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Entanglement-Assisted Quantum Error-Correcting Codes

over Local Frobenius Rings∗
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Abstract

In this paper, we provide a framework for constructing entanglement-assisted quantum error-correcting

codes (EAQECCs) from classical additive codes over a finite commutative local Frobenius ring R. At the

heart of the framework, and this is one of the main technical contributions of our paper, is a procedure to

construct, for an additive code C over R, a generating set for C that is in standard form, meaning that it

consists purely of isotropic generators and hyperbolic pairs. Moreover, when R is a Galois ring, we give an

exact expression for the minimum number of pairs of maximally entangled qudits required to construct an

EAQECC from an additive code over R, which significantly extends known results for EAQECCs over finite

fields. We also demonstrate how adding extra coordinates to an additive code can give us a certain degree of

flexibility in determining the parameters of the EAQECCs that result from our construction.

Keywords: quantum error correction; entanglement-assisted codes; Galois rings; Frobenius rings

1 Introduction

Quantum error-correcting codes (QECCs) protect quantum states against decoherence caused by the inter-

action between quantum states and their environment. The stabilizer framework, proposed by Gottesman [10],

is one of the main mechanisms for constructing QECCs. The construction is based on abelian subgroups of the

Pauli group, and the resulting QECCs are called quantum stabilizer codes. The stabilizer framework encom-

passes the first QECC constructed by Shor [21], as well as the construction from classical error-correcting codes,

discovered independently by Calderbank and Shor [6] and Steane [24]. The latter construction, now known as

the Calderbank-Shor-Steane (CSS) construction, uses dual-containing (or self-orthogonal) classical codes to form

QECCs.

Originally developed for qubits, the stabilizer framework was subsequently extended to higher-dimensional

qudit spaces. The (Pauli) error group in this case is generated by unitary operators whose actions on qudits are

defined by the algebra of an underlying finite field or ring. The extension of the stabilizer framework to error

groups defined via finite fields was executed by Ashikhmin and Knill [1], and Ketkar et al. [14], while the same

was done for finite commutative Frobenius rings by Nadella and Klappenecker [19], and Gluesing-Luerssen and

Pllaha [12].

The stabilizer formalism was extended in a different direction by Brun et al. [3], who gave a method of

constructing QECCs (over qubits) from non-abelian subgroups of the Pauli group. The idea here was to add

more dimensions to the Pauli group, so as to introduce extra degrees of freedom that can be used to “abelianize”
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the original non-abelian subgroup. The code construction required the existence of a small number of pre-shared

entanglement qubits between the sender and receiver, where the receiver-end qubits are assumed to be error-

free throughout. As a consequence, these codes were called entanglement-assisted quantum error correcting

codes (EAQECCs). Within this framework, any classical binary linear code can be used as the starting point

for constructing an EAQECC. Wilde and Brun [27] determined the minimal number of shared qubits required

to construct an EAQECC starting from a given binary linear code, and more generally, starting from a given

non-abelian subgroup of the Pauli group.

The theory of EAQECCs extends readily to qudit spaces for which the (Pauli) error groups are defined by

finite fields. Indeed, Wilde and Brun observe in [27, Remark 1] that their formula for the minimum number of

shared qudits also applies to EAQECCs constructed from linear codes over any prime field; a formal proof of

this was given by Luo et al. [18]. Later, Galindo et al. [9] verified that this formula also applied to EAQECCs

obtained from linear codes over an arbitrary finite field Fq. More recently, Nadkarni and Garani [20] derived an

analogous formula for EAQECCs constructed from Fp-additive codes over Fq, where p is the characteristic of Fq.

In this paper, we extend the EAQECC formalism to qudit spaces on which error actions are defined by finite

local commutative Frobenius rings. This enables us to construct EAQECCs starting from classical additive codes

over such rings, which are overall a much richer class of (classical) codes. It must be pointed out here that

Lee and Klappenecker [15] have previously attempted to construct EAQECCs from free linear codes over finite

commutative (not necessarily local) Frobenius rings. However, their EAQECC construction relies crucially on

Theorem 5 of their paper, in the proof of which we found a gap that could not readily be filled.1 By restricting

our attention further to local rings, we are able to furnish a proof of the result (Theorem 3.1) needed for the

construction of EAQECCs. Thus, one of the contributions of this paper is to provide a coding-theoretic framework

to construct EAQECCs over finite commutative local Frobenius rings from first principles. Using this framework,

we can complete the program initiated by Lee and Klappenecker [15] of constructing EAQECCs from linear codes

over finite commutative (not necessarily local) Frobenius rings — see the discussion following Remark 3.1 towards

the end of Section 3.

We then consider the problem of determining the minimum number of pre-shared pairs of maximally entangled

qudits required to construct an EAQECC within our framework, starting from an additive code over a finite

commutative Frobenius ring. We succeed in deriving a formula for this number in the special case when the ring

is a Galois ring. To get to the answer, we had to first derive it for the basic case of the integer rings Zpa , which

itself turned out to be a somewhat non-trivial task.

Finally, in the spirit of the propagation rules for EAQECCs proposed by Luo et al. [17, Theorems 16 and 18],

we explore how lengthening an additive code by inserting extra coordinates can affect the parameters and error-

handling capabilities of the EAQECCs obtained via our construction. We describe two methods for lengthening.

Using the first method, the EAQECC obtained from the lengthened code has the same dimension as the EAQECC

from the original code while requiring fewer pairs of maximally entangled qudits; but this is usually at the expense

of a loss in minimum distance. When we employ the second method of lengthening, the EAQECC obtained from

the lengthened code requires the same number of maximally entangled qudit pairs as that obtained from the

original code, but the minimum distance can now increase. However, the potential increase in minimum distance

is always accompanied by a reduction in dimension.

The remainder of this paper is organized as follows. In Section 2, we establish the basic definitions and

notation needed to describe the construction of quantum stabilizer codes and EAQECCs. This section also

contains statements of our main results. In Section 3, we provide the means to construct EAQECCs from any

additive code over a finite commutative local Frobenius ring. In Section 4, we derive an explicit form of the

1In the proof of [15, Theorem 5], Lee and Klappenecker replace wk with w
′

k−2
= ek,iwk − · · · . However, this may not result in a

basis of R2n, as ek,i need not be a unit in the ring R.
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minimum number of pre-shared required to construct an EAQECC over a ring, Zpa , of integers modulo a prime

power. This result is vastly generalized in Section 5 to cover EAQECCs over any finite Galois ring. In Section 6,

we present two methods to lengthen an additive code so as to flexibly modify the parameters of the EAQECCs

constructed from them. The paper ends in Section 7 with some concluding remarks. Some supplementary material

of a more technical nature are contained in the appendices.

2 Preliminaries

Let R be a finite commutative ring with unity. Let Hom(R,C∗) be the set of all additive characters of R,

i.e., the set of group homomorphisms from (R,+) to C∗. A ring R is a Frobenius ring if there exists an additive

character χ such that Hom(R,C∗) = R · χ. Any additive character with this property is called a generating

character of R. Finite fields, the rings ZN of integers modulo N, Galois rings and finite chain rings are a few

examples of finite Frobenius rings.

Throughout this paper, we take R to be a finite commutative local Frobenius ring with generating character χ.

Further, as R is a finite commutative local ring, the characteristic, charR, of R is a power of a prime number, and

the cardinality, |R|, of R is also a power of prime number. Let |R| = pa = q, and charR = pb, where p is a prime.

Furthermore, with ζ = exp
(
2πi
pb

)
a primitive pb-th root of unity, we have that χ(r) ∈ 〈ζ〉 = {1, ζ, ζ2, . . . , ζp

b−1}

for each r ∈ R.

A subset C of Rn is called an additive code over R of length n if C is an additive subgroup of Rn. Clearly,

C ⊆ Rn is an additive code if and only if C ⊆ Rn is a module over Zpb . An additive code C over R will be called

free if C is a free module over Zpb . If an additive code, C, over R is generated (as a Zpb -module) by a subset G

of Rn, we will write C = 〈G〉. Since Zpb is also a commutative local ring, all minimal (with respect to inclusion)

generating sets of finitely generated Zpb -modules have the same cardinality. In particular, all minimal generating

sets of an additive code C ⊆ Rn have the same cardinality, and this number is called the rank of C, denoted by

rank(C).

Although the following result is well known for free modules over Zpb , we rewrite the statement of the result

in terms of free additive codes over R, and give a proof for the sake of completeness.

Proposition 2.1. For a free additive code over R, any minimal generating set is linearly independent over Zpb .

Proof. Let C be a free additive code over R, with {v1, v2, . . . , vt} being a basis of C (as a free module over Zpb ),

where t = rank(C). Recall that all minimal generating sets of C have the same cardinality t (= rank(C)); let

{u1, u2, . . . , ut} be any such set. Define a map Λ : C → C as Λ

(
t∑

i=1

rivi

)
=

t∑
i=1

riui. Clearly, Λ is a surjective

Zpb -module homomorphism. From this, using [25, Proposition 1.2], we get that Λ is a Zpb -module isomorphism.

This implies that if
t∑

i=1

riui (= Λ

(
t∑

i=1

rivi

)
) = 0, then

t∑
i=1

rivi = 0. As {v1, v2, . . . , vt} is a basis of C as a

Zpb -module, we get r1 = r2 = . . . = rt = 0. Thus, {u1, u2, . . . , ut} is linearly independent over Zpb .

For each a = (a0, a1, · · · , an−1) ∈ Rn, the Hamming weight wtH(a) of a is defined as wtH(a) := |{i : ai 6= 0}|.

The minimum Hamming distance dH(C) of an additive code C ⊆ Rn is defined as dH(C) := min{wtH(a) : a ∈

C \ {0}}. We in fact extend this notation to arbitrary subsets A ⊆ Rn: dH(A) := min{wtH(a) : a ∈ A \ {0}}. If

A = ∅, we set dH(A) := ∞.

In this paper, we will mostly be concerned with additive codes of even blocklength. In this context, whenever

we consider a tuple (x, y) ∈ R2n, it is to be implicitly understood that x and y both belong to Rn. The symplectic

weight of a vector (x, y) = (x1, x2, . . . , xn, y1, y2, . . . , yn) ∈ R2n, denoted by wts(x, y), is defined as

wts(x, y) := |{i : (xi, yi) 6= 0}|.
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Analogous to the notion of minimum Hamming distance, the minimum symplectic distance ds(A) of a subset A

of R2n is defined as

ds(A) := min{wts(a) : a ∈ A \ {0}}.

If A = ∅, we set ds(A) := ∞.

Definition 2.1. The symplectic inner product on R2n is defined as 〈(a, b) | (a′, b′)〉s := b ·a′− b′ ·a for a, b, a′, b′ ∈

Rn. (Here b · a′ and b′ · a are the usual dot products in Rn.) Furthermore, for a subset C ⊆ R2n, we define

• the symplectic dual, C⊥s , of C as

C⊥s = {v ∈ R2n : 〈c | v〉s = 0 for all c ∈ C},

• and the χ-symplectic dual, C⊥χ , of C as

C⊥χ = {v ∈ R2n : χ(〈c | v〉s) = 1 for all c ∈ C}.

Note that for any subset C ⊆ R2n, the duals defined above are additive codes in R2n. The following lemma is

a special case of Lemma 6 of Nadella and Klappenecker [19].

Lemma 2.1. Let C ⊆ R2n be an additive code. Then |C||C⊥χ | = |R2n|.

The definitions below will be needed for our construction in Section 3 of EAQECCs from additive codes over

R.

Definition 2.2. An additive code C ⊆ R2n is called χ-self-orthogonal if C ⊆ C⊥χ .

Definition 2.3. Let C ⊆ R2n be an additive code.

• A code C′ ⊆ R2(n+c) is called a χ-self-orthogonal extension of C if C′ ⊆ C′⊥χ , and C can be obtained from C′

by puncturing C′ at the coordinates n+ 1, n+ 2, . . . , n+ c, 2n+ c+ 1, 2n+ c+ 2, . . . , 2n+ 2c. The number

c is called the entanglement degree of the extension.

• A χ-self-orthogonal extension of the code C with the least entanglement degree among all such extensions

is called a minimal χ-self-orthogonal extension of C.

The reason for the nomenclature of “entanglement degree” will get clear when we describe EAQECCs in

Sections 2.2 and 3. Briefly, this is the number of pairs of maximally entangled qudits needed in the construction

of an EAQECC from an additive code C.

2.1 Quantum stabilizer codes over local Frobenius rings

Let

B = {|x〉 : x ∈ R}

be an orthonormal basis of Cq. The state of a unit system, a qudit, is a superposition of these basis states of the

system and is given by

|ψ〉 =
∑

x∈R

ax|x〉, where ax ∈ C and
∑

x∈R

|ax|
2 = 1.

An orthonormal basis of the quantum state space of n qudits Cqn = (Cq)⊗n is given by

4



B⊗n = {|x〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉 : x = (x1, x2, . . . , xn) ∈ Rn}.

For a ∈ R, define two linear maps X(a) and Z(b) on Cq by their action on the basis B as

X(a)(|x〉) = |x+ a〉 and Z(a)(|x〉) = χ(ax)|x〉 for all x ∈ R.

Extend these maps to unitary maps on Cqn as follows:

X(a) = X(a1)⊗X(a2)⊗ · · · ⊗X(an) and Z(a) = Z(a1)⊗ Z(a2)⊗ · · · ⊗ Z(an) for a = (a1, a2, . . . , an) ∈ Rn.

Clearly,

X(a)(|x〉) = |x+ a〉 and Z(a)(|x〉) = χ(a · x)|x〉 for all a, x ∈ Rn,

where a · x =
n∑

i=1

aixi is the dot product in Rn. The set En(R) := {X(a)Z(b) : a, b ∈ Rn} is called an error basis

of the n-qudit error group defined below in Definition 2.4. The following lemma tells us about the multiplicative

and commutative properties of elements of the error basis.

Lemma 2.2. [12] Let P = X(a)Z(b) and P ′ = X(a′)Z(b′) with a, b, a′, b′ ∈ Rn be two elements of En(R). Then

P † = P−1 = χ(b · a)X(−a)Z(−b) and PP ′ = χ(b · a′)X(a+ a′)Z(b + b′). Furthermore, P and P ′ commute with

each other if and only if χ(b · a′ − b′ · a) = 1

To define the n-qudit error group, called the Pauli group, let us fix some notations first. Let

N =

{
pb if p is odd;

2pb if p is even.

Further, let ω ∈ C∗ be a primitive N -th root of unity.

Definition 2.4. [12] The Pauli group Pn(R) is defined as

Pn(R) := {ωℓX(a)Z(b) : 0 ≤ ℓ ≤ N − 1, a, b ∈ Rn}.

Define a map

Ψ : Pn(R) → R2n as Ψ(ωℓX(a)Z(b)) = (a, b).

The map Ψ is a surjective group homomorphism with ker Ψ = {ωℓI : 0 ≤ ℓ ≤ N − 1}.

The weight of an operator ωℓX(a)Z(b) = ωℓX(a1)⊗X(a2)⊗· · ·⊗X(an)Z(a1)⊗Z(a2)⊗· · ·⊗Z(an) ∈ Pn(R)

is defined as

wt(ωℓX(a)Z(b)) := |{i : (ai, bi) 6= 0}|.

That is, the weight of an operator is the number of non-scalar components of the tensor product that forms the

operator.

A quantum error correcting code over R is a K-dimensional subspace of Cqn . A quantum code Q can detect

an error E ∈ Pn(R) if and only if 〈u|E|v〉 = λE〈u|v〉 for each |u〉, |v〉 ∈ Q, where λE ∈ C is a constant depending

only on E.

A quantum code Q has minimum distance D if it can detect all errors of weight at most D − 1 and cannot

detect some error of weight D. A quantum code Q with minimum distance D can correct any error of weight

at most
⌈
D−1
2

⌉
. If Q ⊆ C

qn is a quantum code of dimension 1, then clearly, for each E ∈ Pn(R), we have

〈u|E|v〉 = λE〈u|v〉 for each |u〉, |v〉 ∈ Q. So in this case, the minimum distance of the quantum code Q is

5



defined as the largest integer D such that for each non-identity operator E ∈ Pn(R) with wt(E) < D, we have

〈u|E|v〉 = 0 for all |u〉, |v〉 ∈ Q. (See, for example, [11].) A quantum code Q ⊆ Cqn of dimension K is referred

to as an ((n,K))q quantum code; additionally if it has minimum distance D, then it is an ((n,K,D))q quantum

code. The subscript q may be dropped if there is no ambiguity.

A quantum codeQ is said to be non-degenerate if for any two arbitrary correctable errorsE1, E2 with E1 6= E2,

E1|u〉 and E2|v〉 are linearly independent for any |u〉, |v〉 ∈ Q. A quantum code Q is said to be degenerate if it is

not non-degenerate — see, for example, [5].

Definition 2.5. [12]

(a) A subgroup S of Pn(R) is called a stabilizer group if S is abelian and S ∩ ker Ψ = {Iqn}.

(b) A subspace Q of Cqn is called a quantum stabilizer code if there exists a stabilizer group S such that

Q = Q(S) := {|x〉 ∈ C
qn : V |x〉 = |x〉 for all V ∈ S}.

The following theorem tells us about the dimension of a quantum stabilizer code.

Theorem 2.1. [12] Let S ⊆ Pn(R) be a stabilizer group and Q(S) ⊆ Cqn be the corresponding quantum stabilizer

code. Then, the dimension of Q(S) is equal to qn/|S|.

It is well known that the set of undetectable errors for a quantum stabilizer code Q(S) are those which

commute with all the elements of S but are not themselves elements of S (ignoring the overall phase factor of

the error and of the elements of S). Hence the error-correction properties of a quantum stabilizer code depend

on the centralizer of the stabilizer group.

2.2 EAQECCs over local Frobenius rings

Quantum stabilizer codes can be constructed only from abelian subgroups of Pn(R). To construct QECCs

from non-abelian subgroups of Pn(R), there is a framework of entanglement-assisted quantum error correcting

codes (EAQECCs), which involves the use of maximally entangled states shared between the transmitter and the

receiver. Brun et al. [3] first proposed this construction from non-abelian subgroups of Pn(Z2). They constructed

quantum stabilizer codes from stabilizer groups obtained by extending the operators in the non-abelian subgroups

into an appropriate higher dimensional space to form abelian subgroups. Maximally entangled qubit pairs, termed

as ebits, are added for the extension; one qubit from each pair is held by the transmitter and the other qubit is

held by the receiver. The qubits held at the receiver end are assumed to be error-free.

The basic idea of Brun et al. can be extended to construct EAQECCs from non-abelian subgroups of Pn(R).

For this, we need a method to extend a non-abelian subgroup of Pn(R) into an appropriate higher dimensional

space to form an abelian group. To this end, we first note that if S is a subgroup of Pn(R), then Ψ(S) ⊆ R2n

is an additive subgroup of R2n. Moreover, by Lemma 2.2, we see that an operator P = ωℓX(a)Z(b) ∈ Pn(R)

commutes with elements of the subgroup S if and only if χ(b · a′ − b′ · a) = 1 for each ωℓ′X(a′)Z(b′) ∈ S. From

this, we observe that if V1 ∈ Pn(R) commutes with all elements of S, then Ψ(V1) ∈ Ψ(S)⊥χ .

