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Abstract

Most differential privacy mechanisms are applied (i.e., composed) numerous times on sen-
sitive data. We study the design of optimal differential privacy mechanisms in the limit of a
large number of compositions. As a consequence of the law of large numbers, in this regime
the best privacy mechanism is the one that minimizes the Kullback-Leibler divergence between
the conditional output distributions of the mechanism given two different inputs. We formu-
late an optimization problem to minimize this divergence subject to a cost constraint on the
noise. We first prove that additive mechanisms are optimal. Since the optimization problem
is infinite dimensional, it cannot be solved directly; nevertheless, we quantize the problem to
derive near-optimal additive mechanisms that we call “cactus mechanisms” due to their shape.
We show that our quantization approach can be arbitrarily close to an optimal mechanism. Sur-
prisingly, for quadratic cost, the Gaussian mechanism is strictly sub-optimal compared to this
cactus mechanism. Finally, we provide numerical results which indicate that cactus mechanism
outperforms the Gaussian mechanism for a finite number of compositions.

This paper is Part I in a pair of papers, where Part II is [1].

1 Introduction

Likelihood ratios are at the heart of most privacy metrics. Consider the problem of quantifying the
privacy loss suffered by a sensitive variable X given an observation of a disclosed variable Y . For
example, X may represent a dataset and Y a randomized function computed over X. Privacy can
be measured in terms of properties of the privacy loss random variable, defined as

Lx,x′ := log
dPY |X=x

dPY |X=x′
(Y ), (1)

where Y ∼ PY |X=x and x, x′ ∈ X := supp(X). The channel PY |X is often referred to as a privacy
mechanism.
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Today, the most popular privacy definition (including, in practice [2–4]) is differential privacy
(DP), which quantifies privacy in terms of Lx,x′ when x, x′ are close or “neighboring.” Thus, given
a metric d : X × X → R, PY |X is said to be (ε, δ)-differentially private ((ε, δ)-DP) [5] if

sup
d(x,x′)≤s

sup
A⊂Y

[

PY |X=x(A)− eεPY |X=x′(A)
]

≤ δ, (2)

where s determines when inputs x and x′ are neighboring, and Y := supp(Y ). Intuitively, if a
mechanism is (ε, δ)-differentially private for sufficiently small ε and δ, then an adversary observing
Y cannot accurately distinguish between small changes in X.

Most privacy mechanisms are applied several times on sensitive data. Quantifying privacy
guarantees under multiple compositions of a mechanism is a challenging problem. In the simple
case where the same mechanism PY |X is independently applied n times on data X generating
output Y n, i.e., PY n|X =

∏n
i=1 PYi|X , the privacy loss random variable is given by

Ln
x,x′ :=

n
∑

i=1

log
dPYi|X=x

dPYi|X=x′
(Yi), (3)

where Yi ∼ PYi|X=x. Differential privacy can be cast in terms of the privacy loss random variable.
The reader can directly verify that n independent applications of a mechanism PY |X is (ε, δ)-DP if

sup
d(x,x′)≤s

E

[

(

1− e
−(Ln

x,x′
−ε)
)+
]

≤ δ. (4)

From the law of large numbers, the distribution of Ln
x,x′/n will concentrate around its mean, the

KL-divergence, as
1

n
E
[

Ln
x,x′

]

= D
(

PY |X=x‖PY |X=x′

)

. (5)

Since the function f(u) := (1−e−nu+ε)+ is non-decreasing, in the limit of large compositions, privacy
mechanisms with lower values ofD(PY |X=x‖PY |X=x′) will enjoy stronger (ε, δ)-DP guarantees. Thus,
regardless of the exact distribution of the privacy loss random variable, its mean (5) plays a central
role in the privacy guarantees offered after many compositions. In applications such as privacy-
ensuring machine learning, the number of compositions frequently exceeds n = 103.

