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Abstract—This paper presents a method for computing a
finite-blocklength converse for the rate of fixed-length codes
with feedback used on discrete memoryless channels (DMCs).
The new converse is expressed in terms of a stochastic control
problem whose solution can be efficiently computed using dy-
namic programming and Fourier methods. For channels such
as the binary symmetric channel (BSC) and binary erasure
channel (BEC), the accuracy of the proposed converse is similar
to that of existing special-purpose converse bounds, but the
new converse technique can be applied to arbitrary DMCs. We
provide example applications of the new converse technique to the
binary asymmetric channel (BAC) and the quantized amplitude-
constrained AWGN channel.

I. INTRODUCTION

Consider communicating one of M messages using a finite
blocklength transmission of n symbols over a discrete mem-
oryless channel (DMC) with average error probability ε. A
fundamental practical problem that arises from this setup is
the computation of upper bounds on the size of M (converse)
in the finite-blocklength regime when both n and ε are fixed. A
hypothesis testing framework can be used to establish converse
bounds for arbitrary DMCs [1]–[4]. However, these bounds are
generally hard to compute at finite blocklengths due to the high
dimensionality of their parameter space. Their computation
can be significantly reduced by exploiting symmetry in some
cases, such as that of the binary-symmetric channel (BSC),
the binary-erasure channel (BEC) [5], and the AWGN channel
[6]. Their limits in various asymptotic regimes can also be
computed. These insights provides no assistance at finite
blocklengths for arbitrary DMCs, however.

Recent advances toward this goal include an algorithm
for saddle point identification [7] in the “minimax” version
of the bound [5] that is polynomial-time in the blocklength
for DMCs, a linear programming formulation of the bound
[8] that is also polynomial-time for DMCs, and a method
for generating good output distributions for general minimax
converses where an optimization over a distribution on the
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channel output is required [9]. The complexity of these ap-
proaches is exponential in the input alphabet however, making
them unsuitable for even moderately sized channels at longer
blocklengths. See [10] and [11] for approximations of the
bound that are more easily computed.

Stochastic control methods have proven useful in deriving
results for communication systems with feedback, such as a
general framework for the computation of channel capacity
[12] and the timid/bold technique to improve second-order
coding performance [13]. In many circumstances, stochastic
control problems require the design of an optimal controller
and dynamic programming (DP) techniques are often used to
solve this problem efficiently [14].

A. Contributions and organization

In this paper, we develop an efficient algorithm to compute
converses at finite blocklength for arbitrary DMCs. The key
idea is to consider the channel with feedback, which allows
for efficient computation of the resulting hypothesis testing
bounds using dynamic programming and Fourier methods. We
describe this algorithm, analyze its complexity, and demon-
strate its utility on several channels. For the BSC and BEC,
we find that it provides bounds that are close to those obtained
via channel-specific methods. On the other hand, we also
show that our bound scales well to DMCs with moderately
large alphabets at moderate blocklengths, for which there is
currently no known way of efficiently computing nontrivial
converse bounds. Of course, any converse bound for a DMC
with feedback also applies to the channel without feedback.

The rest of the paper is organized as follows. In Section II
we formulate the converse bound as a DP problem. In Section
III we present an algorithm to compute the bound an analyze
its complexity. Section IV presents numerical results for the
BSC, BEC, BAC, and quantized amplitude constrained AWGN
channel, and provides a comparison to existing bounds where
possible. If no specific bounds are available we use Lemma
14 in [13] with a capacity achieving distribution to obtain a
general achievability result without feedback.
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II. DMC CONVERSES VIA DYNAMIC PROGRAMMING

A. Definitions

1) Probability of Success/Failure: Assume a DMC with
finite input alphabet X and finite output alphabet Y . In
this case, for an (n,R) code with ideal feedback and error
probability ε ∈ (0, 1) we define:

M∗(n, ε) := max{dexp(nR)e ∈ N+ : P̄e,fb(n,R) ≤ ε} , (1)

where P̄e,fb(n,R) is the minimum average error probability
achievable by any (n,R) code with feedback. We follow [13].
In particular, given input and output random vectors