Thus, extending S to make it an abelian subgroup S ′ of Pn+c(R) for some c is equivalent to extending

C := Ψ(S) to C′ := Ψ(S)′ ⊆ R2(n+c) such that C′ ⊆ C′⊥χ . In other words, it is equivalent to constructing a

χ-self-orthogonal extension C′ ⊆ R2(n+c) of the additive code C ⊆ R2n. In Theorem 3.2, we provide a method to

construct such a χ-self-orthogonal extension. Then, in Theorem 3.3, we give a construction of an ((n+c, qn+c/|C′|))

quantum stabilizer code from C′, which will be the desired EAQECC. As in the Brun et al. framework, c extra

pairs of maximally entangled qudits are involved in the construction. The transmitter and receiver each hold one
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qudit from each maximally entangled pair; the qudits held by the receiver are assumed to be error-free. This

quantum code is referred to as an ((n, qn+c/|C′|; c)) EAQECC over R. If c = 0, then this is simply an ((n, qn/|C|))

quantum stabilizer code.

As the maximally entangled qudits are assumed to be maintained error-free at the receiver end, we note that if

E = ωℓX(a, a′)Z(b, b′) ∈ Pn+c(R), with a, b ∈ Rn, a′, b′ ∈ Rc, is an error operating on the transmitted codeword,

then we must have a′ = b′ = (0, 0, . . . , 0) ∈ Rc. Thus, only errors of the form ωℓX(a, 0)Z(b, 0) ∈ Pn+c(R), with

a, b ∈ Rn, are assumed to occur in this model. We then say that an ((n, qn+c/|C′|; c))EAQECC has minimum

distance D if it can detect all errors of the form ωℓX(a, 0)Z(b, 0) ∈ Pn+c(R), with a, b ∈ Rn, of weight at most

D − 1, but it cannot detect some error of this form of weight D. If for an EAQECC Q, all errors of the form

ωℓX(a, 0)Z(b, 0) ∈ Pn+c(R), with a, b ∈ Rn, are detectable, then the minimum distance of the code is defined as

the largest integerD such that for each non-identity operator E = X(a, 0)Z(b, 0) ∈ Pn+c(R), with wt(E) < D, we

have 〈u|E|v〉 = 0 for all |u〉, |v〉 ∈ Q. An ((n, qn+c/|C′|; c)) EAQECC with minimum distance D is referred to as an

((n, qn+c/|C′|, D; c)) EAQECC over R; again, if c = 0, then this is simply an ((n, qn/|C|, D)) quantum stabilizer

code. An EAQECC with minimum distance D can correct any error of the form ωℓX(a, 0)Z(b, 0) ∈ Pn+c(R),

with a, b ∈ Rn, of weight at most
⌈
D−1
2

⌉
.

2.3 A summary of our main results

In this paper, we provide a framework to construct EAQECCs from classical additive codes over a finite

commutative local Frobenius ring R. Recall that |R| = q = pa and charR = pb. Our main result is as follows:

Theorem 2.2. Let C ⊆ R2n be an additive code, i.e., C is a module over Zpb . From C, we can construct

an ((n,K,D; c)) EAQECC over R, where the number of pairs of maximally entangled qudits needed is c =
1
2 rank(C/(C ∩ C⊥χ)), the minimum distance is

D =

{
ds(C⊥χ) if C⊥χ ⊆ C

ds(C⊥χ \ C) otherwise ,

and the dimension K is bounded as qn+c/(|C| p
∑b−1

t=1 (b−t)ρt) ≤ K ≤ qn+c/|C|, the ρt’s being numbers determined

by a certain chain of subcodes of C. If either (a) C is free or (b) C/(C ∩ C⊥χ) is a free module over Zpb , then

K = qn+c/|C|. In the case of (b), we additionally have c = 1
2

[
rank(C)− rank(C ∩ C⊥χ)

]
.

Theorem 2.2 is a direct consequence of Theorems 3.2 and 3.3 proved in Section 3. The precise expression for

the numbers ρt can be found in the restatement of Theorem 2.2 at the end of that section.

In the second part of the paper (Sections 4–5), we explicitly derive the minimum number of pre-shared pairs of

maximally entangled qudits required to construct an EAQECC from a submodule over the integer ring Zpa , and

more generally, the minimum number of pre-shared pairs of maximally entangled qudits required to construct an

EAQECC from an additive code over a Galois ring. We state our results in the two theorems below.

Theorem 2.3. Let C ⊆ Z2n
pa be a submodule. From C, we can construct an ((n,K,D; c)) EAQECC over Zpa ,

where the minimum number, c, of pairs of maximally entangled qudits needed for the construction is equal to
1
2 rank(C/(C ∩ C⊥s)), the minimum distance is

D =

{
ds(C⊥s) if C⊥s ⊆ C

ds(C⊥s \ C) otherwise ,

and the dimension K is bounded as pa(n+c)/(|C| p
∑a−1

t=1 (a−t)ρt) ≤ K ≤ pa(n+c)/|C|, the ρt’s being numbers deter-

mined by a certain chain of subcodes of C. If either (a) C is free or (b) C/(C ∩ C⊥s) is a free module over Zpb ,

then K = pa(n+c)/|C|. In the case of (b), we additionally have c = 1
2

[
rank(C)− rank(C ∩ C⊥s)

]
.
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Theorem 2.3 follows by putting together the results of Theorems 3.2 and 3.3, and Theorem 4.2, proved in

Sections 3 and 4, respectively. The precise expression for the numbers ρt can be found in the restatement of the

theorem at the end of Section 4.

Theorem 2.4. Let C ⊆ GR(pb,m)2n be an additive code over the Galois ring GR(pb,m). From C, we can construct

an ((n,K,D; c)) EAQECC over GR(pb,m), where the minimum number, c, of pairs of maximally entangled qudits

needed for the construction is equal to
⌈

1
2m rank(C/(C ∩ C⊥Tr))

⌉
, the minimum distance is

D =

{
ds(C⊥Tr) if C⊥Tr ⊆ C

ds(C⊥Tr \ C) otherwise ,

and the dimension K is bounded as pbm(n+c)/(|C| p
∑b−1

t=1 (b−t)ρt) ≤ K ≤ pbm(n+c)/|C|, the ρt’s being numbers

determined by a certain chain of subcodes of C. If either (a) C is free or (b) C/(C ∩ C⊥Tr) is a free module over

Zpb , then K = pbm(n+c)/|C|. In the case of (b), we additionally have c =
⌈

1
2m [rank(C)− rank(C ∩ C⊥Tr)]

⌉
.

In the statement of the theorem above, C⊥Tr = {v ∈ GR(pb,m)2n : Tr(〈v|c〉s) = 0 ∀ c ∈ C} is the trace-

symplectic dual of C, defined with respect to the generalized trace map Tr : GR(pb,m) → Zpb . Section 5 contains

an exposition of the machinery of the map Tr, and the theorem is a consequence of the results proved in that

section. Again, the numbers ρt are expressed precisely in the restatement of Theorem 2.4 at the end of that

section.

Theorem 2.4 significantly extends the results of Galindo et al. [9] and Nadkarni and Garani [20] obtained for

EAQECCs derived from codes over finite fields. For ready reference, we state below the result for finite fields

obtained as a corollary of the theorem. This result can also be inferred from the work of Nadkarni and Garani

[20].

Corollary 2.1. Let C ⊆ F2n
pm be an additive code over the finite field Fpm . From C, we can construct an

((n, pm(n+c)/|C|, D; c)) EAQECC over Fpm , where the minimum number, c, of pairs of maximally entangled qudits

needed for the construction is equal to
⌈

1
2m (dimFp

(C)− dimFp
(C ∩ C⊥tr))

⌉
, and

D =

{
ds(C⊥tr) if C⊥tr ⊆ C

ds(C⊥tr \ C) otherwise .

Here, C⊥tr := {v ∈ F2n
pm : tr(〈v|c〉s) = 0 ∀ c ∈ C} is the trace-symplectic dual of C defined with respect to the trace

map tr : Fpm → Fp given by tr(z) = z + zp + zp
2

+ · · ·+ zp
m−1

.

3 Constructing EAQECCs from Additive Codes over Local Frobenius

Rings

In this section, we provide the details of our method for constructing EAQECCs from additive codes over a

finite commutative local Frobenius ring R with generating character χ. We again recall that |R| = q = pa and

charR = pb. At the heart of the construction is a mechanism to obtain a χ-self-orthogonal extension C′ of an

additive code C. This requires some preliminary development.

3.1 Standard-Form Generating Sets of Additive Codes

We start with some definitions.

Definition 3.1. A subset {a11, a12, a21, a22, . . . , ae1, ae2} of R2n is said to be a symplectic subset of R2n if

χ(〈ai1 | aj1〉s) = χ(〈ai2 | aj2〉s) = χ(〈ai1 | ak2〉s) = 1 and χ(〈ai1 | ai2〉s) 6= 1 for all i, j, k ∈ {1, 2, . . . , e} with i 6= k.
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Definition 3.2. Let C ⊆ R2n be an additive code, i.e., C ⊆ R2n is a module over Zpb . Further, let G be a

generating set of C ⊆ R2n as a Zpb -module.

• A generator g ∈ G is called an isotropic generator if χ(〈g|h〉s) = 1 for all h ∈ G.

• Two generators g, g′ ∈ G are called a hyperbolic pair if χ(〈g|g′〉s) 6= 1, χ(〈g|h〉s) = 1 for all h ∈ G \ {g′}, and

χ(〈g′|h)〉s) = 1 for all h ∈ G \ {g}.

Note that a generator is isotropic if and only if it belongs to C⊥χ . Thus, an additive code C ⊆ R2n with a

generating set G is χ-self-orthogonal if and only if all the generators in G are isotropic.

Definition 3.3. A generating set G of an additive code C ⊆ R2n is said to be in standard form if it consists

solely of isotropic generators and hyperbolic pairs.

It is far from being clear at this stage whether generating sets in standard form exist for additive codes over

rings. This fact has been established for additive codes over fields [3], [4], [9], [18], [20] but not yet, to the best of

our knowledge, for codes over finite rings beyond fields (see Remark 3.1). We will extend this fundamental result

to additive codes over any finite local Frobenius ring in Theorem 3.1 a little later in this section. But first, we

give an idea of why the notion of a standard-form generating set is useful.

Proposition 3.1. Let C ⊆ R2n be an additive code with a generating set in standard form, in which there are

exactly e hyperbolic pairs, ui1, ui2, i = 1, 2, . . . , e. Then, C has a χ-self-orthogonal extension C′ ⊆ R2(n+c) if

and only if there is a symplectic subset {a11, a12, a21, a22, . . . , ae1, ae2} ⊂ R2c of cardinality 2e such that χ(〈ui1 |

ui2〉s) = χ(〈ai1 | ai2〉s) for i = 1, 2, . . . , e.

Proof. Let G = {u11, u12, . . . , ue1, ue2, z1, . . . , zd} be a standard-form generating set of C, with z1, . . . , zd being

the isotropic generators. As the generators live in R2n, we can write them as

ui1 = (vi, wi) and ui2 = (xi, yi) for i = 1, 2, . . . , e, and zj = (ve+j , we+j) for j = 1, 2 . . . , d,

where each of the components ui, vi, xi, yi lies in Rn.

Now, suppose that {a11, a12, a21, a22, . . . , ae1, ae2} ⊂ R2c is a symplectic subset such that χ(〈ui1 | ui2〉s) =

χ(〈ai1 | ai2〉s) for i = 1, 2, . . . , e. Let ai1 = (bi, ci) and ai2 = (ri, si), the components being from Rc. We then

extend the components vi, wi, xi, yi of the generators in G to v′i, w
′
i, x

′
i, y

′
i ∈ Rn+c as follows:

v′i = (vi,−bi), w
′
i = (wi, ci), x

′
i = (xi,−ri), y

′
i = (yi, si) for i = 1, 2, . . . , e, (3.1)

and v′i = (vi, 0), w
′
i = (wi, 0) for i = e+ 1, . . . , e+ d, (3.2)

where 0 is the zero element of Rc. Finally, set

u′i1 := (v′i, w
′
i) and u

′
i2 = (x′i, y

′
i) for i = 1, 2, . . . , e, and z′j = (v′e+j , w

′
e+j) for j = 1, 2 . . . , d. (3.3)

Then, G′ = {u′11, u
′
12, . . . , u

′
e1, u

′
e2, z

′
1, . . . , z

′
d} generates an additive code C′ ⊆ R2(n+c), and the generators in G′

are all isotropic. For instance, 〈u′i1 | u′i2〉s = w′
ix

′
i − v′iy

′
i = wixi − ciri − (viyi − bisi) = 〈ui1 | ui2〉s − 〈ai1 | ai2〉s,

so that

χ(〈u′i1 | u′i2〉s) = χ(〈ui1 | ui2〉s) ·
(
χ(〈ai1 | ai2〉s)

)−1
= 1.

It follows that C′ is a χ-self-orthogonal extension of C.

Conversely, if C′ is a χ-self-orthogonal extension of C, then it has codewords u′11, u
′
12, . . . , u

′
e1, u

′
e2 that are

extensions of the generators u11, u12, . . . , ue1, ue2 that form the hyperbolic pairs in G. That is, we can write

u′i1 =
(
(vi, v̂i), (wi, ŵi)

)
and u′i2 =

(
(xi, x̂i), (yi, ŷi)

)
for i = 1, 2, . . . , e,
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for some ûi, v̂i, x̂i, ŷi ∈ Rc. Since C′ is χ-self-orthogonal, we have χ(〈u′ik | u′jℓ〉s) = 1 for all i, j ∈ {1, 2, . . . , e} and

k, ℓ ∈ {1, 2}. Hence, setting

ai1 = (−v̂i, ŵi) and ai2 = (−x̂i, ŷi) for i = 1, 2, . . . , e,

it is easy to verify that {a11, a12, a21, a22, . . . , ae1, ae2} ⊂ R2c is a symplectic subset such that χ(〈ui1 | ui2〉s) =

χ(〈ai1 | ai2〉s) for i = 1, 2, . . . , e.

The proof of Proposition 3.1 shows that a χ-self-orthogonal extension C′ ⊆ R2(n+c) of an additive code C ⊆ R2n

can be constructed in two steps:

(1) Find a generating set G in standard form of the additive code C ⊆ R2n.

(2) Find a symplectic subset of R2c, for some suitable choice of c, satisfying the property required by Propo-

sition 3.1. The desired code C′ is generated by the set G′ obtained by extending the generators in G by 2c

coordinates as prescribed in (3.1)–(3.3).

Indeed, this prescription for a construction of a χ-self-orthogonal extension is important enough for our develop-

ment that we will give it a name: the Two-Step Construction.

In Theorems 3.1 and 3.2 below, we will show that it is always possible to construct a χ-self-orthogonal extension

of an additive code C ⊆ R2n by following the Two-Step Construction. The first of these theorems, stated next,

shows that any additive code C ⊆ R2n has a (minimal) generating set that is in standard form. The proof is by

construction of such a set.

Theorem 3.1. Let C ⊆ R2n be an additive code. There exists a symplectic subset T ⊆ C \ C⊥χ of cardinality

|T | = rank(C/(C ∩C⊥χ)), such that the following statements hold for any minimal generating set S of the additive

code C ∩ C⊥χ :

(a) S ∪ T is a generating set of C in standard form, with S being the set of isotropic generators and T being

the set of hyperbolic pairs2.

(b) There is a subset S0 ⊆ S such that S0 ∪ T is a minimal generating set of C.

(c) If C/(C ∩ C⊥χ) is free (as a module over Zpb), then S ∪ T is itself a minimal generating set of C.

Proof. Let π : C → C/(C∩C⊥χ) be the canonical projection map that takes (v, w) ∈ C to the coset (v, w)+(C∩C⊥χ ).

Let T0 = {(a1, b1), (a2, b2), . . . , (af , bf)} ⊆ C \ C⊥χ be such that π(T0) := {π((a1, b1)), π((a2, b2)), . . . , π((af , bf ))}

is a minimal generating set of C/(C ∩ C⊥χ) as a Zpb -module. Thus, |T0| = |π(T0)| = rank(C/(C ∩ C⊥χ)).

Now, let S be any minimal generating set of the additive code C ∩ C⊥χ ⊆ R2n as a Zpb -module. We assert

that S ∪ T0 generates C. To see this, note that for any (v, w) ∈ C, we must have π(v, w) = z1π((a1, b1)) +

z2π((a2, b2)) + . . . + zfπ((af , bf )) for some zi ∈ Zpb . Since z1π((a1, b1)) + z2π((a2, b2)) + · · · + zfπ((af , bf)) =

π(z1(a1, b1) + z2(a2, b2) + · · · + zf (af , bf)), we have (v, w) − z1(a1, b1) − z2(a2, b2) − . . . − zf(af , bf) ∈ C ∩ C⊥χ ,

which implies that (v, w) ∈ 〈S ∪ T0〉. This completes the proof of the assertion.

(a) Since the generators in S belong to C⊥χ , they are all isotropic. We will not tamper with S; instead,

we will transform T0 into a symplectic subset. For 1 ≤ i, j ≤ f, χ(bi · aj − bj · ai) is a pb-th root of unity, so

let χ(bi · aj − bj · ai) = ζℓi,j , where ζ = exp(2πi
pb ) and 0 ≤ ℓi,j < pb. Further, for 1 ≤ i, j ≤ f, we note that

χ(bj · ai − bi · aj) = χ(bi · aj − bj · ai)−1, which gives ℓi,j ≡ −ℓj,i (mod pb). For each i ∈ {1, 2, . . . , f}, we must

2We use “the set of hyperbolic pairs” as shorthand for “the set of generators that form hyperbolic pairs”. Thus, the cardinality of

a set of hyperbolic pairs is equal to the number of generators that the set contains, which is actually twice the number of hyperbolic

pairs formed by these generators.
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have ℓi,j 6= 0 for some j ∈ {1, . . . , f}; otherwise, (ai, bi) is in C ∩ C⊥χ , so that π((ai, bi)) = C ∩ C⊥χ , contradicting

the minimality of π(T0).

Let ℓı̂,̂ with ı̂, ̂ ∈ {1, 2, . . . , f} be such that gcd(ℓı̂,̂, p
b) = min{gcd(ℓi,j , pb) : ℓi,j 6= 0 and 1 ≤ i, j ≤ f}.

Clearly, gcd(ℓı̂,̂, p
b) divides gcd(ℓi,j , p

b) for 1 ≤ i, j ≤ f. As ℓı̂,̂ 6= 0, we have χ(bı̂ · â − b̂ · aı̂) 6= 1. Swap (a1, b1)

and (a2, b2) with (aı̂, bı̂) and (â, b̂), respectively.

For 3 ≤ i ≤ f, replace (ai, bi) with

(a′i, b
′
i) = (ai, bi) + ui (a1, b1) + vi (a2, b2),

where ui and vi are solutions of the linear equations

ℓ1,2ui ≡ ℓ2,i(mod pb) and ℓ1,2vi ≡ −ℓ1,i(mod pb).

Such ui and vi always exist, since gcd(ℓ1,2, p
b) divides ℓ2,i and ℓ1,i. By doing this, we get a new set

T1 = {(a1, b1), (a2, b2), (a
′
3, b

′
3), . . . , (a

′
f , b

′
f)}

such that χ(b2 · a1 − b1 · a2) 6= 1, χ(b′j · a1 − b1 · a′j) = 1, and χ(b′j · a2 − b2 · a′j) = 1 for j ∈ {3, 4, . . . , f}. In

other words, (a1, b1) and (a2, b2) form a hyperbolic pair. Since T0 is recoverable from T1, we see that S ∪ T1 also

generates C. Moreover, π(T0) is recoverable from π(T1) := {π((a1, b1)), π((a2, b2)), π((a′3, b
′
3)), . . . , π((a

′
f , b

′
f)), so

π(T1) is also a minimal generating set of C/(C ∩ C⊥χ). In particular, |T1| = |π(T1)| = rank(C/(C ∩ C⊥χ)).

