernas, and J. Zumbrägel, “Algebraic decod-
ing of negacyclic codes over Z4,” Des. Codes Cryptogr. 66, no. 1 (2013),
pp. 3–16

[6] C. Feng, R. W. Nóbrega, F. R. Kschischang, and D. Silva, “Communica-
tion over finite-chain-ring matrix channels,” IEEE Trans. Inf. Theory 60,
no. 10 (2014), pp. 5899–5917

[7] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon and
algebraic-geometry codes,” IEEE Trans. Inf. Theory 45, no. 6 (1999),
pp. 1757–1767

[8] J. von zur Gathen, J. Gerhard, Modern Computer Algebra, Cambridge
University Press, 2013

[9] S. Puchinger, J. Renner, A. Wachter-Zeh, and J. Zumbrägel, “Efficient
Decoding of Gabidulin Codes over Galois Rings,” Proc. IEEE Inter-
national Symposium on Information Theory (ISIT 2021), Melbourne,
Australia

[10] G. Quintin, M. Barbier, C. Chabot, “On generalized Reed–Solomon
codes over commutative and noncommutative rings,” IEEE Trans. Inf.
Theory 59, no. 9 (2013), pp. 5882–5897

[11] M. Sudan, “Decoding of Reed Solomon codes beyond the error-
correction bound,” J. Complexity 13, no. 1 (1997), pp. 180–193

[12] J. Wolfman, “Negacyclic and cyclic codes over Z4,” IEEE Trans. Inf.
Theory 45, no. 7 (1999), pp. 2527–2532

[13] Y. Wu, “New list decoding algorithms for Reed–Solomon and BCH
codes,” IEEE Trans. Inf. Theory 54, no. 8 (2008), pp. 3611–3630


	I Introduction
	II Preliminaries
	II-A Hensel lifting
	II-B Bivariate polynomial factorisation

	III List decoding of Reed-Solomon codes over rings
	III-A Multiplicities

	IV A jump into the Byrne-Fitzpatrick algorithm
	V List decoding of quaternary negacylic codes
	V-A The key equation
	V-B List decoding

	References