Xn = (X1, . . . , Xn) ∈ Xn (2)
Yn = (Y1, . . . , Yn) ∈ Yn , (3)

a (stochastic) controller

F = Fn (4)

F k = (F1, . . . , Fk) (5)

Ft : (Xt−1,Yt−1) 7→ Xt , (6)

a channel W ∈ P(Y|X ), an information density threshold T ,
and an arbitrary output distribution Q ∈ P(Y), we refer to the
event in which the AID at the end of the block exceeds T as
a success, S. The probability of success for any controller can
be defined in terms of Xn and Yn as

P (SF,Q,T ) = (F ◦W )

(
log2

[
W (Yn|Xn)

Q(Yn)

]
> T

)
, (7)

where F ◦W denotes the joint distribution over Xn and Yn

induced by the controller and the channel. Similarly, the prob-
ability of failure is defined as P (S̄F,Q,T ) = 1− P (SF,Q,T ).

2) Information density: Given an input distribution to a
DMC G ∈ P(X ) and an output distribution Q ∈ P(Y) we can
define the information density change from one transmission
(∆I) as

∆IG = log2

(
W (Y |X)

Q(Y )

)
(8)

with range IG and PMF fG(∆i)

fG(∆i) =
∑
x∈X

∑
y∈Y

1

(
∆i = log2

[
W (y|x)

Q(y)

])
W (y|x)G(x) .

(9)

We finally define the set of all possible AID changes in a
single transmission as

I =

{
log2

(
W (y|x)

Q(x)

) ∣∣∣∣x ∈ X , y ∈ Y} (10)

and the set of all possible AID levels attainable by any
controller at timestep k as

Λk =

∑
γ∈I

αγγ

∣∣∣∣αγ ∈ Z+ and
∑
γ∈I

αγ = k

 , (11)

where Z+ is the set of nonegative integers.

B. Mathematical formulation

1) General setup: From Lemma 15 in [13] we know that
given parameters W,n, ρ > 0, ε > 0 and T = log2(ρ),

R∗b(n, ε) ≤ sup
F

inf
Q

1

n

[
T − log2

([
P (S̄F,Q,T )− ε

]+)]
,

(12)

where R∗b(n, ε) is the best achievable code rate in bits for the
given blocklength n and error probability ε.

2) Computation of maximum probability of success: From
the supremum in (12) we see that we are interested in min-
imizing P (S̄F,Q,T ) or, equivalently, maximizing P (SF,Q,T ).
In order to translate this problem into a dynamic programming
framework we will focus on the probability of success of
the optimal controller at timestep k and a specific AID level,
S∗k(Γ), where references to Q and T are omitted for simplicity.
With this setup every S∗k(Γ) can be defined in terms of the
following recurrence relation as long as the chosen Q is a
product distribution:

S∗n(Γ) = 1 (Γ ≥ T ) (13)

S∗k(Γ) = max
G∈P(X )

∑
∆i∈IG

S∗k+1(Γ + ∆i)fG(∆i), k < n . (14)

However, we know that the cardinality of the set of all
possible achievable AID levels grows polynomially with the
blocklength, which makes direct computation infeasible even
for moderate values of n. In order to address this problem we
will quantize the AID in a sequence of N bins βi = (τLi , τ

U
i ],

i ∈ {LL, LL + 1, . . . , LU} of size δ such that

τULU

n
= ∆Imax = max

(x,y)∈X×Y
log2

(
W (y|x)

Q(y)

)
(15)

τLLL

n
= ∆Imin = min

(x,y)∈X×Y:W (y|x)>0
log2

(
W (y|x)

Q(y)

)
(16)

N =

⌈
∆Imax −∆Imin

δ

⌉
. (17)

This definition guarantees that all achievable AID levels will
be comprised in this range as no single walk can exceed the
bin limits. Our scheme also rounds up any AID realization to
the upper bound of its corresponding bin (denoted as dteδ =
δ
⌈
t
δ