By repeatedly applying the above process to the generators (a′3, b
′
3), . . . , (a

′
f , b

′
f ), we will eventually obtain a

symplectic subset

T = {(v1, w1), (v2, w2), . . . , (vc, wc), (x1, y1), (x2, y2), . . . , (xc, yc)}

such that S ∪ T generates C, the generators (vi, wi) and (xi, yi), i = 1, 2, . . . , c, are hyperbolic pairs, and π(T ) is

a minimal generating set of C/(C ∩ C⊥χ). In particular, |T | = |π(T )| = rank(C/(C ∩ C⊥χ)).

(b) Note that no generator in T can be obtained by taking Zpb -linear combinations of other generators in

S∪T . Indeed, if, say, (v1, w1) were expressible as a linear combination of other generators in S∪T , we would end

up with χ(〈(v1, w1)|(x1, y1)〉s) = 1, which would contradict the fact that (v1, w1) and (x1, y1) form a hyperbolic

pair. However, it is possible that some of the generators in S can be obtained by taking linear combinations of

other generators in S ∪ T . Iteratively removing such generators from S, we are left with an S0 ⊆ S such that

S0 ∪ T is a minimal generating set of C. Observe that S0 ∪ T is also a generating set in standard form.

(c) Suppose that C/(C ∩ C⊥χ) is free as a module over Zpb . By the argument in (b) above, it suffices to

show that no generator in S can be obtained as a linear combination of other generators in S ∪ T . To prove

this, we use the fact that {π((v1, w1)), π((v2, w2)), . . . , π((vc, wc)), π((x1, y1)), π((x2, y2)), . . . , π((xc, yc))} is a

linearly independent set over Zpb — this holds because, by Proposition 2.1, any minimal generating set of the

free Zpb -module C/(C ∩ C⊥χ) is linearly independent.

Now, suppose that some (v, w) ∈ S can be obtained as a linear combination of other generators in S ∪ T , i.e.,

(v, w) = a1(v1, w1) + a2(v2, w2) + · · ·+ ac(vc, wc) + b1(x1, y1) + b2(x2, y2) + · · ·+ bc(xc, yc) + (f, g) (3.4)

for some ai, bi ∈ Zpb , and some (f, g) ∈ C ∩ C⊥χ that is a linear combination of elements in S \ (v, w). Applying

the projection map π to (3.4), we get 0 = a1π(v1, w1)+a2π(v2, w2)+ · · ·+acπ(vc, wc)+b1π(x1, y1)+b2π(x2, y2)+

· · ·+bcπ(xc, yc). Since {π((v1, w1)), π((v2, w2)), . . . , π((vc, wc)), π((x1, y1)), π((x2, y2)), . . . , π((xc, yc))} is a linearly

independent set over Zpb , we have ai = bi = 0 for all i. Plugging this back into (3.4), we find that (v, w) ∈ S is

expressible as a linear combination of elements in S \ (v, w), which contradicts the minimality of S. We conclude

that no generator in S can be obtained as a linear combination of other generators in S ∪ T , and hence, that

S ∪ T is a minimal generating set of C.
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In the following example, we illustrate the steps described in the proof of Theorem 3.1 to find, for an additive

code, a minimal generating set in standard form.

Example 3.1. Let C be an additive code over Z16 of length 8 with a minimal generating set {(a1, b1), (a2, b2),

(a3, b3), (a4, b4), (a5, b5)}, where (a1, b1) = (1, 3, 0, 0, 0, 0, 0, 0), (a2, b2) = (0, 0, 0, 0, 1, 1, 0, 0), (a3, b3) = (0, 0, 1, 0, 2,

2, 0, 0), (a4, b4) = (2, 6, 0, 0, 0, 0, 8, 0) and (a5, b5) = (0, 0, 0, 1, 0, 0, 0, 0). The map χ : Z16 → C∗ defined by

χ(z) = ζz , with ζ = exp
(
πi
8

)
, is a generating character of the ring Z16.

We first need to find minimal generating sets of C/(C ∩ C⊥χ) and C ∩ C⊥χ as Z16-modules. We begin by

observing that 〈4(a1, b1), 4(a2, b2), 2(a3, b3), (a5, b5)〉 ⊆ C ∩ C⊥χ . We will argue that the reverse inclusion also

holds. To see this, consider any α1(a1, b1) + α2(a2, b2) + α3(a3, b3) + α4(a4, b4) + α5(a5, b5) ∈ C ∩ C⊥χ . As

(a5, b5) ∈ C ∩ C⊥χ , we have (c1, d1) := α1(a1, b1) + α2(a2, b2) + α3(a3, b3) + α4(a4, b4) ∈ C ∩ C⊥χ . This implies

that χ(〈(c1, d1)|(a1, b1)〉s) = χ(〈(c1, d1)|(a2, b2)〉s) = χ(〈(c1, d1)|(a3, b3)〉s) = χ(〈(c1, d1)|(a4, b4)〉s) = 1, which

gives 4α2 + 8α3 = 0, 4α1 + 8α4 = 0, 8α1 + 8α4 = 0 and 8α2 + 8α3 = 0. Thus, α1, α2 ∈ 〈4〉 and α3, α4 ∈ 〈2〉.

Consequently,

C ∩ C⊥χ ⊆ 〈4(a1, b1), 4(a2, b2), 2(a3, b3), 2(a4, b4), (a5, b5)〉 = 〈4(a1, b1), 4(a2, b2), 2(a3, b3), (a5, b5)〉

the equality above arising from the fact that 2(a4, b4) = 4(a1, b1). We have thus shown that C ∩ C⊥χ =

〈4(a1, b1), 4(a2, b2), 2(a3, b3), (a5, b5)〉, meaning that {4(a1, b1), 4(a2, b2), 2(a3, b3), (a5, b5)} is a generating set

of C ∩C⊥χ as a Z16-module. It is straightforward to check that this is in fact a minimal generating set of C ∩C⊥χ .

Now, let π : C → C/(C ∩ C⊥χ) be the canonical projection map that takes (v, w) ∈ C to the coset (v, w) +

(C ∩ C⊥χ). It can be verified that {π((a1, b1)), π((a2, b2)), π((a3, b3)), π((a4, b4))} is a minimal generating set of

C/(C ∩ C⊥χ) as a Z16-module. So, set (as in the proof of Theorem 3.1), T0 := {(a1, b1), (a2, b2), (a3, b3), (a4, b4)}.

With S := {4(a1, b1), 4(a2, b2), 2(a3, b3), (a5, b5)}, we note (as argued in the proof of the theorem) that S ∪ T0 is

a generating set of C.

Following the proof of Theorem 3.1(a), we will transform T0 into a symplectic subset. For 1 ≤ i, j ≤ 4, let

χ(bi · aj − bj · ai) = ζℓi,j . One easily computes ℓ1,2 = 12, ℓ1,3 = 8, ℓ1,4 = 0, ℓ2,3 = 0, ℓ2,4 = 8 and ℓ3,4 = 8. Note

that gcd(ℓ1,2, 16) = min{gcd(ℓi,j , 16) : ℓi,j 6= 0 and 1 ≤ i, j ≤ 4} = 4. For i = 3, 4, set

(a′i, b
′
i) = (ai, bi) + ui (a1, b1) + vi (a2, b2),

where ui and vi are solutions of the linear equations

12ui ≡ ℓ2,i(mod 16) and 12vi ≡ −ℓ1,i(mod 16).

Solving these equations, we get u3 = 0, v3 = 2, u4 = 2 and v4 = 0, so that (a′3, b
′
3) = (0, 0, 1, 0, 4, 4, 0, 0)

and (a′4, b
′
4) = (4, 12, 0, 0, 0, 0, 8, 0). For i = 3, 4, replacing (ai, bi) in T0 with (a′i, b

′
i), we get a new set T1 :=

{(a1, b1), (a2, b2), (a′3, b
′
3), (a

′
4, b

′
4)}. This T1 is a symplectic subset, and S ∪ T1 is a generating set of C in standard

form. From this, we readily obtain that {(a5, b5)} ∪ T1 is a minimal generating set of C in standard form.

The following result is an easy consequence of Theorem 3.1.

Corollary 3.1. For an additive code C ⊆ R2n, we have rank(C/(C ∩ C⊥χ)) ≥ rank(C)− rank(C ∩ C⊥χ). Equality

holds if C/(C ∩ C⊥χ) is free as a module over Zpb .

Proof. Let S and T be as in the statement of Theorem 3.1. Since S is a minimal generating set of C ∩ C⊥χ , we

have |S| = rank(C ∩ C⊥χ). Hence, by part (a) of the theorem, we have

rank(C) ≤ |S ∪ T | = |S|+ |T | = rank(C ∩ C⊥χ) + rank(C/(C ∩ C⊥χ)).

If C/(C ∩ C⊥χ) is free, then by part (c) of the theorem, the first inequality above is in fact an equality.
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In the remainder of this subsection, we establish some useful structural properties of any standard-form

generating set of an additive code C ⊆ R2n, which we will use in the sequel.

Recall that for each r ∈ R, we have χ(r) ∈ 〈ζ〉 = {1, ζ, ζ2, . . . , ζp
b−1}, where ζ = exp

(
2πi
pb

)
is a primitive pb-th

root of unity. The subgroups of 〈ζ〉 are Ht := 〈ζp
b−t

〉 = {1, ζp
b−t

, ζ2p
b−t

, . . . , ζ(p
t−1)pb−t

}, for t = 0, 1, . . . , b. The

subgroup H0 is simply 〈1〉 = {1}, and the indexing is chosen so that H0 ≤ H1 ≤ · · · ≤ Hb = 〈ζ〉. For a subset

C ⊆ R2n and t = 0, 1, . . . , b, define

C⊥χ,t = {(v′, w′) ∈ R2n : χ(〈(v, w) | (v′, w′)〉s) ∈ Ht for all (v, w) ∈ C}. (3.5)

Note that C⊥χ,t is an additive code. Clearly, we have the nested sequence C⊥χ = C⊥χ,0 ⊆ C⊥χ,1 ⊆ · · · ⊆ C⊥χ,b =

R2n.

Proposition 3.2. Let C ⊆ R2n be an additive code, and G any generating set of C in standard form. Let S and

T denote the sets of isotropic generators and hyperbolic pairs, respectively, in G. The following then hold:

(a) For t = 0, 1, . . . , b, we have
∣∣T ∩ C⊥χ,t

∣∣ = rank(C/(C ∩ C⊥χ)) − rank(C/(C ∩ C⊥χ,t)). In particular3, |T | =

rank(C/(C ∩ C⊥χ)).

(b) There is a subset S0 ⊆ S such that S0 ∪ T is a minimal generating set of C.

Proof. (a) Let t be any integer in {0, 1, . . . , b}, and set H = Ht. Let V = T \ C⊥χ,t be the set of hyperbolic

generators4 that do not belong to C⊥χ,t . We will first show that |V| = rank(C/(C ∩ C⊥χ,t)).

Let (vi, wi) and (xi, yi), i = 1, 2, . . . , c, be the hyperbolic pairs that make up T . Observe that if χ(〈(vi, wi) |

(xi, yi)〉s) ∈ H , then by the way hyperbolic pairs are defined, it follows that both (vi, wi) and (xi, yi) are in

C⊥χ,t . So, the generators constituting such hyperbolic pairs cannot be in V . On the other hand, if χ(〈(vi, wi) |

(xi, yi)〉s) /∈ H , then (vi, wi) and (xi, yi) are both in V . Thus, we may assume that V consists of the hyperbolic

pairs (vi, wi) and (xi, yi), i = 1, 2, . . . , h, and hence, χ(〈(vi, wi) | (xi, yi)〉s) /∈ H for these pairs.

Let π : C → C/(C ∩ C⊥χ,t) be the canonical projection map that takes (v, w) ∈ C to the coset [v, w] :=

(v, w) + (C ∩ C⊥χ,t). Since π maps any generator in G \ V to C ∩ C⊥χ,t , i.e., to the coset [0, 0], it must be

the case that π(V) := {π((v1, w1)), π((x1, y1)), . . . , π((vh, wh)), π((xh, yh))} is a generating set for the quotient

C/(C ∩ C⊥χ,t), again viewed as a Zpb -module. We claim that for no generator in V is it the case that its image

under π is expressible as a Zpb -linear combination of the π-images of other generators in V . It then follows that the

restriction of π to V is one-to-one, so that |V| = |π(V)|, and that π(V) is a minimal generating set of C/(C∩C⊥χ,t),

so that |π(V)| = rank(C/(C ∩ C⊥χ,t)). Thus, proving the claim suffices to prove that |V| = rank(C/(C ∩ C⊥χ,t)).

We prove the claim by way of contradiction. Assume, to the contrary, that π((v1, w1)) is expressible as

π((v1, w1)) = η1 · π((x1, y1)) +
h∑

i=2

[θi · π((vi, wi)) + ηi · π((xi, yi))]

for some ηi’s and θi’s from Zpb . Then, π
(
(v1, w1) − η1 · (x1, y1) −

∑h
i=2[θi · (vi, wi) + ηi · (xi, yi)]

)
= [0, 0], or

equivalently, (v1, w1)− η1 · (x1, y1)−
∑h

i=2[θi · (vi, wi) + ηi · (xi, yi)] =: (v′, w′) belongs to C ∩ C⊥χ,t .

Consider the quantity κ := χ(〈(v′, w′) | (x1, y1)〉s). Since (v′, w′) ∈ C⊥χ,t and (x1, y1) ∈ C, we must have κ ∈ H .

On the other hand, since (v1, w1) and (x1, y1) form a hyperbolic pair, κ reduces to χ(〈(v1, w1) | (x1, y1)〉s), and

moreover, since (v1, w1) and (x1, y1) are in V , we have κ = χ(〈(v1, w1) | (x1, y1)〉s) /∈ H . This is the desired

contradiction that proves the claim, and hence, the fact that |V| = rank(C/(C ∩ C⊥χ,t)).

3See Footnote 2.
4Of course, V also depends on t, but we suppress this dependence from the notation for simplicity.
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Now, observe that in the special case of t = 0, we have V being all of T , and consequently, |T | = rank(C/(C ∩

C⊥χ)). More generally, for any t, we have that T is the disjoint union of V and T ∩ C⊥χ,t ; hence,

∣∣T ∩ C⊥χ,t
∣∣ = |T | − |V|

= rank(C/(C ∩ C⊥χ))− rank(C/(C ∩ C⊥χ,t)),

which completes the proof of part (a) of the proposition.

(b) The argument here is identical to that for part (b) of Theorem 3.1.

We will make use of this result in the proof of Theorem 3.2 that is to follow.

3.2 Constructing a χ-Self-Orthogonal Extension

For the second step in the Two-Step Construction of a χ-self-orthogonal extension of an additive code C, we

need a suitable symplectic subset. Such a subset can always be obtained from the standard-form generating set

of C guaranteed by Theorem 3.1(a), as we explain in the proof of the first part of the theorem below.

Theorem 3.2. For any additive code C ⊆ R2n, the following statements hold:

(a) It is always possible to construct a χ-self-orthogonal extension of C, with entanglement degree equal to
1
2 rank(C/(C ∩ C⊥χ)), using the Two-Step Construction.

(b) For any C′ that is a χ-self-orthogonal extension of C obtained using the Two-Step Construction, we have

|C| ≤ |C′| ≤ |C| · p
∑b−1

t=1 (b−t)ρt , with ρt := rank(C/(C ∩ C⊥χ,t−1))− rank(C/(C ∩ C⊥χ,t)). Additionally, if either

C or C/(C ∩ C⊥χ) is a free module over Zpb , then |C′| = |C|.

Proof. (a) For Step (1) of the Two-Step Construction, we appeal to Theorem 3.1(a) to get a standard-form

generating set of C. Let

G = {(v1, w1), (v2, w2), . . . , (vc+d, wc+d), (x1, y1), (x2, y2), . . . , (xc, yc)} (3.6)

be this generating set, where, for i = 1, 2 . . . , c, the generators (vi, wi) and (xi, yi) form hyperbolic pairs, and the

generators (vi, wi), i = c+ 1, . . . , c+ d, are isotropic. Moreover, 2c = rank(C/(C ∩ C⊥χ)) by Proposition 3.2.

For i = 1, 2, . . . , c, set ai1 := (−γiei, 0) and ai2 := (0, ei), where γi = 〈(vi, wi) | (xi, yi)〉s, ei = (0, . . . , 0, 1, 0,

. . . , 0) ∈ Rc, the 1 occurring in the ith coordinate, and 0 is the zero element of Rc. It is then easy to verify that

{a11, a12, a21, a22, . . . , ac1, ac2} ⊂ R2c is a symplectic subset such that χ(〈(vi, wi) | (xi, yi)〉s) = χ(〈ai1 | ai2〉s) for

i = 1, 2, . . . , c, as required by Step (2) of the Two-Step Construction.

Hence, by Proposition 3.1, C has a χ-self-orthogonal extension C′ ⊆ R2(n+c). Indeed, C′ is the additive code

generated by G′ = {u′11, u
′
12, . . . , u

′
c1, u

′
c2, z

′
1, . . . , z

′
d}, with

u′i1 := (vi,−γiei, wi, 0) and u
′
i2 = (xi, 0, yi, ei) for i = 1, 2, . . . , c,

and z′j = (vc+j , 0, wc+j, 0) for j = 1, 2 . . . , d, where 0 is the zero element of Rc.

(b) Let C′ be any χ-self-orthogonal extension of C obtained using the Two-Step Construction. Let G as in

(3.6) be the standard-form generating set of C used in the construction; by virtue of Proposition 3.2(b), we may

assume, without loss of generality, that G is a minimal generating set of C. We will use T to denote the set of all

hyperbolic pairs in G, i.e., T = {(v1, w1), (v2, w2), . . . , (vc, wc), (x1, y1), (x2, y2), . . . , (xc, yc)}.

Now, let

G′ = {(v1,m1, w1, n1), . . . , (vc,mc, wc, nc), (vc+1, 0, wc+1, 0), . . . , (vc+d, 0, wc+d, 0), (x1, r1, y1, s1), . . . , (xc, rc, yc, sc)}
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be the generating set of C′ that extends G in the manner of (3.1)–(3.3). Further, let ϕ denote the restriction of

C′ onto the coordinates of C, i.e., ϕ maps (v, f, w, g) ∈ C′ to (v, w) ∈ C. Finally, let C0 denote the subcode of C′

consisting of codewords of the form (0, f, 0, g), for some f, g ∈ Rc. Then, kerϕ = C0, and hence, |C′| = |C| · |C0|.

Since (0, 0, 0, 0) ∈ C0, we have |C0| ≥ 1, so that |C′| ≥ |C|. We next work towards an upper bound on |C0|.

From the definitions of the generating sets G and G′, we see that |C0| equals the number of distinct (f, g) ∈ R2c

that can be obtained as
c∑

i=1

[ξi,1 · (mi, ni) + ξi,2 · (ri, si)] +
d∑

j=1

ηj · (0, 0) (3.7)

for some ξi,1, ξi,2, ηj ∈ Zpb such that

c∑

i=1

[ξi,1 · (vi, wi) + ξi,2 · (xi, yi)] +
d∑

j=1

ηj · (vc+j , wc+j) = (0, 0). (3.8)

The ηj terms do not contribute to the overall sum in (3.7), so can be dropped from there (but not from (3.8)).

Fix some ℓ ∈ {1, 2, . . . , c}. Taking the symplectic product with (xℓ, yℓ) on both sides of (3.8), and applying

the generating character χ, we obtain χ(γℓ)
ξℓ,1 = 1, where we recall that γℓ = 〈(vℓ, wℓ) | (xℓ, yℓ)〉s. Similarly,

taking the symplectic product with (vℓ, wℓ) on both sides of (3.8), and applying the generating character χ, we

obtain χ(γℓ)
ξℓ,2 = 1. Note that since (vℓ, wℓ) and (xℓ, yℓ) form a hyperbolic pair, we have χ(γℓ) 6= 1. Let t

be the least positive integer such that χ(γℓ) ∈ Ht := 〈ζp
b−t

〉. This means that χ(γℓ) is of the form exp
(
2πi z
pb

)

with gcd(z, pb) = pb−t. Then, for χ(γℓ)
ξℓ,1 = χ(γℓ)

ξℓ,2 = 1, we must have ξℓ,1 and ξℓ,2 being multiples of pt.