We study the design of privacy mechanisms with favorable (ε, δ)-DP guarantees under a large
number of compositions. Our approach departs from previous work in that we focus on the large-
composition regime instead of optimizing (2). Since after many compositions, privacy will be mostly
determined by the mean of the privacy loss random variable (5), we solve the optimization problem

inf
PY |X∈R

sup
|x−x′|≤s

D(PY |X=x‖PY |X=x′)

subject to sup
x∈R

E[c(Y − x) | X = x] ≤ C,
(6)

where c : R → [0,∞) is a pre-specified cost function, s, C > 0 are constants, and R is the set of
all Markov kernels on R. Note that the cost function is critical: without the constraint, (6) can be
trivially solved by any mechanism that is independent of X.

Our main contributions are as follows:

1. We show (Thm. 1) that additive mechanisms—i.e., where Y = X + Z for a noise variable Z
independent of X—suffice to minimize (6).
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2. Even restricting to additive mechanisms, (6) is an infinite-dimensional optimization problem,
so it cannot be solved directly. Instead, we formulate an approximate problem that is finite
dimensional and can be solved efficiently. We prove (Thm. 3) that this approximate problem can
get arbitrary close to optimal.

3. We solve the approximate problem to derive (near) optimal mechanisms for the quadratic cost
function, i.e., c(x) = x2. We dub the resulting mechanism the “cactus mechanism” due to the
shape of the distribution (see Fig. 1). Surprisingly, the Gaussian distribution is strictly sub-
optimal for (6), as the cactus mechanism achieves a smaller KL divergence for the same variance.

4. We bound the (ε, δ)-DP for the cactus mechanism in the context of sub-sampled stochastic
gradient descent using the moments accountant method. Compared to the same analysis applied
to a Gaussian mechanism, our approach does better for a reasonable number of compositions.

1.1 Related Work

Identifying optimal mechanisms is a fundamental and challenging problem in the domain of differ-
ential privacy. There have been several works in the literature that have attempted to address this
problem. For instance, within the class of additive noise mechanisms and under the single shot
setting (i.e., no composition), Ghosh et al. [6] showed that the geometric mechanism is universally
optimal for (ε, 0)-DP in a Bayesian framework, and Gupte and Sundararajan [7] derived the optimal
noise distribution in a minimax cost framework. For a rather general cost function, the optimal
noise distribution was shown to have a staircase-shaped density function [8–10].

Geng and Viswanath [11] showed that for (ε, δ)-DP and integer-valued query functions, in the
single-shot setting, the discrete uniform noise distribution and the discrete Laplacian noise distri-
bution are asymptotically optimal (for L1 and L2 costs) within a constant multiplicative gap in the
high privacy regime (i.e., both ε and δ approach zero). Geng et al. [12] studied the same setting ex-
cept for real-valued query functions and identified truncated Laplace distribution is asymptotically
optimal in various high privacy regimes. Finally, Geng et al. [13] showed that the optimal noise
distribution for real-valued query and (0, δ)-DP is uniform with probability mass at the origin. Our
work differs from these works in that we focus on the optimal mechanisms under a large number of
compositions, rather than the single shot setting.

When considering a composition of n mechanisms, an important line of research has been to
derive tighter composition results: relationships between the DP parameters of the composed mech-
anism and the parameters of each constituent mechanism. There are several composition results
in the literature, such as [14–19]. More recently, Dong et al. [20] have proposed a composition
result for large n and for a new variant of DP, called Gaussian-DP, that leverages the central limit
theorem. These results can be sub-optimal (see, for example, [21, Fig. 1]). Consequently, numerical
composition results have gained increasing traction as they lead to easier, yet powerful, methods
for accounting the privacy loss in composition [21–24]. In particular, Koskela et al. [22] obtained
a numerical composition result based on a numerical approximation of an integral that gives the
DP parameters of the composed mechanism. The approximation is carried out by discretizing the
integral and by evaluating discrete convolutions via the fast Fourier transform algorithm. The run-
ning time and memory needed for this approximation were subsequently improved [21]. While our
work shares the focus on the large composition regime, we are primarily interested in synthesizing
optimal mechanisms rather than analyzing existing mechanisms.
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1.2 Notation