⌉
). Equations (13) and (14) thus become

Ŝ∗n(Γ) = 1 (Γ ≥ T ) (18)

Ŝ∗k(Γ) = max
G∈P(X )

∑
∆i∈Ix

Ŝ∗k+1(Γ + d∆ieδ)fG(∆i) (19)

for Γ ∈ {τULL
, τULL+1, · · · , τULU

}. Denote the AID random
variable

∆Ik = log2

(
W (Yk|Xk)

Q(Yk)

)
, (20)

which has distribution depending on the controller F k. We
can now show that this rounding strategy provides an upper



bound on the probability of success of the optimal controller
and thus preserves the validity of the converse

P (SF∗,Q,T ) = sup
F

(F ◦W )

 n∑
j=1

∆Ij ≥ T

 (21)

= sup
Fn−1,Fn

∑
Γn−1∈Λn−1

[
(Fn−1 ◦W )

n−1∑
j=1

∆Ij = Γn−1


· (Fn ◦W )

∆In ≥ T − Γn−1

∣∣∣∣∣∣
n−1∑
j=1

∆Ij = Γn−1

]
(22)

= sup
Fn−1

∑
Γn−1∈Λn−1

[
(Fn−1 ◦W )

n−1∑
j=1

∆Ij = Γn−1


· sup
Fn

(Fn ◦W ) (∆In ≥ T − Γn−1)

] (23)

≤ sup
Fn−1

∑
Γn−1∈Λn−1

[
(Fn−1 ◦W )

n−1∑
j=1

∆Ij = Γn−1


· sup
Fn

(Fn ◦W ) (∆In ≥ T − dΓn−1eδ)

] (24)

≤ sup
Fn−1

LU∑
`=LL

[
(Fn−1 ◦W )


n−1∑
j=1

∆Ij


δ

= `δ


· sup
P

∑
x

P (x)
∑
y

W (y|x)1 (d∆In + `δeδ ≥ T )

] (25)

Since maximization over P is a linear program over a simplex,
the maximum is achieved at a vertex, i.e. the deterministic
distribution equal to some x.

= sup
Fn−1

LU∑
`=LL

[
(Fn−1 ◦W )


n−1∑
j=1

∆Ij


δ

= `δ


·max

x

∑
y

W (y|x)Ŝ∗n (d∆In + `δeδ)

] (26)

= sup
Fn−1

LU∑
`=LL

[
(Fn−1 ◦W )


n−1∑
j=1

∆Ij


δ

= `δ

 Ŝ∗n−1(`δ)

]
(27)

Continuing,

= sup
F1

LU∑
`=LL

[
(F1 ◦W ) (d∆I1eδ = `δ) Ŝ∗1 (`δ)

]
(28)

= Ŝ∗0 (0) . (29)

Thus it suffices to compute Ŝ∗0 (0), which can be done
recursively. Note that we are not computing the upper bound
in [13] exactly, but rather an upper bound on it. The parameter
δ controls the tradeoff between the complexity of the algorithm
and the weakening of the bound.

III. ALGORITHMS

A. Algorithm for computation of Ŝ∗0 (0)

1) General setup: The computation of Ŝ∗0 (0) can be carried
out efficiently by defining the transition from one bin to
another when using the j-th input as a discrete time-invariant
Markov process where the state space is simply the set of
all bins. Using this definition we note that the probability of
moving from bin βm given that we start at the upper limit of
bin βl given the AID change distribution induced by the j-th
input only depends on their distance (l − m)δ, and we can
thus define this probability as pl−mj . We can now define the
Toeplitz transition matrix for the j-th input as

Mj =


p0
j p1

j · · · pN−2
j pN−1

j

p−1
j p0

j · · · pN−3
j pN−2

j
...

...
. . .