In particular, if t = b, then ξℓ,1 = ξℓ,2 = 0 (in Zpb). From all of this, we infer that whenever (3.8) holds, the

expression in (3.7) is in fact of the form

b−1∑

t=1

∑

ℓ∈It

[ξℓ,1 · (mℓ, nℓ) + ξℓ,2 · (rℓ, sℓ)],

where It = {i : t is the least positive integer such that χ(γi) ∈ Ht}, and ξℓ,1, ξℓ,2 ∈ Zpb are multiples of pt. In

particular, for ℓ ∈ It, we can have at most pb−t possible choices for each of ξℓ,1 and ξℓ,2. Consequently,

|C0| ≤
b−1∏

t=1

∏

ℓ∈It

p2(b−t) = p
∑b−1

t=1 2(b−t)|It|.

Now, observe that ℓ ∈ It iff (vℓ, wℓ) and (xℓ, yℓ) are both in C⊥χ,t \ C⊥χ,t−1 — this can be inferred from

the definition of C⊥χ,t in (3.5). Hence, 2|It| =
∣∣T ∩ C⊥χ,t

∣∣ −
∣∣T ∩ C⊥χ,t−1

∣∣, which from Proposition 3.2, equals

ρt := rank(C/(C ∩ C⊥χ,t−1)) − rank(C/(C ∩ C⊥χ,t)). Thus, we conclude that |C0| ≤ p
∑b−1

t=1 (b−t)ρt , and hence,

|C′| = |C| · |C0| ≤ |C| · p
∑b−1

t=1 (b−t)ρt .

Finally, let C/(C ∩C⊥χ) be free as a Zpb -module. Further, let π : C → C/(C ∩C⊥χ) be the canonical projection

map. Clearly, π(T ) := {π((v1, w1)), π((v2, w2)), . . . , π((vc, wc)), π((x1, y1)), π((x2, y2)), . . . , π((xc, yc))} is a gen-

erating set of C/(C ∩ C⊥χ) as a Zpb -module. Since 2c = rank(C/(C ∩ C⊥χ)), we see that π(T ) is in fact a minimal

generating set of C/(C ∩ C⊥χ). Recall that, by Proposition 2.1, for a finite free module over Zpb , any minimal

generating set is linearly independent over Zpb . This implies that π(T ) is a linearly independent set over Zpb .

Applying π to both sides of (3.8), we see that (3.8) holds only if all the coefficients ξi,1, ξi,2 are equal to 0.

On the other hand, if C is free as a Zpb -module, then, using Proposition 2.1, G, being a minimal generating

set, is linearly independent over Zpb . Thus (3.8) holds only if all the coefficients ξi,1, ξi,2, ηj are equal to 0. Thus,

if either C or C/(C ∩ C⊥χ) is a free module over Zpb , then C0 consists of only the (0, 0, 0, 0) codeword, so that

|C′| = |C| · |C0| = |C|. This completes the proof of the theorem.
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3.3 Constructing an EAQECC from a χ-Self-Orthogonal Extension

It only remains to provide a means of constructing an EAQECC from a χ-self-orthogonal extension of C

obtained via the Two-Step Construction. This is done in the theorem below, which also specifies the dimension

and minimum distance of the resulting EAQECC.

Theorem 3.3. Let C ⊆ R2n be an additive code over R, and let C′ ⊆ R2(n+c) be a χ-self-orthogonal extension of C

with entanglement degree c, obtained using the Two-Step Construction. Then, there exists an ((n, qn+c/|C′|, D; c))

EAQECC, where

D =

{
ds(C⊥χ) if C⊥χ ⊆ C ;

ds(C⊥χ \ C) otherwise .

Proof. From the given χ-self-orthogonal extension, C′, of C, we will first construct a stabilizer group A ≤ Pn+c(R)

of size equal to |C′|. This is done by adapting the proof of the “⇐” part of Theorem 3.12 in [12].

We start by defining

W := {ωℓX(v)Z(w) : 0 ≤ ℓ ≤ N − 1, (v, w) ∈ C′} ⊆ Pn+c(R).

Note that W is an abelian subgroup of Pn+c(R). Let ξ be a nontrivial character of (W , ·) such that ξ(ωℓI) = ωℓ

for 0 ≤ ℓ < N. (A character with this property does exist as any character of a subgroup 〈ωI〉 of the finite abelian

group W can be extended to a character of W .) Now, define

A := {ξ(χ(vw)X(−v)Z(−w))X(v)Z(w) : (v, w) ∈ C′} ⊆ Pn+c(R).

Following the proof of the “⇐” part of Theorem 3.12 in [12], it can be verified that A is an abelian subgroup of

Pn+c(R) such that A ∩ ker Ψ = {Iq(n+c)}. Thus, A is a stabilizer group of size |A| = |C′|.

By Theorem 2.1, the quantum code Q(A) ⊆ Cqn+c

has dimension equal to qn+c/|A|. This proves the existence

of an ((n, qn+c/|C′|; c)) EAQECC over R.

We now proceed to determine the minimum distance D of the EAQECC. Let C(A) be a centralizer of A in

Pn+c(R), i.e., C(A) is a set of all the elements of Pn+c(R) which commute with all the elements of A. Further, let

E = ωℓX(a, a′)Z(b, b′) ∈ Pn+c(R) with a, b ∈ Rn, a′, b′ ∈ Rc be an error occurred on the transmitted codeword.

As the receiver-end qudits are assumed to be maintained error-free, we have E = ωℓX(a, 0)Z(b, 0) ∈ Pn+c(R).

Further, as the overall phase factor of the error does not matter, we can assume that E = X(a, 0)Z(b, 0) ∈

Pn+c(R); indeed, from now on, in this proof, we will ignore the overall phase factor of the elements of C(A) and

A. Note that an element E = X(a, 0)Z(b, 0) ∈ C(A) if and only if (a, b) ∈ C⊥χ .

If E 6∈ C(A), then we have EF 6= FE for some F = ωkX(c, c′)Z(d, d′) ∈ A. That is, we have χ(b ·c−a ·d) 6= 1.

Using this, we observe that

〈u|E|v〉 = 〈u|EF |v〉 = χ(b · c− a · d)〈u|FE|v〉 = χ(b · c− a · d)〈u|E|v〉.

As χ(b · c − a · d) 6= 1, we get 〈u|E|v〉 = 0. This implies that E is detectable. Further, when E ∈ A, we have

〈u|E|v〉 = 〈u|v〉, hence E is detectable. Now we assume that E ∈ C(A)\A. Here we assert that E is not detectable.

We will prove this by contradiction. Suppose that E is detectable. This implies that for each |v〉 ∈ Q(A), we have

E|v〉 = λE |v〉 some complex scalar λE . Note that for the projection operator P = 1
|A|

∑
F∈A

F, we have EP = λEP,

which implies that λE 6= 0. Now consider an abelian subgroup A′ of Pn+c(R) generated by λ−1
E E and all elements

of A. By Theorem 2.1, the quantum code Q(A′) ⊆ Cqn+c

has dimension equal to qn+c/|A′| < qn+c/|A|. This

implies that not all elements of Q(A) remain invariant under λ−1
E E. This is a contradiction to the detectability

of E. This proves our assertion.
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Thus an error E = X(a, 0)Z(b, 0) ∈ Pn+c(R) is not detectable if and only if E ∈ C(A) \ A, i.e., an error

E = X(a, 0)Z(b, 0) ∈ Pn+c(R) is not detectable if and only if (a, b) ∈ C⊥χ \C. From this, we see that if C⊥χ \C 6= ∅,

thenD = ds(C⊥χ\C). Now, suppose that C⊥χ ⊆ C. Then, there is no element in C(A)\A of the formX(a, 0)Z(b, 0),

hence all errors are detectable. Note that E = X(a, 0)Z(b, 0) ∈ Pn+c(R) with wt(E) < ds(C⊥χ) does not belong

to C(A) as (a, b) 6∈ C⊥χ . This implies that for each non-identity operator E = X(a, 0)Z(b, 0) ∈ Pn+c(R), with

wt(E) < ds(C⊥χ), we have 〈u|E|v〉 = 0 for each |u〉, |v〉 ∈ Q(A). Further, for each (a, b) ∈ C⊥χ ⊆ C, we see that

E = X(a, 0)Z(b, 0) ∈ A, which implies that 〈u|E|v〉 = 〈u|v〉. Thus the minimum distance D of the code is equal

to ds(C⊥χ). This completes the proof of the theorem.

Observe that Theorem 2.2, which is restated below with the numbers ρt precisely specified, follows readily

from Theorems 3.2 and 3.3.

Theorem 3.4 (Restatement of Theorem 2.2). Let C ⊆ R2n be an additive code, i.e., C is a module over Zpb .

From C, we can construct an ((n,K,D; c)) EAQECC over R, where the number of pairs of maximally entangled

qudits needed is c = 1
2 rank(C/(C ∩ C⊥χ)), the minimum distance is

D =

{
ds(C⊥χ) if C⊥χ ⊆ C

ds(C⊥χ \ C) otherwise ,

and the dimension K is bounded as qn+c/(|C| p
∑b−1

t=1 (b−t)ρt) ≤ K ≤ qn+c/|C|, with ρt := rank(C/(C ∩ C⊥χ,t−1)) −

rank(C/(C ∩ C⊥χ,t)). If either (a) C is free or (b) C/(C ∩ C⊥χ) is a free module over Zpb , then K = qn+c/|C|. In

the case of (b), we additionally have c = 1
2

[
rank(C)− rank(C ∩ C⊥χ)

]
.

Remark 3.1. We point out here that Lee and Klappenecker [15, Proposition 2] provided a method to construct

an EAQECC from a free linear code over a finite commutative Frobenius ring. The construction proposed in

[15, Proposition 2] relies crucially on [15, Theorem 5], which is analogous to our Theorem 3.1. However, we

found a gap in the proof of [15, Theorem 5] that could not readily be filled, namely, that replacing wk with

w′
k−2 = ek,iwk − · · · may not result in a basis of R2n, as ek,i may not be a unit in the ring R.

As we will now argue, our results in this section in fact offer a mathematically rigorous means of constructing

EAQECCs from linear codes (not necessarily free) over finite commutative (not necessarily local) Frobenius rings.

By the Chinese Remainder Theorem, a finite commutative Frobenius ring R can be written as direct product

of finite commutative local rings. By [28, Remark 1.3], a finite commutative ring R ∼= R1 × R2 × · · · × Rt

is Frobenius if and only if each Ri is Frobenius. Thus, for a finite commutative Frobenius ring R, we have

R ∼= R1 × R2 × · · · × Rt, where each Ri is a local Frobenius ring. By [8, Theorem 3.1], if χRi
is a generating

character for Ri, then a character χ of R defined for a = (a1, a2, . . . , at) ∈ R by

χ(a) =
t∏

i=1

χRi
(ai)

is a generating character for R.

It is straightforward to see that any linear code, C, of length 2n over R is of the form C1 × C2 × · · · × Ct,

where each Ci is a linear code of length 2n over Ri. Now, by Theorem 3.1, each Ci has a generating set, Gi, in

standard form. Define G ⊂ C to be the set consisting of all (c1, c2, . . . , ct) ∈ C1 ×C2× · · ·×Ct such that for some

j ∈ [t], we have cj ∈ Gj while ci = 0 for all i 6= j. It is clear that G is a generating set of C. Moreover, it is an

easy exercise to verify that G is in standard form with respect to χ(〈·|·〉s), where χ acts on the symplectic inner

product on R2n defined as follows: for u = (u1, u2, . . . , ut) and v = (v1, v2, . . . , vt) ∈ R2n
1 ×R2n

2 ×· · ·×R2n
t

∼= R2n,

〈u | v〉s =
(
〈u1 | v1〉s(1), 〈u2 | v2〉s(2), . . . , 〈ut | vt〉s(t)

)
.

17



Here, 〈uj | vj〉s(j) is the usual symplectic inner product on R2n
j defined as in Definition 2.1. Once we have a

standard-form generating set for an additive code C over R, the entire machinery developed in this section for

constructing EAQECCs over local Frobenius rings can be extended to obtain from C an EAQECC over the

ring R. We omit the formal details of such a construction, merely noting that we now have a valid method for

constructing an EAQECC from any linear code over any finite commutative Frobenius ring.

We can in fact squeeze out a bit more from the decomposition of R into local rings. If the characteristics of

the local rings Ri above are pairwise coprime, then any additive (not necessarily linear) code of length 2n over

R is of the form C1 ×C2 × · · · ×Ct, where each Ci is an additive code of length 2n over Ri. Thus, the argument

given above will again work to give us a construction of EAQECCs over R from additive codes in R2n. However,

one point that we need to note here is that we do not, in general, have a notion of rank for an additive code C

over a finite commutative Frobenius ring R. As a stand-in for rank, we use the minimum number of generators of

C as an additive subgroup of R2n. Then, the number of pairs of maximally entangled qudits needed to construct

an EAQECC from an additive code C over R can be described in terms of the minimum number of generators of

C/(C ∩ C⊥χ) as an additive code.

Our aim next is to determine the minimum number, cmin, of pairs of maximally entangled qudits needed

to construct an EAQECC from an additive code C over the Galois ring, GR(pb,m), of characteristic pb and

cardinality pmb. To bound cmin from below, we argue as follows: From Theorem 3.1, C has a generating set with

c = 1
2 rank(C/(C ∩ C⊥χ)) hyperbolic pairs. If C′ is a minimal χ-self-orthogonal extension of C, with entanglement

degree cmin, then, by Proposition 3.1, there is a symplectic subset of R2cmin of cardinality 2c. Hence, 2c can be

bounded above by the size of the largest symplectic subset constructible on R2cmin , which we obtain in terms

of cmin. This yields a lower bound on cmin, as desired. A matching upper bound is obtained by constructing a

symplectic subset as stipulated in Proposition 3.1. This program is carried out for the case of integer rings Zpa

in the next section, while the treatment for general Galois rings is presented in Section 5.

4 EAQECCs from Additive Codes over the Ring Zpa

The map χ : Zpa → C∗ defined by χ(z) = ζz, with ζ = exp
(
2πi
pa

)
, is a generating character of the ring Zpa . In

particular, χ(z) = 1 iff z = 0, and χ(z) ∈ 〈ζp
t

〉 iff z ≡ 0 (mod pt). Hence, for an additive (linear) code C ⊆ Z2n
pa ,

we have C⊥χ = C⊥s and C⊥χ,t = C⊥s,t , where for t = 0, 1, . . . , b, we define

C⊥s,t = {(v′, w′) ∈ Z
2n
pa : 〈(v′, w′) | (v, w)〉s ≡ 0 (mod pa−t) for all (v, w) ∈ C}. (4.1)

Also, the definition of a symplectic subset (Definition 3.1) of Z2n
pa reduces to the following:

Definition 4.1. A subset {a11, a12, a21, a22, . . . , ae1, ae2} of Z2n
pa is said to be a symplectic subset if 〈ai1 | aj1〉s =

〈ai2 | aj2〉s = 〈ai1 | ak2〉s = 0 and 〈ai1 | ai2〉s 6= 0 for all i, j, k ∈ {1, 2, . . . , e} with i 6= k.

We will first derive an upper bound on the cardinality of a symplectic subset of Z2n
pa , and then, using this

bound, we will derive an explicit form of the minimum number of pairs of maximally entangled qudits needed

for an EAQECC constructed from an additive (linear) code over Zpa . Our upper bound is in fact proved for the

more general notion of a quasi-symplectic subset of Z2n
pa , defined next. Here, for z ∈ Zpa , we use the notation z

to denote the residue z mod p.

Definition 4.2. A subset {a11, a12, a21, a22, . . . , ae1, ae2} of Z2n
pa is said to be a quasi-symplectic subset if

(a) 〈ai1, aj1〉s = 〈ai1, ak2〉s = 0 for all i, j, k ∈ {1, 2, . . . , e} with i 6= k.
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(b) there exists a subset J of {1, 2, . . . , e} such that 〈ai1, ai2〉s 6= 0 for all i 6∈ J , and {aj1}j∈J is a linearly

independent set over Zp.

Note that a symplectic subset satisfies the definition of a quasi-symplectic subset by setting J = ∅. In the

following theorem, we provide an upper bound on the size of a quasi-symplectic subset of Z2n
pa .

Theorem 4.1. If {b11, b12, b21, b22, . . . , be1, be2} is a quasi-symplectic subset of Z2n
pa , then e ≤ n.

Proof. We will apply induction on a ≥ 1 to prove this result. For a = 1, suppose that {b11, b12, b21, b22, . . . , be1, be2}

is a quasi-symplectic subset of Z2n
p . By definition of quasi-symplectic subset, we have 〈bi1, bj1〉s = 0 and

〈bi1, bk2〉s = 0 for all i, j, k ∈ {1, 2, . . . , e} with i 6= k, and there exists a subset J of {1, 2, . . . , e} such

that 〈bt1, bt2〉s 6= 0 for all t 6∈ J and {bv1}v∈J is a linearly independent set over Zp. Here, we assert that

{b11, b21, . . . , be1} is a linearly independent set over Zp. To see this, suppose that
e∑

ℓ=1

rℓbℓ1 = 0 with rℓ ∈ Zp.

From this, using the fact that 〈bk1, bj2〉s = 0 and 〈bj1, bj2〉s 6= 0 for k ∈ {1, 2, . . . , e}, j ∈ J c with k 6= j, we get

rt〈bt1, bt2〉s = 0 for t ∈ J c. This implies that rt = 0 for each t ∈ J c. So we have
∑
ℓ∈J

rℓbℓ1 = 0. As {bℓ1}ℓ∈J is a

linearly independent set over Zp, we get rℓ = 0 for each ℓ ∈ J . This proves the assertion. Now consider a linear

code C over Zp generated by {b11, b21, . . . , be1}. Clearly, C ⊆ C⊥s . From this, using the fact that C⊥χ = C⊥s and

Lemma 2.1, we get |Zp
2n| = |C||C⊥s | ≥ |Zp|2e. This implies that e ≤ n, which completes the proof for a = 1.

Now we assume that a ≥ 2. As {b11, b12, b21, b22, . . . , be1, be2} is a quasi-symplectic subset of Z2n
pa , we have

〈bi1, bj1〉s = 0 and 〈bi1, bk2〉s = 0 for all i, j, k ∈ {1, 2, . . . , e} with i 6= k and there exists a subset J of {1, 2, . . . , e}

such that 〈bt1, bt2〉s 6= 0 for all t 6∈ J and {bv1}v∈J is a linearly independent set over Zp. Note that by adding

indices from J c to J if necessary and interchanging bj1 and bj2 if needed, we can assume that for each ℓ ∈ J c,

both bj1 and bj2 are linearly dependent on the set {bℓ1}ℓ∈J . That is, for each ℓ ∈ J c, we have

bℓ1 =
∑

j∈J

ujbj1 and bℓ2 =
∑

j∈J

vjbj1 for uj, vj ∈ Zp.

This implies that for each ℓ ∈ J c, we have

bℓ1 =
∑

j∈J

ujbj1 + pcℓ1 and bℓ2 =
∑

j∈J

vjbj1 + pcℓ2 with uj, vj ∈ Zp and cℓ1, cℓ2 ∈ Z
2n
pa−1 (4.2)

Recall that for t, u ∈ J and h, i, j, k, ℓ ∈ J c with i 6= k, we have 〈bt1, bh1〉s = 0, 〈bt1, bh2〉s = 0, 〈bh1, bu2〉s = 0,

〈bi1, bj1〉s = 0, 〈bi1, bk2〉s = 0 and 〈bℓ1, bℓ2〉s 6= 0 in Zpa .