The Lebesgue measure on R is denoted by λ. We denote by R the set of all Markov kernels1 on
R, i.e., conditional distributions PY |X for R-valued X and Y such that x 7→ PY |X=x(B) is a Borel
function for all Borel sets B ⊂ R. The set B denotes all Borel probability measures on R. We
fix a real-valued random variable X throughout, and let PX ∈ B be its induced Borel probability
measure. The KL-divergence is denoted by D(P‖Q), and also by D(p‖q) if P,Q ≪ λ with densities
p and q. The expectation is denoted by EP [f ] :=

∫

R
f dP , and also by Ep[f ] if P ≪ λ has probability

density function (PDF) p. We let Ta denote the shift operator, i.e., for a function f of a real variable
the function Taf is defined as (Taf)(x) := f(x−a), and for a measure P the measure TaP is defined
by (TaP )(B) := P (B − a).

2 Optimality of Additive Continuous Channels

We start by deriving characterizations of solutions to the optimization problem (6). The difficulty
of this problem lies in the fact that we are optimizing over all conditional distributions. This not
only makes the problem infinite-dimensional, but it also renders direct approaches ineffective. The
main result of this section, shown in Theorem 1, is that it suffices to consider continuous additive
channels. In other words, the optimization in (6) may be restricted to conditional distributions of
the form PY |X=x = TxP for some Borel probability measure P on R that is absolutely continuous
with respect to the Lebesgue measure. Equipped with this reduction, we build in the next section
an explicit family of finitely-parametrized distributions that are also optimal in (6).

2.1 Assumptions and Definitions

Throughout the paper, we require the cost function to satisfy the following properties.

Assumption 1. The cost function c : R → R satisfies:

• Positivity: c(x) ≥ 0 for all x ∈ R, and c(0) = 0.

• Symmetry: c(x) = c(−x) for all x ∈ R.

• Monotonicity: c(x) ≤ c(x′) if |x| ≤ |x′|.

• Continuity: c is continuous over R.

• Tail regularity: There exist α, β > 0 such that c(x) ∼ βxα as x→ ∞.

A natural choice of cost function is the quadratic cost c(x) = x2, but we allow c(x) to be any
function that satisfies the above assumptions. For example, c(x) = |x|α for any positive α is a
natural family of cost functions.

Let P ⊂ R be the set of conditional distributions PY |X satisfying the cost constraint in (6), i.e.,
set

P :=

{

PY |X ∈ R ; sup
x∈R

E[c(Y − x) | X = x] ≤ C

}

. (7)

The infimal value in (6) is then

KL⋆ := inf
PY |X∈P

sup
x,x′∈R:|x−x′|≤s

D(PY |X=x‖PY |X=x′). (8)

1It is true that any conditional distribution from R into R has a version that is a Markov kernel [25, Chapter 4,
Theorem 2.10].
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We are interested in computing KL⋆, as well as mechanisms PY |X that approach this optimal value.
Note that, for clarity of presentation, we suppress the dependence on (s, c, C) in the notations P

and KL⋆.
In the main problem (6), we allow PY |X to be any mechanism that produces Y given X. A

more restrictive but natural and easy-to-implement class of mechanisms is the additive mechanism
class. An additive mechanism is given by PY |X=x(B) = TxP (B) where P is a Borel probability
measure on R. In other words, an additive mechanism PY |X has Y of the form Y = X+Z for some
noise random variable Z ∼ P ∈ B that is independent of the input X. Let Padd ⊂ B be the set of
additive mechanisms satisfying the cost constraint in (6),

Padd := {P ∈ B ; EP [c] ≤ C} . (9)

Since the KL-divergence is shift-invariant, restricting the optimization (6) to additive mechanisms
amounts to considering the simplified optimization problem

KL⋆
add := inf

P∈Padd

sup
a∈R:|a|≤s

D(P‖TaP ). (10)

Of course, it is immediate that KL⋆ ≤ KL⋆
add. In fact, we will show below that these quantities are

the same, meaning that there is no loss in restricting to additive mechanisms.