...
...

p−N+2
j p−N+3

j · · · p0
j p1

j

p−N+1
j p−N+2

j · · · p−1
j p0

j

 , (30)

where the max is taken component-wise. Since by construction
the AID can never fall out of the defined range, this stochastic
matrix can be used to compute the probability of success
vector Ŝ∗k = [Ŝ∗k(LLδ), · · · , Ŝ∗k(LUδ)] induced by the j-th
input for all bins simultaneously as

Ŝ∗k = max
j∈{1,··· ,|X |}

MjŜ
∗
k+1 , (31)

where the maximum operation is an element-wise maximum
over all MjŜ

∗
k+1 vectors. We can now easily compute Ŝ∗0 (0)

as shown in algorithm 1.

Algorithm 1: Computation of probability of success
for optimal controller
Input: W , Q, n, T , δ
Output: Ŝ∗0 (0)

1 Compute ∆Imax and ∆Imin
2 Construct bins with spacing δ in [n∆Imin, n∆Imax]
3 Construct matrices Mj for j ∈ {1, · · · , |X |}
4 Ŝ∗n ← 1 if bin upper bound > T and 0 otherwise
5 for k ∈ {N − 1, · · · , 0} do
6 Ŝ∗k = 0
7 for j ∈ {1, · · · , |X |} do
8 Ŝ∗k ← Element-wise max (Ŝ∗k,MjŜ

∗
k+1)

9 end
10 end
11 Ŝ∗0 (0)← Bin of Ŝ∗0 that contains 0
12 return Ŝ∗0 (0)



2) Algorithm complexity: The complexity of Algorithm
1 depends on the technique used to compute the product
MjŜ

∗
k+1. One possible method to perform this computation

efficiently relies on the fact that all matrices Mj in (30) are
Toeplitz, as this fact allows the use of the FFT to speed up
computation. In this case the algorithm will have time com-
plexity O(nN log(N)|X |) and space complexity O(N |X |)

Another possible method can be derived from the fact that
all matrices Mj are generally sparse as when fixing an input
the information density change can take at most |Y| values,
which translates to at most |Y| non-zero elements in each
row of the matrix. In this case the algorithm will have time
complexity O(nN |Y||X |) and space complexity O(N |X |).

B. Threshold optimization

1) Properties of the optimization landscape: Using algo-
rithm 1 we can now obtain a general converse for any DMC by
choosing an arbitrary Q that enforces independence between
timesteps, and solving the optimization problem derived from
equation (12)

R∗b ≤ min
T

1

n

[
T − log2

([
P (S̄F,Q,T )− ε

]+)]
. (32)

This problem can be difficult to solve using traditional solvers
because that the optimization landscape is piecewise linear and
discontinuous as shown in Fig 1. Given a controller F and a
threshold T we can express its probability of failure as a sum
over all the possible AID outcomes for all controllers using
∆Ik as defined in (20)

P (S̄F,Q,T ) =
∑

Γ∈Λn

1(Γ ≤ T ) · (F ◦W )

 n∑
j=1

∆Ik = Γ


(33)

and note that this quantity must be monotonically increasing
in T for any arbitrary controller. Therefore, given an optimal
controller F ∗ for a threshold T just above a mass-point λm
if the value of T is increased while staying below the next
mass-point with non-zero probability λk the value of (33) will
remain fixed for the original optimal controller as the sum is
unchanged and it will still be optimal. Thus the bound would
grow linearly until T exceeds λk where the probability of
failure will experience a discrete increase causing the overall
bound to potentially drop discontinuously.

Fig. 1. Optimization landscape for BEC with erasure probability δ = 0.3
and probability of error ε = 10−4 at n = 32

2) Heuristics: It is possible to use the characteristics of the
optimization landscape to develop two heuristics that improve
the convergence of solvers in certain conditions:

1) Our previous discussion shows that a global minimum
can only be achieved slightly above a mass-point in Λ,
which makes it possible to restrict the solver to only
evaluate the function slightly above valid mass-points.