From this and using (4.2), we observe that for t, u ∈ J and h, i, j, k, ℓ ∈ J c with i 6= k, we have

〈bt1, bh1〉s = p〈bt1, ch1〉s = 0, 〈bt1, bh2〉s = p〈bt1, ch2〉s = 0, 〈bh1, bu2〉s = p〈ch1, bu2〉s = 0,

〈bi1, bj1〉s = p2〈ci1, cj1〉s = 0, 〈bi1, bk2〉s = p2〈ci1, ck2〉s = 0 and 〈bℓ1, bℓ2〉s = p2〈cℓ1, cℓ2〉s 6= 0 in Zpa . (4.3)

For a = 2, by using (4.3), we see that J c = φ. This implies that {a11, a21, . . . , ae1} is linearly independent

over Zp. Thus a linear code C over Zp generated by {b11, b21, . . . , be1} satisfies C ⊆ C⊥s . From this and using the

fact that C⊥χ = C⊥s and by Lemma 2.1, we get |Zp
2n| = |C||C⊥s | ≥ |Zp|2e. This implies that e ≤ n. Hence the

result holds for a = 2. Now we assume that k ≥ 3 be a fix integer and result holds for integer a = k − 2. We

will prove the result for a = k. For that, by using (4.3), we get {{b̃j1, b̃j2}j∈J , {c̃ℓ1, c̃ℓ2}ℓ∈J c} is quasi symplectic

subset of Zn
pk−2 , where c̃ ≡ c(mod pk−2). So by induction, we must have e ≤ n, which implies that the result holds

for a = k. This completes the proof of the theorem.

Since a symplectic subset of Z2n
pa is also a quasi-symplectic subset, we have the following corollary.

Corollary 4.1. If {a11, a12, a21, a22, . . . , ae1, ae2} is a symplectic subset of Z2n
pa , then e ≤ n.
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From this, we obtain an explicit formula for the minimum entanglement degree of any χ-self-orthogonal

extension of a submodule C ⊆ Z2n
pa .

Theorem 4.2. Any minimal χ-self-orthogonal extension of a submodule C ⊆ Z2n
pa has entanglement degree equal

to 1
2 rank(C/(C ∩ C⊥s)).

Proof. Let cmin be the entanglement degree of a minimal χ-self-orthogonal extension, C′, of C. By Theorem 3.2,

we have cmin ≤ 1
2 rank(C/(C ∩ C⊥s)). On the other hand, from Theorem 3.1, C has a generating set with

c = 1
2 rank(C/(C ∩ C⊥s)) hyperbolic pairs. Then, by Proposition 3.1, there is a symplectic subset of Z2cmin

pa of

cardinality 2c. Hence, by Corollary 4.1, we have c ≤ cmin, as desired.

Observe that Theorem 2.3, which we restate below with the numbers ρt exactly specified, follows by combining

the results of Theorems 3.2, 3.3 and 4.2, using the fact that C⊥χ = C⊥s and C⊥χ,t = C⊥s,t , as defined in (4.1).

Theorem 4.3 (Restatement of Theorem 2.3). Let C ⊆ Z2n
pa be a submodule. From C, we can construct an

((n,K,D; c)) EAQECC over Zpa , where the minimum number, c, of pairs of maximally entangled qudits needed

for the construction is equal to 1
2 rank(C/(C ∩ C⊥s)), the minimum distance is

D =

{
ds(C⊥s) if C⊥s ⊆ C

ds(C⊥s \ C) otherwise ,

and the dimension K is bounded as pa(n+c)/(|C| p
∑a−1

t=1 (a−t)ρt) ≤ K ≤ pa(n+c)/|C|, with ρt := rank(C/(C ∩

C⊥s,t−1)) − rank(C/(C ∩ C⊥s,t)). If either (a) C is free or (b) C/(C ∩ C⊥s) is a free module over Zpb , then

K = pa(n+c)/|C|. In the case of (b), we additionally have c = 1
2

[
rank(C)− rank(C ∩ C⊥s)

]
.

5 EAQECCs from Codes over Galois Rings

In this section, we will first derive an upper bound on the cardinality of a symplectic subset of GR(pb,m)2n

and then using this bound, we will derive an explicit formula for the minimum number of pairs of maximally

entangled qudits needed for an EAQECC constructed from an additive code over GR(pb,m). To do this, we start

by reviewing some basic properties of Galois rings.

A finite commutative ring with unity is called a Galois ring if all its non-units (or equivalently, all its zero

divisors including 0) form an ideal generated by some prime number. Any finite field of characteristic p is a Galois

ring as all the non-units form a zero ideal which generated by p. Another example of a Galois ring is the ring Zpa

of integers modulo a prime power pa, in which all the non-units form an ideal generated by p.

Let R be a Galois ring, in which the set of all zero-divisors of including 0 form an ideal generated by a prime

number p. Then the ideal generated by p is the only maximal ideal of R and the characteristic of R is pb for some

positive integer b. The residue field of R is given by R/〈p〉 ≃ Fpm for some positive integer m and |R| = pmb.

Moreover, the ring R is isomorphic to the quotient ring Zpb [x]/〈h(x)〉, where h(x) ∈ Zpb [x] is a monic polynomial

of degree m such that its reduction (h(x) mod p) ∈ Fp[x] is irreducible and primitive over Fp. Thus any two

Galois rings of the same characteristic and the same cardinality are isomorphic (see [26, Chp. 14]).

Through out this section, let GR(pb,m) denote the Galois ring of characteristic pb and cardinality pmb. Further,

let h(x) ∈ Zpb [x] be a monic polynomial of degreem such that its reduction (h(x) mod p) ∈ Fp[x] is irreducible and

primitive over Fp and h(x) divides x
pm−1−1 in Zpb [x]. Then we have GR(pb,m) ∼= Zpb [x]/〈h(x)〉. If θ = x+〈h(x)〉,

then clearly h(θ) = 0 and every element of GR(pb,m) ∼= Zpb [x]/〈h(x)〉 has a unique representation as

r = r0 + r1θ + · · ·+ rm−1θ
m−1 with r0, r1, . . . , rm−1 ∈ Zpb .

20



This implies that GR(pb,m) is a free module of rank m over Zpb with {1, θ, θ2, . . . , θm−1} as a basis. Moreover,

there exists an element β in GR(pb,m) having the multiplicative order as pm − 1, which is a root of h(x). The

set T = {0, 1, β, . . . , βpm−2} is called the Teichmüller set of GR(pb,m) and each element z ∈ GR(pb,m) can be

uniquely expressed as z = z0 + z1p+ z2p
2 + · · ·+ zb−1p

b−1, where z0, z1, . . . , zb−1 ∈ T (see [26, Chp. 14]).

The generalized Frobenius map f on the Galois ring GR(pb,m) is defined by

f(z) = zp0 + zp1p+ zp2p
2 + · · ·+ zpb−1p

b−1

for each z = z0 + z1p+ z2p
2 + · · ·+ zb−1p

b−1 ∈ GR(pb,m), where z0, z1, . . . , zb−1 ∈ T .

For b = 1, the map f reduces to the usual Frobenius automorphism on Fpm defined by f(z) = zp for all

z ∈ Fpm . The generalized trace map Tr from GR(pb,m) to Zpb is defined by

Tr(z) = z + f(z) + f2(z) + · · ·+ fm−1(z) for each z ∈ GR(pb,m).

For b = 1, we have GR(p,m) ≃ Fpm ; thus the generalized trace map Tr reduces to the usual trace map tr : Fpm →

Fp defined by tr(z) = z + zp + zp
2

+ · · ·+ zp
m−1

for all z ∈ Fpm .

Proposition 5.1. [23] The generalized trace map Tr : GR(pb,m) → Zpb has the following properties.

• Tr(u+ v) = Tr(u) + Tr(v) for each u, v ∈ GR(pb,m).

• Tr(eu) = eTr(u) for each u ∈ GR(pb,m) and e ∈ Zpb .

• Tr is surjective and GR(pb,m)/ ker(Tr) = Zpb .

Proposition 5.2. [22] The map χ : GR(pb,m) → C
∗ defined by χ(r) = ζTr(r), with ζ = exp

(
2πi
pb

)
, is a generating

character of GR(pb,m).

Definition 5.1. For an additive code C of GR(pb,m)2n, we define

• the trace-symplectic dual of C as

C⊥Tr = {v ∈ GR(pb,m)2n : Tr(〈v|c〉s) = 0 for all c ∈ C},

• and for t = 0, 1, . . . , b, the trace-symplectic t-dual of C as

C⊥Tr,t = {v ∈ GR(pb,m)2n : Tr(〈v|c〉s) ≡ 0 (mod pb−t) for all c ∈ C}.

For b = 1, we have GR(p,m) ≃ Fpm , thus C⊥Tr is equal to C⊥tr = {v ∈ F2n
pm : tr(〈v|c〉s) = 0 for all c ∈ C}.

Proposition 5.3. For an additive code C of GR(pb,m)2n, we have C⊥χ = C⊥Tr, and C⊥χ,t = C⊥Tr,t for t =

0, 1, . . . , b.

Proof. Using Proposition 5.2, we observe that χ(r) = 1 if and only if Tr(r) = 0, and χ(r) ∈ 〈ζp
b−t

〉 if and only if

Tr(r) ≡ 0 (mod pb−t). This implies that C⊥χ = C⊥Tr , and C⊥χ,t = C⊥Tr,t .

The definition of a symplectic subset (Definition 3.1) of GR(pb,m)2n reduces to the following:

Definition 5.2. A subset {a11, a12, a21, a22, . . . , ae1, ae2} of GR(pb,m)2n, is said to be a symplectic subset if

Tr(〈ai1 | aj1〉s) = Tr(〈ai2 | aj2〉s) = Tr(〈ai1 | ak2〉s) = 0 and Tr(〈ai1 | ai2〉s) 6= 0 for all i, j, k ∈ {1, 2, . . . , e} with

i 6= k.

Definition 5.3. [23] Two bases {β1, β2, . . . , βm} and {γ1, γ2, . . . , γm} of GR(pb,m) as a free module over Zpb are

said to be dual if Tr(βiγj) = δij , where δij denotes the Kronecker delta.
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Theorem 5.1. [23] Every basis {β1, β2, . . . , βm} of GR(pb,m) as a free module over Zpb has a unique dual basis.

Next we provide an upper bound on the size of a symplectic subset of GR(pb,m)2n.

Proposition 5.4. If {a11, a12, a21, a22, . . . , ae1, ae2} ⊆ GR(pb,m)2n is a symplectic subset of GR(pb,m)2n, then

e ≤ nm. Moreover, for any given z1, z2, . . . , ze ∈ Zpb with 1 ≤ e ≤ nm, there exists a symplectic subset

{a11, a12, a21, a22, . . . , ae1, ae2} ⊆ GR(pb,m)2n such that χ(〈aj1|aj2〉s) = e
i 2π
pb

zj for 1 ≤ j ≤ e.

Proof. To prove this result, we first note that χ(r) = e
i 2π

pb
Tr(r)

for each r ∈ GR(pb,m), which implies that χ(r) = 1

if and only if Tr(r) = 0. Let γ1, γ2, . . . , γm be a basis of GR(pb,m) as a free module over Zpb and β1, β2, . . . , βm

be the dual basis of γ1, γ2, . . . , γm. Any element r ∈ GR(pb,m) can be uniquely written as

r = x1γ1 + x2γ2 + · · ·+ xmγm = y1β1 + y2β2 + · · ·+ ymβm with xi, yj ∈ Zpb .

Now define two maps φγ : GR(pb,m) → Zm
pb and φβ : GR(pb,m) → Zm

pb as follows:

r = x1γ1 + x2γ2 + · · ·+ xmγm
φγ

7−→ (x1, x2, . . . , xm)

and

r = y1β1 + y2β2 + · · ·+ ymβm
φβ

7−→ (y1, y2, . . . , ym).

Define a map φ : GR(pb,m)2n → Z2nm
pb as follows:

(d1, d2, . . . , dn, e1, e2, . . . , en)
φ

7−→ (φγ(d1), φγ(d2), . . . , φγ(dn), φβ(e1), φβ(e2), . . . , φβ(en)).

It can be checked that

Tr
(
〈(d1, d2, . . . , dn, e1, e2, . . . , en) | (d

′
1, d

′
2, . . . , d

′
n, e

′
1, e

′
2, . . . , e

′
n)〉s

)

= 〈φ((d1, d2, . . . , dn, e1, e2, . . . , en)) | φ((d
′
1, d

′
2, . . . , d

′
n, e

′
1, e

′
2, . . . , e

′
n))〉s

= 〈(φγ(d1), . . . , φγ(dn), φβ(e1), . . . , φβ(en)) | (φγ(d
′
1), . . . , φγ(d

′
n), φβ(e

′
1), . . . , φβ(e

′
n))〉s .

From this, we see that if {a11, a12, a21, a22, . . . , ae1, ae2} ⊆ GR(pb,m)2n is a symplectic subset of GR(pb,m)2n,

then {φ(a11), φ(a12), φ(a21), φ(a22), . . . , φ(ae1), φ(ae2)} ⊆ Z2mn
pb is a symplectic subset of Z2mn

pb . Hence, by Corol-

lary 4.1, we have e ≤ nm.

To prove the next part, let t be a non-negative integer such that tm < e ≤ (t + 1)m. Then, for j = km+ ℓ,

with 0 ≤ k ≤ t− 1 and 1 ≤ ℓ ≤ m, set

aj1 = (0, 0, . . . , 0︸ ︷︷ ︸
n+k

, βℓ, 0, 0, . . . , 0︸ ︷︷ ︸
n−k−1

) and aj2 = (0, 0, . . . , 0︸ ︷︷ ︸
k

, zkm+ℓγℓ, 0, 0, . . . , 0︸ ︷︷ ︸
2n−k−1

),

and for j = tm+ ℓ, with 1 ≤ ℓ ≤ e − tm, set

aj1 = (0, 0, . . . , 0︸ ︷︷ ︸
n+t

, βℓ, 0, 0, . . . , 0︸ ︷︷ ︸
n−t−1

) and aj2 = (0, 0, . . . , 0︸ ︷︷ ︸
t

, ztm+ℓγℓ, 0, 0, . . . , 0︸ ︷︷ ︸
2n−t−1

).

Then, {a11, a12, a21, a22, . . . , ae1, ae2} is a symplectic subset of GR(pb,m)2n with the required property.

We can now obtain an explicit formula for the minimum entanglement degree of any χ-self-orthogonal extension

of an additive code C ⊆ GR(pb,m)2n.

Theorem 5.2. Any minimal χ-self-orthogonal extension of an additive code C ⊆ GR(pb,m)2n has entanglement

degree equal to
⌈

1
2m rank(C/(C ∩ C⊥Tr))

⌉
.
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Proof. Let c := 1
2 rank(C/(C ∩ C⊥χ)), which, by Proposition 5.3, equals 1

2 rank(C/(C ∩ C⊥Tr)). Let cmin be the

entanglement degree of a minimal χ-self-orthogonal extension, C′, of C. We want to show that cmin = ⌈ 1
m
c⌉.

From Theorem 3.1, C has a generating set with c hyperbolic pairs. Then, by Proposition 3.1, there is a

symplectic subset of Z2cmin
pa of cardinality 2c, so that by Proposition 5.4, we have c ≤ mcmin. Thus, cmin ≥ ⌈ 1

m
c⌉.

For the inequality in the opposite direction, set ν := ⌈ 1
m
c⌉, so that c ≤ mν. Let (vj , wj) and (xj , yj),

j = 1, 2, . . . , c, be the hyperbolic pairs in the generating set of C, and let zj = Tr(〈(vj , wj) | (xj , yj)〉s), j =

1, 2, . . . , c. By Proposition 5.4, there exists a symplectic subset {a11, a12, a21, a22, . . . , ac1, ac2} ⊆ GR(pb,m)2ν

such that χ(〈aj1|aj2〉s) = e
i 2π
pb

zj for 1 ≤ j ≤ c. Since e
i 2π
pb

zj = χ(〈(vj , wj) | (xj , yj)〉s), we have a symplectic subset

satisfying the condition of Proposition 3.1. Hence, there exists a χ-self-orthogonal extension C′ with entanglement

degree ν. Therefore, cmin ≤ ν = ⌈ 1
m
c⌉, completing the proof of the theorem.

Theorem 2.4 is an immediate consequence of Theorems 3.2, 3.3, and 5.2, again using the fact (Proposition

5.3) that C⊥χ = C⊥Tr and C⊥χ,t = C⊥Tr,t . The theorem is restated below with the numbers ρt made explicit.

Theorem 5.3 (Restatement of Theorem 2.4). Let C ⊆ GR(pb,m)2n be an additive code over the Galois ring

GR(pb,m). From C, we can construct an ((n,K,D; c)) EAQECC over GR(pb,m), where the minimum number,

c, of pairs of maximally entangled qudits needed for the construction is equal to
⌈

1
2m rank(C/(C ∩ C⊥Tr))

⌉
, the

minimum distance is

D =

{
ds(C⊥Tr) if C⊥Tr ⊆ C

ds(C⊥Tr \ C) otherwise ,

and the dimension K is bounded as pbm(n+c)/(|C| p
∑b−1

t=1 (b−t)ρt) ≤ K ≤ pbm(n+c)/|C|, with ρt := rank(C/(C ∩

C⊥Tr,t−1)) − rank(C/(C ∩ C⊥Tr,t)). If either (a) C is free or (b) C/(C ∩ C⊥Tr) is a free module over Zpb , then

K = pbm(n+c)/|C|. In the case of (b), we additionally have c =
⌈

1
2m [rank(C)− rank(C ∩ C⊥Tr)]

⌉
.

Corollary 2.1 follows from the observations that, for finite fields Fpm , the generalized trace map Tr reduces to

the usual trace map tr : Fpm → Fp, and C, C ∩C⊥tr and C/(C ∩C⊥tr) are vector spaces over Fp, so that, being free

modules, their rank equals their dimension over Fp.

As an application of Theorem 5.3, we can have a CSS-like construction of EAQECCs starting from two additive

codes C1 and C2 of length n over GR(pb,m). This is done by applying Theorem 5.3 to the code C = C1 ⊕ C2. We

provide the details of this construction in Appendix A.

Finally, instead of starting from an additive code of length 2n over GR(pb,m), the construction in Theorem 5.3

can be equivalently, and somewhat more conveniently, described as starting from an additive code of length n

over GR(pb, 2m). This requires the extension to Galois rings of the machinery of the trace-alternating form that

exists over finite fields [5], [14, Section IV-B]. We describe this extension in Appendix C.

6 EAQECCs from Lengthened Codes

The theory developed in the preceding sections shows that an EAQECC can be constructed from an additive

code C over the Galois ring GR(pb,m), starting from a standard-form generating set G for C. Any such generating

set contains e = 1
2 rank

(
C/(C∩C⊥Tr)

)
hyperbolic pairs, and the (minimum) number of maximally entangled qudit

pairs needed for the EAQECC construction is c = ⌈ e
m
⌉. In this section, we will show that if we are allowed

to lengthen the code C by inserting additional coordinates, then by carefully selecting what goes into the extra

coordinates, we can obtain standard-form generating sets for the longer codes that differ from G in the number

of isotropic generators and hyperbolic pairs. The EAQECCs obtained from the longer codes will then have

parameters that are different from those of the EAQECC obtained from C. Thus, the mechanism of lengthening

23



an additive code gives us a means of influencing the parameters and error-handling capabilities of the resulting

EAQECCs.

We illustrate this principle by describing two methods for lengthening an additive code. In one method,

we show that by inserting extra coordinates, we can reduce the number of hyperbolic pairs in a standard-form

generating set by converting some of the hyperbolic pairs into isotropic generators. This brings about a reduction

in the number of pairs of maximally entangled qudits needed in the entanglement-assisted quantum code, but

this is usually at the expense of a loss in minimum distance; the dimension of the EAQECC remains unaffected.

In the other method of lengthening, we again apply the idea of using the extra coordinates to convert hyperbolic

pairs into isotropic generators. But this idea is applied not to a standard-form generating set of the code C, but

instead to a standard-form generating set of the code C⊥Tr . From the perspective of the code C and its generating

set G (in standard form), this results in a standard-form generating set of the lengthened code with a larger

number of isotropic generators than in G, while keeping the number of hyperbolic pairs the same. The EAQECC

obtained from the lengthened code then requires the same number of maximally entangled qudit pairs as that

obtained from C, but the minimum distance may now increase. Any increase in minimum distance, however, is

accompanied by a reduction in dimension.

The techniques for lengthening an additive code described in this section are inspired by the propagation rules

for EAQECCs derived from linear codes over finite fields, proposed by Luo et al. [17, Theorems 16 and 18]. As

acknowledged by Luo et al., the idea behind these techniques, which we have expressed in terms of converting

hyperbolic pairs into isotropic generators, can be traced back to the work of Lisoněk and Singh [16].

We introduce a definition that will be useful for our purposes. A code C′ ⊆ GR(pb,m)2(n+1) is defined to be

a 1-step extension of a code C ⊆ GR(pb,m)2n if C can be obtained by puncturing C′ at the coordinates at n+ 1

and 2(n+ 1).

6.1 Reducing the Number of Maximally Entangled Qudit Pairs

In this section, we describe how additional coordinates can be used to reduce the number of hyperbolic pairs

by converting some of them to isotropic generators. The following proposition gives a method of going from an

additive code C to a χ-self-orthogonal extension of it via a sequence of 1-step extensions, with the number of

hyperbolic pairs being reduced at each step.

Proposition 6.1. Let C ⊆ GR(pb,m)2n be an additive code with a minimal generating set in standard form, in

which there are exactly e hyperbolic pairs and d isotropic generators. Set c := ⌈ e
m
⌉. Then, there exists a sequence

of additive codes C(ℓ) ⊆ GR(pb,m)2(n+ℓ), ℓ = 0, 1, . . . , c, such that C(0) = C, and for ℓ = 0, 1, . . . , c− 1,

(i) C(ℓ) has a minimal generating set in standard form with exactly e−ℓm hyperbolic pairs and d+2ℓm isotropic

generators;

(ii) C(ℓ+1) is a 1-step extension of C(ℓ), with ds
(
C(ℓ+1)⊥Tr

\ C(ℓ+1)
)
≤ ds

(
C(ℓ)⊥Tr

\ C(ℓ)
)
;

(iii) C(c) is a minimal χ-self-orthogonal extension, obtainable via the Two-Step Construction, of C(ℓ).

Proof. Let

G = {(v1, w1), (v2, w2), . . . , (ve+d, we+d), (x1, y1), (x2, y2), . . . , (xe, ye)}

be a minimal generating set of C as a Zpb -module such that, for i = 1, 2 . . . , e, the generators (vi, wi) and (xi, yi)

form hyperbolic pairs, and the generators (vi, wi), i = e+1, . . . , e+d, are isotropic. For 1 ≤ i ≤ e, χ(wi·xi−vi·yi) is

a pb-th root of unity and (vi, wi) and (xi, yi) form hyperbolic pairs, so let χ(wi ·xi−vi ·yi) = ζzi , where ζ = exp(2πi
pb )

and 0 < zi < pb. Let γ1, γ2, . . . , γm be a basis of GR(pb,m) as a free module over Zpb , and let β1, β2, . . . , βm be

the dual basis of γ1, γ2, . . . , γm.
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Set C(0) = C. In the following, we use the notation 0µ, for a non-negative integer µ, to denote a

string of µ 0s. For ℓ = 1, 2, . . . , c − 1, let C(ℓ) ⊆ GR(pb,m)2(n+ℓ) be the additive code generated by

G(ℓ) = {h
(ℓ)
11 , h

(ℓ)
12 , . . . , h

(ℓ)
e1 , h

(ℓ)
e2 , g

(ℓ)
1 , . . . , g

(ℓ)
d }, where

h
(ℓ)
i1 = (vi, 0

ℓ, wi, 0
k,−βj , 0

ℓ−1−k) and h
(ℓ)
i2 = (xi, 0

k, ziγj , 0
ℓ−1−k, yi, 0

ℓ) (6.1)

for i = km+ j with 0 ≤ k ≤ ℓ−1 and 1 ≤ j ≤ m; h
(ℓ)
i1 = (vi, 0

ℓ, wi, 0
ℓ) and h

(ℓ)
i2 = (xi, 0

ℓ, yi, 0
ℓ) for ℓm+1 ≤ i ≤ e;

and g
(ℓ)
j = (ve+j , 0

ℓ, we+j , 0
ℓ) for 1 ≤ j ≤ d. Note that the generators in G(ℓ) are obtained from the generators in

G by adding extra coordinates. Therefore, the fact that G is a minimal generating set of C implies that G(ℓ) is a

minimal generating set of C(ℓ). It is straightforward to verify that the generators h
(ℓ)
i1 and h

(ℓ)
i2 , i = ℓm+ 1, . . . , e,

form hyperbolic pairs, and that the generators h
(ℓ)
i1 and h

(ℓ)
i2 , i = 1, . . . , ℓm, and g

(ℓ)
j , j = 1, . . . , d, are isotropic.

This verifies item (i) in the statement of the proposition. Note that, for i = 1, . . . , ℓm, the isotropic generators

h
(ℓ)
i1 and h

(ℓ)
i2 are obtained from the hyperbolic pairs (vi, wi) and (xi, yi) in G.

The last code, C(c), in the sequence is taken to be the additive code of length 2(n + c) generated by G(c) =

{h
(c)
11 , h

(c)
12 , . . . , h

(c)
e1 , h

(c)
e2 , g

(c)
1 , . . . , g

(c)
d }, where

h
(c)
i1 = (vi, 0

c, wi, 0
k,−βj, 0

c−1−k) and h
(c)
i2 = (xi, 0

k, ziγj , 0
c−1−k, yi, 0

c)

for i = km+ j with 0 ≤ k ≤ c− 2 and 1 ≤ j ≤ m;

h
(c)
i1 = (vi, 0

c, wi, 0
c−1,−βj) and h

(c)
i2 = (xi, 0

c−1, ziγj , yi, 0
c)

for i = (c− 1)m+ j with 1 ≤ j ≤ e− (c− 1)m; and g
(c)
j = (ve+j , 0

c, we+j , 0
c) for 1 ≤ j ≤ d. It is an easy exercise

to verify that the generators in G(c) are all isotropic; hence, C(c) is χ-self-orthogonal.

For ℓ = 0, 1, . . . , c−1, C(ℓ+1) is a 1-step extension of C(ℓ): a simple means of verifying this is to check that each

generator h
(ℓ)
i1 (resp. h

(ℓ)
i2 ) is obtained by puncturing the generator h

(ℓ+1)
i1 (resp. h

(ℓ+1)
i2 ) at the coordinates ℓ+1 and

2(ℓ+1); an analogous statement clearly holds for the generators g
(ℓ)
j as well. To verify that ds

(
C(ℓ+1)⊥Tr

\C(ℓ+1)
)
≤

ds
(
C(ℓ)⊥Tr

\ C(ℓ)
)
, it suffices to observe that {(r, 0, s, 0) : (r, s) ∈ C(ℓ)⊥Tr

\ C(ℓ)} ⊆ C(ℓ+1)⊥Tr
\ C(ℓ+1). Thus, item

(ii) in the statement of the proposition holds.

Finally, to verify item (iii), it is clear that C(c) ⊆ R2(n+c) is a χ-self-orthogonal extension of C(ℓ) ⊆

GR(pb,m)2n+ℓ, obtainable via the Two-Step Construction. The entanglement degree of C(c) over C(ℓ) is c− ℓ. To

show the minimality of the extension, we appeal to Theorem 5.2 and Proposition 3.2(a), which give us that the min-

imum entanglement degree of any χ-self-orthogonal extension of C(ℓ) is equal to
⌈

1
2m rank(C(ℓ)/(C(ℓ) ∩ C(ℓ)⊥Tr

))
⌉
=

⌈
e−ℓm
m

⌉
= c− ℓ.

From the sequence of additive codes in Proposition 6.1, we obtain a sequence of EAQECCs that progressively

trade off maximally entangled qudit pairs pre-shared between the transmitter and receiver, for qudits held solely

by the transmitter. As the next theorem shows, these EAQECCs all have the same dimension, but potentially

lose in minimum distance as the number of pre-shared qudits is reduced.

Theorem 6.1. Let C ⊆ GR(pb,m)2n be an additive code such that rank(C ∩ C⊥Tr) < min{rank(C), rank(C⊥Tr)}.

Set c :=
⌈

1
2m rank(C/(C ∩ C⊥Tr))

⌉
. Let C(ℓ), ℓ = 0, 1, . . . , c, be a sequence of additive codes constructed as in

Proposition 6.1. Set D(ℓ) := ds
(
C(ℓ)⊥Tr

\ C(ℓ)
)
and K := pbm(n+c)/|C(c)|. Then, for ℓ = 0, 1, . . . , c, there exists an

((n+ ℓ,K,D(ℓ); c− ℓ)) EAQECC over GR(pb,m). Moreover, D(0) ≥ D(1) ≥ · · · ≥ D(c).

Proof. By Theorem 3.1(b), there is a minimal generating set, G, of C in standard form. By Proposition 3.2(a)

and Proposition 5.3, the number, e, of hyperbolic pairs in G is 1
2 rank(C/(C ∩ C⊥Tr)). As rank(C ∩ C⊥Tr) <

rank(C), we have C 6⊆ C⊥Tr , so that e > 0, and hence, c = ⌈ e
m
⌉ ≥ 1. There exists a sequence of additive
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codes C(ℓ) ⊆ GR(pb,m)2(n+ℓ), ℓ = 0, 1, . . . , c, with the properties listed in the statement of Proposition 6.1.

For each ℓ ∈ 0, 1, . . . , c, we apply Theorem 3.3 to C(ℓ) and its χ-self-orthogonal extension C(c) to obtain an

((n+ ℓ, pmb(n+c)/|C(c)|, D̃(ℓ); c− ℓ)) EAQECC, with

D̃(ℓ) =

{
ds
(
C(ℓ)⊥Tr

)
if C(ℓ)⊥Tr

⊆ C(ℓ)

ds
(
C(ℓ)⊥Tr

\ C(ℓ)
)

otherwise.

It only remains to show that D̃(ℓ) = D(ℓ) := ds
(
C(ℓ)⊥Tr

\ C(ℓ)
)
, or equivalently, that C(ℓ)⊥Tr

6⊆ C(ℓ), for

ℓ = 0, 1, . . . , c. By assumption, rank(C ∩ C⊥Tr) < rank(C⊥Tr), so we have C⊥Tr 6⊆ C. Since C(0) = C, we have

C(0)⊥Tr
6⊆ C(0), and hence, D(0) = ds

(
C(0)⊥Tr

\ C(0)
)
< ∞. Then, from property (ii) in Proposition 6.1, it follows

that for ℓ = 0, 1, . . . , c − 1, we have ds
(
C(ℓ)⊥Tr

\ C(ℓ)
)
< ∞. Thus, recalling that, by definition, ds(A) = ∞ for

A = ∅, we have C(ℓ)⊥Tr
6⊆ C(ℓ) for ℓ = 0, 1, . . . , c.

Finally, the chain of inequalities D(0) ≥ D(1) ≥ · · · ≥ D(c) follows again from property (ii) in Proposition 6.1.

The following example illustrates the construction of the EAQECCs guaranteed by Theorem 6.1. In particular,

it shows that it is possible for the inequality D(ℓ) ≥ D(ℓ+1) to hold with equality, indicating that it is sometimes

possible to reduce the number of maximally entangled qudit pairs without incurring a penalty in terms of minimum

distance.

Example 6.1. Let C be the additive code of length 8 over Z4 (= GR(22, 1)) with a minimal generating set

{(v1, w1), (v2, w2), (v3, w3), (x1, y1), (x2, y2)}, where (v1, w1) = (0, 0, 0, 0, 0, 0, 2, 0), (x1, y1) = (0, 0, 1, 0, 0, 0, 0, 0),

(v2, w2) = (0, 0, 0, 0, 1, 1, 0, 0), (x2, y2) = (1, 1, 0, 0, 0, 0, 0, 0) and (v3, w3) = (0, 0, 0, 1, 0, 0, 0, 0). It is easy to check

that for i = 1, 2, the generators (vi, wi) and (xi, yi) form hyperbolic pairs, and the generator (v3, w3) is isotropic.

Moreover, it can be verified that {(1, 3, 0, 0, 0, 0, 0, 0), (0, 0, 2, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 3, 0, 0)}

is a minimal generating set of C⊥s .

Applying the construction in Proposition 6.1 gives us additive codes C(1) and C(2)

over Z4 generated by {(v1, 0, w1,−1), (v2, 0, w2, 0), (v3, 0, w3, 0), (x1, 2, y1, 0), (x2, 0, y2, 0)} and

{(v1, 0, 0, w1,−1, 0), (v2, 0, 0, w2, 0,−1), (v3, 0, 0, w3, 0, 0), (x1, 2, 0, y1, 0, 0), (x2, 0, 2, y2, 0, 0)}, respectively. The

code C(2) ⊆ Z
2(4+2)
4 is a minimal χ-self-orthogonal extension, obtainable via the Two-Step Construction, of C and

C(1). We have verified (using the Magma algebra system [2]) that |C(2)| = 45, ds(C⊥s \C) = 2, ds(C(1)⊥s
\C(1)) = 2,

and ds(C
(2)⊥s

\ C(2)) = 1. Thus, by Theorem 3.3, there exist a ((4, 4, 2; 2)) EAQECC and a ((5, 4, 2; 1)) EAQECC

over Z4. The code C(2) itself yields a ((6, 4, 1)) quantum stabilizer code over Z4. Note that the EAQECCs

constructed from C and C(1) have the same minimum distance (D(0) = D(1) = 2), while the quantum stabilizer

code constructed from C(2) has a strictly smaller minimum distance.

The next example brings out a different aspect of the effect that this lengthening method can have on the

error-handling capability of the resulting EAQECCs. It considers a situation when we start with an additive

code C over Z4 with a minimal generating set G in standard form that contains (at least) two hyperbolic pairs.

A 1-step extension of C can be obtained, as in Proposition 6.1, by converting one of the hyperbolic pairs into

isotropic generators. The example shows that the choice of the hyperbolic pair of generators to be made isotropic

can make a significant difference.

Example 6.2. Let C be the additive code over Z4 of length 10 with a minimal generating set {(v1, w1), (v2, w2),

(v3, w3), (v4, w4), (x1, y1), (x2, y2)}, where (v1, w1) = (1, 1, 0, 0, 0, 1, 0, 0, 1, 0), (x1, y1) = (1, 0, 0, 1, 0, 0, 1, 0, 1, 0),

(v2, w2) = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0), (x2, y2) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1), (v3, w3) = (1, 1, 1, 3, 0, 0, 0, 0, 0, 0), and

(v4, w4) = (0, 0, 0, 0, 0, 3, 1, 1, 1, 0). The generators (vi, wi) and (xi, yi) form hyperbolic pairs for i = 1, 2, and
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the generators (v3, w3) and (v4, w4) are isotropic. It can be verified that {(v3, w3), (v4, w4), (e1, f1), (e2, f2)}

with (e1, f1) = (3, 0, 3, 0, 0, 0, 3, 1, 0, 0) and (e2, f2) = (0, 3, 1, 0, 0, 3, 1, 0, 0, 0), is a minimal generating set of C⊥s .

Moreover, using the Magma algebra system [2], we get that ds(C⊥s) = ds(C⊥s \ C) = 3.

Following the construction of Proposition 6.1, we can obtain two 1-step extensions of C, which we will denote

by C(1) and C̃(1). The first of these is obtained by converting the hyperbolic pair (v1, w1) and (x1, y1) into isotropic

generators as prescribed in (6.1). Thus, C(1) has the generating set

{(v1, 0, w1,−1), (v2, 0, w2, 0), (v3, 0, w3, 0), (v4, 0, w4, 0), (x1,−1, y1, 0), (x2, 0, y2, 0)}.

The code C̃(1), on the other hand, is obtained by converting the hyperbolic pair (v2, w2) and (x2, y2) into isotropic

generators; thus, it has the generating set

{(v1, 0, w1, 0), (v2, 0, w2, 3), (v3, 0, w3, 0), (v4, 0, w4, 0), (x1, 0, y1, 0), (x2, 1, y2, 0)}.

The codes C, C(1) and C, C̃(1) have common minimal χ-self-orthogonal extensions C(2), C̃(2) ⊆ Z
2(5+2)
4 generated

by

{(v1, 0, 0, w1,−1, 0), (v2, 0, 0, w2, 0, 3), (v3, 0, 0, w3, 0, 0), (v4, 0, 0, w4, 0, 0), (x1,−1, 0, y1, 0, 0), (x2, 0, 1, y2, 0, 0)}

and

{(v1, 0, 0, w1, 0,−1), (v2, 0, 0, w2, 3, 0), (v3, 0, 0, w3, 0, 0), (v4, 0, 0, w4, 0, 0), (x1, 0,−1, y1, 0, 0), (x2, 1, 0, y2, 0, 0)},

respectively.

By Theorem 3.3, the codes C, C(1) and C̃(1) give rise to EAQECCs Q, Q(1) and Q̃(1), respectively, over Z4.

The parameters of these EAQECCs can be computed with the aid of Magma [2] as ((5, 4, 3; 2)), ((6, 4, 3; 1)) and

((6, 4, 3; 1)), respectively. While Q(1) and Q̃(1) have the same parameters, they differ significantly in how they

handle errors. Note that both these EAQECCs have minimum distance 3, so they can correct all weight-1 errors

in P7(Z4) of the form X(a, 0)Z(b, 0), with a, b ∈ Z6
4.

We claim that Q(1) is non-degenerate in the following sense: for any two weight-1 errors E1 = X(a1, 0)Z(b1, 0)

and E2 = X(a2, 0)Z(b2, 0), with a1, b1, a2, b2 ∈ Z6
4, we have that E1|u〉 and E2|v〉 are linearly independent for any

|u〉, |v〉 ∈ Q(1). To see this, we first note that by Lemma 2.2, E†
1E2 = ωℓX(−a1 + a2, 0)Z(−b1 + b2, 0) for some

ℓ, so that the weight of E†
1E2 is at most 2. This implies that ws((−a1 + a2, 0,−b1 + b2, 0)) ≤ 2. However, using

the Magma algebra system [2], we get that ds(C(1)⊥s
) = 3, which implies that (−a1 + a2, 0,−b1 + b2, 0) 6∈ C(1)⊥s

.

Thus, E†
1E2 does not belong to the centralizer of the stabilizer of Q(1) in P7(Z4). Hence, following the proof

of Theorem 3.3, we have 〈u|E†
1E2|v〉 = 0 for any |u〉, |v〉 ∈ Q. This implies that E1|u〉 and E2|v〉 are linearly

independent for any |u〉, |v〉 ∈ Q(1), thus proving the claim. We remark here that a similar argument also shows

that the EAQECC Q is also non-degenerate in an analogous sense.