2) Intuition and empirical results indicate that the optimal
threshold grows approximately linearly with the block-
length. This property allows faster computation when
evaluating the converse for an increasing sequence of
blocklengths [n1, n2, · · · ] as the converses for the first
blocklengths can be computed using the full range of
thresholds and subsequent converses can be computed
by only analyzing a neighborhood around the thresh-
old predicted by a linear regression obtained from the
previous values.

Since the converse bound in (12) is valid for any threshold T
the bounds obtained using this process are always valid even
if the solver fails to find a minimizing T .

IV. NUMERICAL RESULTS AND COMPARISONS

A. Comparison of DP Converse to Existing Converses

In this section we compare the results from our DP converse
(DPC) to the existing converse and achievability results in
the SPECTRE toolbox [15] for the BSC and the BEC. These
channels are good baselines for the algorithm as they have
small input and output alphabets, well known converse and
achievability results, and the optimal output distributions are
known [5]. In the BSC case our algorithm produces very good
results (Fig. 2) as for blocklengths above 300 the result is
less than 1% above the channel-specific converse, and this
gap closes rapidly as the blocklength increases. The BEC case
provides a challenge to the DPC algorithm as [5] shows that
the optimal distribution is not a product distribution and our
algorithm is restricted to product distributions. However, Fig.
3 shows that the DPC result is still very close to the channel
specific converse with a gap of less than 2.4% to the channel
specific converse for blocklengths larger than 300. The fact
that the optimal output distribution for the BEC is non-product
is a possible explanation for the added looseness in the BEC
converse when compared to our BSC results, but our algorithm
provides good converse results even in this case.

Fig. 2. DPC results for BSC with ε = 10−4 and crossover probability
p = 0.11. The capacity of the channel is approximately 0.5 bits.



Fig. 3. DPC results for BEC with ε = 10−4 and erasure probability pe = 0.3

B. New Converse Bounds Using the DP Approach

Section IV-A shows that the performance of our DP al-
gorithm is comparable to channel specific converses. This
section applies the new algorithm to two DMCs not covered by
the SPECTRE toolbox. Fig. 5 shows that the DPC produces
a reasonable converse for the BAC. For blocklengths above
500 the result is less than 9.9% above the achievable rate
computed using Lemma 14 of [13] with a capacity-achieving
distribution. It is hard to determine whether this gap originates
from looseness of the achievability or converse results, but the
behavior of our converse is consistent with the BSC and BEC
results.

Recall that existing algorithms for computing converses
have complexity that scales with the blocklength n and input
alphabet size |X | as n|X |. Next we show that our DP algorithm
can be used to provide bounds at moderately large n and
X . Consider a DMC with |X | = |Y| = 8 corresponding to
using an AWGN channel with an optimized input alphabet and
quantized outputs as described in [16]. The input alphabet is
a fixed set of constellation points X . The output is quantized
using thresholds −∞ = q0 < q1 < q2 < · · · < q7 < q8 =∞.
With input x, the output is i if x + Z ∈ (qi−1, qi], where
Z ∼ N (0, 1). Such channels are of practical interest, and
it is known that the optimal input distribution has finite-
support [16] given some fixed quantization bins {qi}. Dynamic
Assignment Blahut-Arimoto [17], [18] can be used to find the
optimal X and input distribution when restricting the input
of a channel to be finite-support. Modifying the algorithm
for AWGN channel with amplitude constraint from [17] to
account for output quantization and performing alternating
optimization with {qi} gives a choice of X and {qi}. Setting
|Y| = 8 and the amplitude constraint to 10 yields an optimized
X of cardinality 8 as shown in Fig. 6, which yields the DMC
described by transitions matrix W shown in Fig. 4.

W ≈



0.96 0.04 0.00 0.00 0.00 0.00 0.00 0.00
0.06 0.84 0.10 0.00 0.00 0.00 0.00 0.00
0.00 0.11 0.79 0.10 0.00 0.00 0.00 0.00
0.00 0.00 0.08 0.85 0.07 0.00 0.00 0.00
0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00
0.00 0.00 0.00 0.00 0.10 0.79 0.11 0.00
0.00 0.00 0.00 0.00 0.00 0.10 0.84 0.06
0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.96


Fig. 4. Equivalent DMC representation for the quantized output amplitude
constrained AWGN channel.