On the other hand, Q̃(1) is degenerate, as we now show. Following the proof of Theorem 3.3, we observe that

for some ℓ ∈ Z, ωℓX(v2, 0, 0)Z(w2, 3, 0) (= ωℓX(0, 0, 0, 0, 1, 0, 0)Z(0, 0, 0, 0, 0, 3, 0) is an element of the stabilizer of

Q̃(1). This implies that the weight-1 errors ωℓZ(0, 0, 0, 0, 0, 3, 0) and X(0, 0, 0, 0, 3, 0, 0) (= X(0, 0, 0, 0, 1, 0, 0)−1)

produce the same result when applied to any element of Q̃(1), i.e., ωℓZ(0, 0, 0, 0, 0, 3, 0)|u〉 andX(0, 0, 0, 0, 3, 0, 0)|u〉

are linearly dependent for any |u〉 ∈ Q̃(1). Therefore, by definition, Q̃(1) is a degenerate code.

6.2 Retaining the Number of Maximally Entangled Qudit Pairs

The second method for lengthening an additive code is encapsulated in the proposition below.
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Proposition 6.2. Let C ⊆ GR(pb,m)2n be an additive code such that the additive code C⊥Tr/(C ∩ C⊥Tr) is free

as a Zpb-module and has rank at least 2m. Further, let any minimal generating set of C in standard form have

exactly e hyperbolic pairs and d isotropic generators. Set c := ⌈ e
m
⌉. Then, there exists a 1-step extension,

M ⊆ GR(pb,m)2(n+1), of C⊥Tr such that the following hold:

(i) M⊥Tr has a minimal generating set in standard form with exactly e hyperbolic pairs and d + 2m isotropic

generators, and M⊥Tr contains a 1-step extension of C.

(ii) ds
(
M\M⊥Tr

)
≥ ds

(
C⊥Tr \C

)
if rank(C⊥Tr/(C⊥Tr ∩C)) > 2m, and ds

(
M

)
≥ ds

(
C⊥Tr

)
if rank(C⊥Tr/(C⊥Tr ∩

C)) = 2m;

(iii) There exist minimal χ-self-orthogonal extensions C′ ⊆ GR(pb,m)2(n+c) and M′ ⊆ GR(pb,m)2(n+c+1) of C

and M⊥Tr, respectively, obtained using the Two-Step Construction, with |M′| = |C′| p2mb.

It is the code M⊥Tr in the statement of the proposition that we view as the desired lengthening of the additive

code C. We sketch here the construction of the code M. The details of the verification of its properties (i), (ii)

and (iii) are left to the proof given in Appendix B.

Let H = {(e1, f1), (e2, f2), . . . , (et+s, ft+s), (g1, h1), (g2, h2), . . . , (gt, ht)} be any minimal generating set in

standard form of C⊥Tr as a Zpb -module, such that, for i = 1, 2, . . . , t, the generators (ei, fi) and (gi, hi) form

hyperbolic pairs, and the generators (ei, fi), i = t + 1, . . . , t + s, are isotropic. From the condition that

rank(C⊥Tr/(C⊥Tr ∩ C)) ≥ 2m, we obtain, via Proposition 3.2(a), t ≥ m. We follow the recipe for the 1-step

extension in the proof of Proposition 6.1 that converts the first m hyperbolic pairs in H into isotropic generators,

as described by (6.1) with ℓ = 1. The resulting 1-step extension of C⊥Tr is precisely the additive code M in the

statement of Proposition 6.2.

From the above proposition, we can readily derive a propagation rule for EAQECCs over Galois rings along

the lines of that in [17, Theorem 16] — see also Corollary C.1 in Appendix C.

Theorem 6.2. Let C ⊆ GR(pb,m)2n be an additive code such that the additive code C⊥Tr/(C ∩ C⊥Tr) is free as

a Zpb-module of rank at least 2m. Set c :=
⌈

1
2m rank(C/(C ∩ C⊥Tr))

⌉
and D := ds

(
C⊥Tr \ C

)
. Then, the existence

of an ((n,K,D; c)) EAQECC over GR(pb,m) constructed from C using Theorem 2.4 implies the existence of an

((n+ 1, 1
pbmK,D

′; c)) EAQECC over GR(pb,m) with

D′ ≥

{
ds(C⊥Tr) if rank(C⊥Tr/(C ∩ C⊥Tr)) = 2m;

D if rank(C⊥Tr/(C ∩ C⊥Tr)) > 2m.

Proof. By Theorem 3.1(b), there is a minimal generating set, G, of C in standard form. By Proposition 3.2(a)

and Proposition 5.3, the number, e, of hyperbolic pairs in G is 1
2 rank(C/(C ∩ C⊥Tr)). There exists an additive

code M ⊆ GR(pb,m)2(n+1) with the properties listed in the statement of Proposition 6.2. We apply Theorem 3.3

to C and M⊥Tr using χ-self-orthogonal extensions C′ and M′, respectively, to obtain an ((n, pmbn/|C′|, D; c)) and

an ((n+ 1, pmb(n+1)/|M′|, D′; c)) EAQECC, with

D =

{
ds(C⊥Tr) if C⊥Tr ⊆ C

ds(C⊥Tr \ C) otherwise ,

and

D′ =

{
ds(M) if M ⊆ M⊥Tr

ds(M\M⊥Tr) otherwise.
(6.2)

Since |M′| = |C′|p2mb, we have pmb(n+c+1)/|M′| = pmb(n+c)/(pmb|C′|). As rank(C⊥Tr/(C ∩ C⊥Tr)) ≥ 2m, we have

C⊥Tr 6⊆ C. Thus D = ds(C⊥Tr \ C). Note that M ⊆ M⊥Tr if and only if rank(C⊥Tr/(C ∩ C⊥Tr)) = 2m. From this,
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using Proposition 6.2(b) and (6.2), we observe that if D′ ≥ ds(C⊥Tr) if rank(C⊥Tr/(C ∩ C⊥Tr)) = 2m and D′ ≥ D

if rank(C⊥Tr/(C ∩ C⊥Tr)) > 2m. This completes the proof of the theorem.

The corollary below specializes Theorem 6.2 to the case of finite fields.

Corollary 6.1. Let C ⊆ F2n
pm be an additive code over the finite field Fpm such that (dimFp

(C⊥tr) − dimFp
(C ∩

C⊥tr)) ≥ 2m. Set c :=
⌈

1
2m (dimFp

(C)− dimFp
(C ∩ C⊥tr))

⌉
and D = ds

(
C⊥tr \ C

)
. Then the existence of an

((n, pm(n+c)/|C|, D; c)) EAQECC over Fpm constructed from C using Corollary 2.1 implies the existence of an

((n+ 1, pm(n+c−1)/|C|, D′; c)) EAQECC over Fpm with

D′ ≥

{
ds(C⊥tr) if (dimFp

(C⊥tr)− dimFp
(C ∩ C⊥tr)) = 2m;

D if (dimFp
(C⊥tr)− dimFp

(C ∩ C⊥tr)) > 2m.

Proof. The proof follows from Theorem 6.2 and the observations that, for finite fields Fpm , C, C∩C⊥tr , C/(C∩C⊥tr)

and C⊥tr/(C ∩ C⊥tr) are vector spaces over Fp, thus are free modules.

The following example illustrates the propagation rule for EAQECCs given in Theorem 6.2. In particular, it

shows that the new EAQECC obtained via the lengthening procedure can have a strictly larger minimum distance

than the original EAQECC, while keeping the number of maximally entangled qudit pairs the same. However,

there is a price to be paid in terms of reduction in dimension.

Example 6.3. Let C be an additive code over Z9 (= GR(32, 1)) of length 12 with a minimal generating set

{(v1, w1), (v2, w2), (v3, w3), (v4, w4), (x1, y1), (x2, y2)}, where (v1, w1) = (0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0), (x1, y1) =

(0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0), (v2, w2) = (0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0), (x2, y2) = (0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 1),

(v3, w3) = (1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0), and (v4, w4) = (0, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0). For i = 1, 2, the generators

(vi, wi) and (xi, yi) form hyperbolic pairs, whereas the generators (v3, w3) and (v4, w4) are isotropic. It can be veri-

fied that C⊥s has {(v3, w3), (v4, w4), (e1, f1), (g1, h1), (e2, f2), (g2, h2)} as a minimal generating set, with (e1, f1) =

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), (g1, h1) = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0), (e2, f2) = (0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0), and

(g2, h2) = (0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 1, 1). Note that C, C⊥s , C/C ∩ C⊥s and C⊥s/C ∩ C⊥s are all free Z9-modules.

Moreover, using Magma [2], we get that ds(C⊥s \C)) = 1. Thus, by Theorem 2.3, we obtain from C a ((6, 92, 1; 2))

EAQECC over Z9.

Following the construction of Proposition 6.2, we first obtain a 1-step extension, M, of C⊥s , by con-

verting the hyperbolic pair (e2, f2) and (g2, h2) into isotropic generators. Thus, M has the generating set

{(e1, 0, f1, 8), (g1, 8, h1, 0), (v3, 0, w3, 0), (v4, 0, w4, 0), (e2, 0, f2, 0), (g2, 0, h2, 0)}. Then, as in the proof of Propo-

sition 6.2 in Appendix B, M⊥s has

A = {(e1, 0, f1, 8), (g1, 8, h1, 0), (v1, 0, w1, 0), (v2, 0, w2, 0), (v3, 0, w3, 0), (v4, 0, w4, 0), (x1, 0, y1, 0), (x2, 0, y2, 0)}

as a minimal generating set. Using Magma [2], we find that ds(M \ M⊥s)) = 3. Note that M⊥s is a free

Z9-module 9 (as indeed is M⊥s/M∩M⊥s). So, via Theorem 2.3, we obtain from M⊥s a ((7, 9, 3; 2)) EAQECC

over Z9. This has minimum distance strictly larger than that of the original EAQECC obtained from C.

While constructing the 1-step extension from C⊥s , we could instead have converted the hyperbolic pair (e2, f2)

and (g2, h2) into isotropic generators. If we had done this and gone through the same lengthening procedure,

we would have ended up with a ((7, 9, 1; 2)) EAQECC, which is not as good as the ((7, 9, 3; 2)) EAQECC above.

This once again demonstrates that the choice of which hyperbolic pairs to convert into isotropic generators can

make a significant difference.
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7 Conclusion

In this paper, we proposed a framework to construct, from first principles, EAQECCs from additive codes

over finite commutative local Frobenius rings. Given an additive code C over such a ring R, we provide a means

of constructing an EAQECC that uses a certain number of pre-shared pairs of maximally entangled qudits, a

number that is determined by the algebraic structure of the code C. This yields an upper bound on the minimum

number of pairs of maximally entangled qudits required to construct an EAQECC from C. We show that this

bound is in fact tight for EAQECCs constructed from additive codes over Zpa , but it can be improved when we

start from codes over more general Galois rings. We derive an explicit expression for the minimum number of

pre-shared pairs of maximally entangled qudits required to construct an EAQECC from an additive code over a

Galois ring. This result significantly extends known results for EAQECCs constructed from additive codes over

finite fields. Finally, we presented two methods to lengthen an additive code so as to modify, with some degree

of control, the parameters of the EAQECCs obtained from these codes.

An interesting direction of future work would be to extend our formula for the minimum number of pre-

shared pairs of maximally entangled qudits to EAQECCs over general finite commutative local Frobenius rings

(beyond Galois rings). It would also be useful to find constructions of EAQECCs over Frobenius rings with good

parameters, for example, codes that saturate the generalized quantum Singleton bound applicable to EAQECCs

[13]. Finally, it would be of considerable interest to extend the EAQECC framework, starting from Theorem 3.1,

to the general setting of finite commutative Frobenius rings, beyond the cases discussed at the end of Section 3,

obtained via the Chinese Remainder Theorem.

Appendices

A A CSS-Like Construction of EAQECCs

In the section, we will provide a construction of EAQECCs of length n over the Galois ring GR(pb,m) using two

additive codes of length n over GR(pb,m). This construction is a straightforward generalization of the well-known

CSS construction, due to Calderbank and Shor [6] and Steane [24].

We start with some definitions. As usual, for u = (u1, . . . , un), v = (v1, . . . , vn) ∈ GR(pb,m)n, u · v denotes

the standard (Euclidean) dot product
∑n

i=1 uivi.

Definition A.1. For a subset C ⊆ GR(pb,m)n, we define5

• the trace-Euclidean dual, C⊥⊥Tr , of C as

C⊥⊥Tr = {v ∈ GR(pb,m)n : Tr(u · v) = 0 for all u ∈ C},

• and for t = 0, 1, . . . , b, the trace-Euclidean t-dual of C as

C⊥⊥Tr,t = {v ∈ GR(pb, 2m)n : Tr(u · v) ≡ 0 (mod pb−t) for all u ∈ C}.

(Note that C⊥⊥Tr,0 = C⊥⊥Tr .)

We will be applying the construction in Theorem 5.3 to the direct sum C1 ⊕ C2 := {(u, v) : u ∈ C1, v ∈ C2}.

For this, the following lemma relating the trace-symplectic dual of the direct sum to the trace-Euclidean duals of

the component codes will be useful.

5To distinguish this from the notation used for the trace-symplectic dual, we use ⊥⊥ instead of ⊥ to denote the dual object.
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Lemma A.1. Let C1 and C2 be additive codes of length n over GR(pb,m), and let C = C1 ⊕ C2. We then have,

for t = 0, 1, . . . , b,

(a) C⊥Tr,t = C
⊥⊥Tr,t

2 ⊕ C
⊥⊥Tr,t

1 for t = 0, 1, . . . , b, and

(b) C/(C ∩ C⊥Tr,t) ∼= C1/(C1 ∩ C
⊥⊥Tr,t

2 )⊕ C2/(C2 ∩ C
⊥⊥Tr,t

1 ).

In particular (the t = 0 case), C⊥Tr = C⊥⊥Tr
2 ⊕ C⊥⊥Tr

1 and C/(C ∩ C⊥Tr) ∼= C1/(C1 ∩ C⊥⊥Tr
2 )⊕ C2/(C2 ∩ C⊥⊥Tr

1 ).

Proof. (a) We first prove that C⊥Tr = C⊥⊥Tr
2 ⊕ C⊥⊥Tr

1 . Note that for (u, v) ∈ C⊥⊥Tr
2 ⊕ C⊥⊥Tr

1 and (u′, v′) ∈ C1 ⊕ C2, we

have Tr(v · u′ − v′ · u) = Tr(v ·u′)−Tr(v′ · u) = 0. Thus, C⊥⊥Tr
2 ⊕C⊥⊥Tr

1 ⊆ C⊥Tr. On the other hand, by Lemma 2.1,

we also have
∣∣C⊥Tr

∣∣ = p2bmn

|C|
=
pbmn

|C1|
×
pbmn

|C2|
=

∣∣C⊥⊥Tr
1

∣∣∣∣C⊥⊥Tr
2

∣∣.

Here, the last equality holds as C⊥⊥Tr

i is equal to the orthogonal of Ci defined via the generating character of

GR(pb,m), and the equality
∣∣Ci

∣∣∣∣C⊥⊥Tr

i

∣∣ =
∣∣GR(pb,m)

∣∣n holds for this orthogonal — see, e.g., [7, Chapter 3]. Since

the expression on the right-hand side equals
∣∣C⊥⊥Tr

2 ⊕ C⊥⊥Tr
1

∣∣, the inclusion in C⊥⊥Tr
2 ⊕ C⊥⊥Tr

1 ⊆ C⊥Tr must in fact be

an equality.

Next, we want to prove that C⊥Tr,t = C
⊥⊥Tr,t

2 ⊕C
⊥⊥Tr,t

1 for t = 1, . . . , b. As before, the inclusion C
⊥⊥Tr,t

2 ⊕C
⊥⊥Tr,t

1 ⊆

C⊥Tr,t is proved as follows: for (u, v) ∈ C⊥⊥Tr,t
2 ⊕ C⊥⊥Tr,t

1 and (u′, v′) ∈ C1 ⊕ C2, we have Tr(v · u′ − v′ · u) =

Tr(v · u′) − Tr(v′ · u) ≡ 0(mod pb−t). For the reverse inclusion, consider any (u, v) ∈ C⊥Tr,t . We then have

Tr(v ·u′−v′ ·u) ≡ 0(mod pb−t) for all (u′, v′) ∈ C1⊕C2. This implies that Tr(ptv ·u′−v′ ·ptu) = pt Tr(v ·u′−v′ ·u) ≡ 0

(mod pb) for all (u′, v′) ∈ C1 ⊕ C2, from which we infer that (ptu, ptv) ∈ C⊥Tr = C⊥⊥Tr
2 ⊕ C⊥⊥Tr

1 . Thus, for any

(u, v) ∈ C⊥Tr,t , we have ptu ∈ C⊥⊥Tr
2 and ptv ∈ C⊥⊥Tr

1 , which, by definition, implies that u ∈ C⊥⊥Tr,t
2 and v ∈ C⊥⊥Tr,t

1 .

Hence C⊥Tr,t ⊆ C⊥⊥Tr,t
2 ⊕ C⊥⊥Tr,t

1 , as required.

(b) From part (a), we deduce that C ∩ C⊥Tr,t = (C1 ⊕ C2) ∩ (C⊥⊥Tr,t
2 ⊕ C⊥⊥Tr,t

1 ) = (C1 ∩ C⊥⊥Tr,t
2 )⊕ (C2 ∩ C⊥⊥Tr,t

1 ).

Consequently,

C/(C ∩ C⊥⊥Tr,t) = (C1 ⊕ C2)/
(
(C1 ∩ C

⊥⊥Tr,t

2 )⊕ (C2 ∩ C
⊥⊥Tr,t

1 )
)
∼= C1/(C1 ∩ C

⊥⊥Tr,t

2 )⊕ C2/(C2 ∩ C
⊥⊥Tr,t

1 ).

The CSS-like construction described in the proposition below is obtained by applying Theorem 5.3 to the code

C = C1 ⊕ C2. Its proof, via Lemma A.1, is an exercise in the relevant definitions, and is omitted.

Proposition A.1. (CSS-like Construction) Let C1 and C2 be two additive codes of length n over the Ga-

lois ring GR(pb,m). From C1 and C2, we can construct an ((n,K,D; c)) EAQECC over GR(pb,m), where

the minimum number, c, of pairs of maximally entangled qudits needed for the construction is equal to⌈
1
2m

[
rank(C1/(C1 ∩ C⊥⊥Tr

2 )) + rank(C2/(C2 ∩ C⊥⊥Tr
1 ))

]⌉
, the minimum distance is

D =

{
min{dH(C

⊥⊥Tr
1 ), dH(C

⊥⊥Tr
2 )} if C⊥⊥Tr

2 ⊆ C1

min{dH(C
⊥⊥Tr
1 \ C2), dH(C

⊥⊥Tr
2 \ C1)} otherwise ,

and the dimension K is bounded as pbm(n+c)/(|C1||C2| p
∑b−1

t=1 (b−t)ρt) ≤ K ≤ pbm(n+c)/(|C1||C2|), with ρt :=

rank(C1/(C1 ∩ C⊥⊥Tr,t−1
2 )) + rank(C2/(C2 ∩ C⊥⊥Tr,t−1

1 ))− rank(C1/(C1 ∩ C⊥⊥Tr,t
2 ))− rank(C2/(C2 ∩ C⊥⊥Tr,t

1 )).