Fig. 7 shows that the DPC also provides a reasonable
converse in this case. For blocklengths above 300 the converse
is less than 6.8% above the achievable rate computed using
Lemma 14 of [13] with a capacity-achieving distribution.

Fig. 5. DPC results for BAC with ε = 10−4 and crossover probabilities
p1 = 0.01, p2 = 0.02. The achievability curve is derived from using Lemma
14 in [13] with a capacity achieving distribution.

Fig. 6. Constellation and quantization thresholds that maximize mutual
information for the unit noise AWGN channel with quantized output under
amplitude constraint 10. These induce the DMC given by W shown above.

Fig. 7. DPC results for finite-alphabet, quantized-output AWGN channel
described by the W shown above with ε = 10−4. The achievability curve is
derived using Lemma 14 in [13] with a capacity achieving distribution.

V. CONCLUSION

This paper presents a general technique for computing
finite-blocklength converse bounds for an arbitrary DMC. The
converse uses dynamic programming to solve a stochastic
control formulation of the converse problem. The utility of the
approach was verified for the BSC, BEC, BAC and a DMC
resulting from an amplitude constrained AWGN channel with
quantized output. Since the technique presented provides a
valid bound for any product output distribution, the bound
can be further improved by optimizing the output distribution
over this set. Identifying the best such output distribution is
a topic for future work, as is the extension to channels with
cost constraints.
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[2] Y. Altuğ and A. B. Wagner, “Refinement of the sphere-packing bound:
Asymmetric channels,” IEEE Trans. Inf. Theory, vol. 60, no. 3, pp.
1592–1614, Mar. 2014.

[3] ——, “On exact asymptotics of the error probability in channel coding:
symmetric channels,” IEEE Trans. Inf. Theory, vol. 67, no. 2, pp. 844–
868, Feb. 2021.

[4] Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel coding rate in the
finite blocklength regime,” IEEE Transactions on Information Theory,
vol. 56, no. 5, pp. 2307–2359, 2010.

[5] Y. Polyanskiy, “Saddle point in the minimax converse for channel
coding,” IEEE Transactions on Information Theory, vol. 59, no. 5, pp.
2576–2595, 2013.

[6] T. Erseghe, “On the evaluation of the polyanskiy-poor-verdu converse
bound for finite blocklength coding in AWGN,” CoRR, vol.
abs/1401.7169, 2014. [Online]. Available: http://arxiv.org/abs/1401.7169

[7] N. Elkayam and M. Feder, “On the calculation of the minimax-converse
of the channel coding problem,” 2016.

[8] W. Matthews, “A linear program for the finite block length converse of
Polyanskiy–Poor–Verdú via nonsignaling codes,” IEEE Transactions on
Information Theory, vol. 58, no. 12, pp. 7036–7044, 2012.

[9] O. Kosut, “Boosting output distributions in finite blocklength channel
coding converse bounds,” in 2015 IEEE Information Theory Workshop
(ITW), 2015, pp. 1–5.

[10] G. Vazquez-Vilar, A. G. i Fabregas, T. Koch, and A. Lancho, “Sad-
dlepoint approximation of the error probability of binary hypothesis
testing,” in 2018 IEEE International Symposium on Information Theory
(ISIT), 2018, pp. 2306–2310.

[11] T. Erseghe, “Coding in the finite-blocklength regime: Bounds based on
laplace integrals and their asymptotic approximations,” IEEE Transac-
tions on Information Theory, vol. 62, no. 12, pp. 6854–6883, 2016.

[12] S. Tatikonda and S. Mitter, “The capacity of channels with feedback,”
IEEE Transactions on Information Theory, vol. 55, no. 1, pp. 323–349,
2009.

[13] A. B. Wagner, N. V. Shende, and Y. Altuğ, “A new method for em-
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