If either (a) C1 and C2 are free modules over Zpb or (b) C1/(C1 ∩ C⊥⊥Tr
2 ) and C2/(C2 ∩ C⊥⊥Tr

1 ) are free modules

over Zpb , then K = pbm(n+c)/(|C1||C2|). In the case of (b), we additionally have

c =

⌈
1

2m

[
rank(C1) + rank(C2)− rank(C1 ∩ C⊥⊥Tr

2 )− rank(C2 ∩ C⊥⊥Tr
1 )

]⌉
.
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B Proof of Proposition 6.2

Let

G = {(v1, w1), (v2, w2), . . . , (ve+d, we+d), (x1, y1), (x2, y2), . . . , (xe, ye)}

be a minimal generating set of C as a Zpb -module such that, for i = 1, 2 . . . , e, the generators (vi, wi) and

(xi, yi) form hyperbolic pairs, and the generators (vi, wi), i = e + 1, . . . , e + d, are isotropic. Further, let H =

{(e1, f1), (e2, f2), . . . , (et+s, ft+s), (g1, h1), (g2, h2), . . . , (gt, ht)} be any minimal generating set in standard form

of C⊥Tr as a Zpb -module, such that, for i = 1, 2, . . . , t, the generators (ei, fi) and (gi, hi) form hyperbolic pairs,

and the generators (ei, fi), i = t+ 1, . . . , t+ s, are isotropic.

Let τ : C⊥Tr → C⊥Tr/(C⊥Tr ∩ C) be the canonical projection map that takes (v, w) ∈ C⊥Tr to the

coset (v, w) + (C⊥Tr ∩ C). By Proposition 3.2(a), 2t = rank(C⊥Tr/(C⊥Tr ∩ C)). As rank(C⊥Tr/(C⊥Tr ∩

C)) ≥ 2m, we get t ≥ m. Again using the fact that H is a minimal generating set of C⊥Tr and

rank(C⊥Tr/(C⊥Tr ∩ C)) = 2t, we get {τ((e1, f1)), τ((e2, f2)), . . . , τ((et, ft)), τ((g1, h1)), τ((g2, h2)), . . . , τ((gt, ht))}

is a minimal generating set of C⊥Tr/(C⊥Tr ∩ C) as a free module over Zpb . Thus {τ((e1, f1)), τ((e2, f2)), . . . ,

τ((et, ft)), τ((g1, h1)), τ((g2, h2)), . . . , τ((gt, ht))} is a linearly independent set over Zpb — this holds by using

Proposition 2.1. This implies that {(e1, f1), (e2, f2), . . . , (et, ft), (g1, h1), (g2, h2), . . . , (gt, ht)} is a linearly inde-

pendent set over Zpb . Using the fact that C⊥Tr/(C⊥Tr ∩ C) is a free module over Zpb and by Theorem 3.2(b), we

get that {(ei, fi) : t+ 1 ≤ i ≤ t+ s} is a minimal generating set of C⊥Tr ∩ C as a Zpb -module.

For 1 ≤ i ≤ m, χ(figi − eihi) is a pb-th root of unity, and (ei, fi) and (gi, hi) form hyperbolic pairs, so

let χ(figi − eihi) = ζθi , where ζ = exp(2πi
pb ) and 0 < θi < pb. Let γ1, γ2, . . . , γm be a basis of GR(pb,m) as a

free module over Zpb and let β1, β2, . . . , βm be the dual basis of γ1, γ2, . . . , γm. Let M ⊆ GR(pb,m)2(n+1) be an

additive code generated by

H′ = {(ei, 0, fi,−βi), (gi, θiγi, hi, 0) : 1 ≤ i ≤ m}∪{(ek, 0, fk, 0), (gℓ, 0, hℓ, 0) : m+1 ≤ k ≤ t+s and m+1 ≤ ℓ ≤ t}.

(B.1)

Note that the generators in H′ are obtained from the generators in H by adding extra coordinates. Therefore,

the fact that H is a minimal generating set of C⊥Tr implies that H′ is a minimal generating set of M. It is

straightforward to verify that the generators (ek, 0, fk, 0) and (gk, 0, hk, 0) for m + 1 ≤ k ≤ t form hyperbolic

pairs, and the generators (ej , 0, fj, 0), j = t + 1, . . . , t + s, and (ei, 0, fi,−βi) and (gi, θiγi, hi, 0), 1 ≤ i ≤ m, are

isotropic. By using Lemma 2.1, we get

|M⊥Tr| =
pbm(2n+2)

|M|
=
pbm(2n+2)

|C⊥Tr|
= p2bm|C|. (B.2)

Now consider an additive code N ⊆ GR(pb,m)2(n+1) generated by

A = {(ei, 0, fi,−βi), (gi, θiγi, hi, 0) : 1 ≤ i ≤ m} ∪ {(vj , 0, wj , 0), (xk, 0, yk, 0) : 1 ≤ j ≤ e+ d, 1 ≤ k ≤ e}.

It is straightforward to verify that N ⊆ M⊥Tr . Here we assert that |N | = |C|(pb)2m, which will, using (B.2),

imply that N = M⊥Tr . We will prove this assertion by first showing that A is a minimal generating set of N as

a Zpb -module.

Assume, to the contrary, that A is not a minimal generating set of N as a Zpb -module. This means that

m∑

i=1

(ai(ei, 0, fi,−βi) + bi(gi, θiγi, hi, 0)) +
e+d∑

j=1

cj(vj , 0, wj , 0) +
e∑

k=1

dk(xk, 0, yk, 0) = 0

for some ai, bi, cj , dk ∈ Zpb with at least one among ai, bi, cj , dk being a unit in Zpb . This gives

m∑

i=1

(ai(ei, fi) + bi(gi, hi)) = −
e+d∑

j=1

cj(vj , wj)−
e∑

k=1

dk(xk, yk) ∈ C. (B.3)
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From this and using the fact that (ei, fi), (gi, hi) ∈ C⊥Tr , we get
m∑
i=1

(ai(ei, fi)+bi(gi, hi)) ∈ C⊥Tr∩C, which implies

that τ(
m∑
i=1

(ai(ei, fi) + bi(gi, hi))) = C⊥Tr ∩ C. As {τ((e1, f1)), τ((e2, f2)), . . . , τ((em, fm)), τ((g1, h1)), τ((g2, h2)),

. . . , τ((gm, hm))} is a linearly independent set over Zpb , we get ai = bi = 0 for 1 ≤ i ≤ m. This, by using (B.3),

implies that
e+d∑

j=1

cj(vj , wj) +

e∑

k=1

dk(xk, yk) = 0. (B.4)

From this and using the facts that at least one among ai, bi, cj and dk is a unit in Zpb , and ai = bi = 0 for

1 ≤ i ≤ m, we get that at least one among cj and dk is a unit in Zpb . This, by using (B.4), implies that

{(vj , wj), (xk, yk) : 1 ≤ j ≤ e + d, 1 ≤ k ≤ e} is not a minimal generating set of C as a Zpb -module, which is a

contradiction.

Thus, A is a minimal generating set of N as a Zpb -module. From this and the fact that

{(e1, f1), (e2, f2), . . . , (em, fm), (g1, h1), (g2, h2), . . . , (gm, hm)} is a linearly independent set over Zpb , while C does

not contain any Zpb linear combination from this set, it follows that |N | = |C|(pb)2m. Thus, via (B.2), N = M⊥Tr .

Clearly, the generators (vk, 0, wk, 0) and (xk, 0, yk, 0), 1 ≤ k ≤ e, form hyperbolic pairs, and the generators

(vj , 0, wj, 0), e+ 1 ≤ j ≤ e+ d and, (ei, 0, fi,−βi) and (gi, θiγi, hi, 0), 1 ≤ i ≤ m, are isotropic. This verifies item

(i) in the statement of the proposition.

For the second item, we start by noting that

〈{(ej, 0, fj, 0) : t+ 1 ≤ j ≤ t+ s} ∪ {(ei, 0, fi,−βi), (gi, θiγi, hi, 0) : 1 ≤ i ≤ m}〉 ⊆ M∩M⊥Tr .

Next we observe that if
t∑

i=m+1

(ai(ei, 0, fi, 0) + bi(gi, 0, hi, 0)) ∈ M∩M⊥Tr for some ai, bi ∈ Zpb , then

t∑

i=m+1

(−ai(ei, 0, fi, 0)−bi(gi, 0, hi, 0)) =
m∑

i=1

(ai(ei, 0, fi,−βi)+bi(gi, θiγi, hi, 0))+
e+d∑

j=1

cj(vj , 0, wj , 0)+

e∑

k=1

dk(xk, 0, yk, 0)

for some ai, bi, cj , dk ∈ Zpb .

This gives
t∑

i=1

(ai(ei, fi) + bi(gi, hi)) = −
e+d∑

j=1

cj(vj , wj)−
e∑

k=1

dk(xk, yk) ∈ C.

From this and using the fact that (ei, fi), (gi, hi) ∈ C⊥Tr , we get
t∑

i=1

(ai(ei, fi) + bi(gi, hi)) ∈ C⊥Tr ∩ C. This

implies that τ(
t∑

i=1

(ai(ei, fi) + bi(gi, hi))) = 0. Further, as {τ((e1, f1)), τ((g1, h1)), . . . , τ((et, ft)), τ((gt, ht))} is a

linearly independent set over Zpb , we get ai = bi = 0 for 1 ≤ i ≤ t. Thus

M∩M⊥Tr = 〈{(ej , 0, fj, 0) : t+ 1 ≤ j ≤ t+ d} ∪ {(ei, 0, fi,−βi), (gi, θiγi, hi, 0) : 1 ≤ i ≤ m}〉.

From this and by using (B.1) and the fact that {(ei, fi) : t+1 ≤ i ≤ t+d} is a minimal generating set of C⊥Tr∩C

as a Zpb -module, we get ds
(
M\M⊥Tr

)
≥ ds

(
C⊥Tr \ C

)
if rank(C⊥Tr/(C ∩ C⊥Tr)) > 2m and ds

(
M

)
≥ ds

(
C⊥Tr

)
if

rank(C⊥Tr/(C ∩ C⊥Tr)) = 2m. This verifies item (ii) in the statement of the proposition.

Finally, we will verify item (iii). We use the notation 0µ, for a non-negative integer µ, to denote a string of

µ 0s. For 1 ≤ i ≤ e, χ(wi · xi − vi · yi) is a pb-th root of unity and (vi, wi) and (xi, yi) form hyperbolic pairs,

so let χ(wi · xi − vi · yi) = ζzi , where 0 < zi < pb. Let C′ ⊆ GR(pb,m)2(n+c) be an additive code generated by

G′ = {u′11, u
′
12, . . . , u

′
e1, u

′
e2, b

′
1, . . . , b

′
d}, with

u′i1 := (vi, 0
c, wi, 0

k,−βℓ, 0
c−1−k) and u′i2 = (xi, 0

k, ziγℓ, 0
c−1−k, yi, 0

c)
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for i = km+ ℓ, with 0 ≤ k ≤ c− 2 and 1 ≤ ℓ ≤ m and,

u′i1 := (vi, 0
c, wi, 0

c−1,−βℓ) and u
′
i2 = (xi, 0

c−1, ziγℓ, yi, 0
c)

for i = (c − 1)m + ℓ, with 1 ≤ ℓ ≤ e − (c − 1)m, and b′j = (ve+j , 0
c, we+j , 0

c) for j = 1, 2 . . . , d. Clearly,

C′ ⊆ GR(pb,m)2(n+c) is a χ-self-orthogonal extension C with entanglement degree equal to c, obtained using the

Two-Step Construction. By Theorem 5.2, the minimum entanglement degree of any χ-self-orthogonal extension

of C is equal to
⌈

1
2m rank(C/(C ∩ C⊥Tr))

⌉
=

⌈
e
m

⌉
= c. This implies that C′ ⊆ GR(pb,m)2(n+c) is a minimal

χ-self-orthogonal extension of an additive code C ⊆ GR(pb,m)2n.

Let M′ ⊆ GR(pb,m)2(n+c+1) be an additive code generated by A′ = {v′11, v
′
12, . . . , v

′
e1, v

′
e2, w

′
1, . . . , w

′
d, x

′
1, . . . ,

x′m, y
′
1, . . . , y

′
m}, with

v′i1 := (vi, 0
c+1, wi, 0

k+1,−βℓ, 0
c−1−k) and v′i2 = (xi, 0

k+1, ziγℓ, 0
c−1−k, yi, 0

c+1)

for i = km+ ℓ, with 0 ≤ k ≤ c− 2 and 1 ≤ ℓ ≤ m, and

v′i1 := (vi, 0
c+1, wi, 0

c,−βℓ) and v
′
i2 = (xi, 0

c, ziγℓ, yi, 0
c+1)

for i = (c − 1)m + ℓ, with 1 ≤ ℓ ≤ e − (c − 1)m, and w′
j = (ve+j , 0, we+j , 0) for j = 1, 2 . . . , d, x′k =

(ek, 0
c+1, fk,−βk, 0c), and y′k = (gk, θkγk, 0

c, hk, 0
c+1) for k = 1, 2, . . . ,m. Clearly, M′ ⊆ GR(pb,m)2(n+c+1)

is a χ-self-orthogonal extension M⊥Tr with entanglement degree equal to c, obtained using the Two-Step Con-

struction. By Theorem 5.2, the minimum entanglement degree of any χ-self-orthogonal extension of M⊥Tr is

equal to
⌈

1
2m rank(M⊥Tr/(M⊥Tr ∩M))

⌉
=

⌈
e
m

⌉
= c. This implies that M′ ⊆ GR(pb,m)2(n+c+1) is a minimal

χ-self-orthogonal extension of an additive code M⊥Tr ⊆ GR(pb,m)2n. Note that |M′| = |C′|p2mb — this follows

from the facts that {(e1, f1), (e2, f2), . . . , (em, fm), (g1, h1), (g2, h2), . . . , (gm, hm)} is a linearly independent set

over Zpb and C does not contain any Zpb -linear combination from this set.

C EAQECCs over GR(pb, m) from Additive Codes over GR(pb, 2m)

There is a well-known equivalence between (a) quantum stabilizer codes of length n over the field Fq and

(b) additive codes of length n over Fq2 that are self-orthogonal with respect to a certain trace-alternating form

[5], [14, Section IV-B]. In this appendix, we provide the machinery needed (see Proposition C.1 below) to extend

this equivalence to codes over Galois rings. This paves the way for the use of additive codes over GR(pb, 2m) for

the purpose of constructing EAQECCs over GR(pb,m).

We begin by observing that GR(pb, 2m) is a degree-2 extension of GR(pb,m). Moreover, there exists a monic

polynomial g(x) ∈ GR(pb,m)[x] of degree 2 such that its reduction (g(x) mod p) ∈ Fpm [x] is irreducible and

primitive over Fpm and g(x) divides xp
2m−1−1 in GR(pb,m)[x]. Thus we have GR(pb, 2m) ∼= GR(pb,m)[x]/〈g(x)〉.

If δ = x + 〈g(x)〉, then clearly g(δ) = 0, and every element of GR(pb, 2m)(∼= GR(pb, 2m)[x]/〈g(x)〉) has a unique

representation as

r = r0 + r1δ with r0, r1 ∈ GR(pb,m).

This implies that GR(pb, 2m) is a free module of rank 2 over GR(pb,m) with {1, δ} as a basis (see [26, Ch. 14]).

Define σ : GR(pb,m)2n → GR(pb, 2m)n as follows:

σ(a1, a2, . . . , an, b1, b2, . . . , bn) = (a1 + δb1, a2 + δb2, . . . , an + δbn).

Clearly, σ is a bijective and additive map, thus a Zpb -module isomorphism. Throughout this section, whenever for

a tuple (a, b) (= (a1, . . . , an, b1, . . . , bn)) ∈ GR(pb,m)2n, we consider its image σ(a, b) = a+ δb ∈ GR(pb, 2m)n, it
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is to be implicitly understood that a+δb = (a1+δb1, a2+δb2, . . . , an+δbn) ∈ GR(pb, 2m)n. Clearly, wts((a, b)) =

wH(σ((a, b)), thus σ is an isometry in this sense.

We define a trace-alternating form on GR(pb, 2m)n as follows: for a+ δb and a′ + δb′ ∈ GR(pb, 2m)n,

〈a+ δb|a′ + δb′〉a = Tr(ba′ − b′a).

Here, Tr : GR(pb,m) → Zpb is the generalized trace map of GR(pb,m) relative to Zpb .

Definition C.1. For a subset C ⊆ GR(pb, 2m)n, we define

• the trace-alternating dual, C⊥a , of C as

C⊥a = {a′ + δb′ ∈ GR(pb, 2m)n : 〈a+ δb|a′ + δb′〉a = 0 for all a+ δb ∈ C},

• and for t = 0, 1, . . . , b, the trace-alternating t-dual of C as

C⊥a,t = {a′ + δb′ ∈ GR(pb, 2m)n : 〈a+ δb|a′ + δb′〉a ≡ 0 (mod pb−t) for all a+ δb ∈ C}.

As σ is a Zpb -module isomorphism, a subset C of GR(pb,m)2n is an additive code over GR(pb,m) of length 2n

if and only if σ(C) is an additive code over GR(pb, 2m) of length n. The proposition below follows immediately

from the relevant definitions.

Proposition C.1. Let C ⊆ GR(pb,m)2n be an additive code, and let C = σ(C) be its image in GR(pb, 2m)n under

the mapping σ. Then, C
⊥a

= σ(C⊥Tr), and for t = 0, 1, . . . , b, we have C
⊥a,t

= σ(C⊥Tr,t). As a consequence, for

t = 0, 1, . . . , b, rank(C/(C ∩ C⊥Tr,t)) = rank(C/(C ∩ C
⊥a,t

)). Moreover, C/(C ∩ C⊥Tr) is a free module over Zpb if

and only if C/(C ∩ C
⊥a

) is a free module over Zpb .

Remark C.1. If C is an additive code over a finite field Fq, then C
⊥a

is the same as the trace-alternating dual

defined in [14, Section IV-B]. Moreover, if C is a linear code over Fq2 , then by [14, Lemma 18], C
⊥a

is equal to the

Hermitian dual of C. Thus, for example, Proposition 1 of Lisoněk and Singh [16] may be viewed as a particular

case of our Theorem 3.1(c).

The following result is essentially a restatement of Theorem 5.3, expressed in the language of this appendix.

This generalizes analogous results in Ketkar et al. [14, Theorem 15] and Galindo et al. [9, Theorem 3].

Theorem C.1. [Equivalent to Theorem 5.3] Let C ⊆ GR(pb, 2m)n be an additive code over the Galois ring

GR(pb, 2m). From C, we can construct an ((n,K,D; c)) EAQECC over GR(pb,m), where the minimum number,

c, of pairs of maximally entangled qudits needed for the construction is equal to
⌈

1
2m rank(C/(C ∩ C⊥a))

⌉
, the

minimum distance is

D =

{
dH(C⊥a) if C⊥a ⊆ C

dH(C⊥a \ C) otherwise

and the dimension K is bounded as pbm(n+c)/(|C| p
∑b−1

t=1 (b−t)ρt) ≤ K ≤ pbm(n+c)/|C|, with ρt := rank(C/(C ∩

C⊥a,t−1)) − rank(C/(C ∩ C⊥a,t)). If either (a) C is free or (b) C/(C ∩ C⊥a) is a free module over Zpb , then

K = pbm(n+c)/|C|. In the case of (b), we additionally have c =
⌈

1
2m [rank(C)− rank(C ∩ C⊥a)]

⌉
.

The following corollary immediately follows from Proposition C.1 and Theorem 6.2, and is a generalization of

[17, Theorem 16].

Corollary C.1. Let C ⊆ GR(pb, 2m)n be an additive code over the Galois ring GR(pb, 2m) such that the additive

code C⊥a/(C∩C⊥a) is free as a Zpb-module of rank atleast 2m. Set c :=
⌈

1
2m rank(C/(C ∩ C⊥a))

⌉
and D := dH(C⊥a \

C). Then, the existence of an ((n,K,D; c)) EAQECC over GR(pb,m) constructed from C using Theorem C.1

implies the existence of an ((n+ 1, 1
pbmK,D

′; c)) EAQECC over GR(pb,m) with

D′ ≥

{
dH(C⊥a) if rank(C⊥a/(C ∩ C⊥a)) = 2m;

D if rank(C⊥a/(C ∩ C⊥a)) > 2m.
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