2.2 Optimality of Continuous Additive Mechanisms

The optimization problem in (6) is a convex problem, but the fact that the feasible set P is of
infinite dimension means it cannot be solved directly, nor do the tractable properties one expects
of a convex optimization problem necessarily follow. For example, in any finite dimensional convex
optimization problem, a symmetry in the problem leads to the same symmetry in the solution. In
this problem, one can see that shifting the mechanism—i.e., given PY |X , construct QY |X=x(B) =
PY |X=x+z(B + z) for some z—does not change the cost constraint nor the objective value in (6).
Thus, one might be inclined to conclude that the optimal mechanism is invariant to a shift (i.e., is
an additive mechanism). Unfortunately, the infinite-dimensional nature of the problem means that
this conclusion is not immediate. We resolve this issue in the following theorem which states that
additive mechanisms are in fact optimal in (6).

Theorem 1. We have that
KL⋆ = KL⋆

add, (11)

and there exists a P ⋆ ∈ Padd achieving this value. Further, any such P ⋆ is necessarily absolutely
continuous.

Proof sketch. The proof is given in Appendix A. We give here only a high level description of
the approach. Let P (k)

Y |X be a sequence achieving KL⋆. We make these mechanisms increasingly
closer to being additive, while sacrificing neither feasibility nor utility, by considering the convex
combinations

P
(k)
Y |X=x(B) := E

[

P
(k)
Y |X=x+Zk

(B + Zk)
]

(12)

where Zk ∼ Unif([−k, k]). Specifically, one can invoke Prokhorov’s theorem on the P
(k)
Y |X , thereby

extracting a probability measure P ⋆ such that P
(k)
Y |X=x → TxP

⋆ weakly for each fixed x. Finally,
we show that the mechanism P ⋆ is optimal by invoking joint convexity and lower-semicontinuity of
the KL-divergence.
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Remark 1. The proof of P ⋆ ≪ λ only relies on the property that P ⋆ ≪ TaP
⋆ for every |a| ≤ s,

which holds in view of KL⋆ < ∞. Therefore, any feasible additive mechanism must be absolutely
continuous with respect to the Lebesgue measure, i.e., if µ ∈ B satisfies sup|a|≤sD(µ‖Taµ) < ∞
then we necessarily have µ≪ λ.

3 Numerical Approximation: The Cactus Distribution

The optimization problem over additive mechanisms in (10) is infinite-dimensional, so it cannot be
solved numerically as-is, and it appears to have no closed-form solution for non-trivial cost functions.
The lack of closed-form solution is true even for the simple case of c(x) = x2: to our surprise, as will
be illustrated later, the Gaussian mechanism is not optimal!2 In our companion paper [1], we explore
the regime where s → 0+; in this limit, we show that the optimal distribution can be determined
exactly, and in fact for quadratic cost the limiting optimal distribution is Gaussian—although for
other costs the optimal distribution is much more surprising.

In the regime of fixed positive s, to find practically achievable near-optimal mechanisms, we
resort to numerical approximation of (10). In this section, we fix s = 1. We can do this without
loss of generality simply by scaling: that is, the optimization problem in (10) with sensitivity s and
cost function c(x) is equivalent to the same problem with sensitivity 1 and cost function c(sx).

To approximate (10) by a numerically tractable problem, we (i) quantize the distribution, and
(ii) only explicitly parameterize the distribution in a certain interval. Specifically, we construct a
mapping from finite-length vectors to continuous distributions as follows.

Definition 1. Fix two positive integers n and N , and a constant r ∈ (0, 1). Consider the partition
of R by intervals {Jn,i}i∈Z defined by: Jn,0 := [−1/(2n), 1/(2n)] and

Jn,i :=







(

i−1/2
n , i+1/2

n

]

, if i > 0,
[

i−1/2
n , i+1/2

n

)

, if i < 0.
(13)

We associate to each vector p = (p0, p1, . . . , pN ) ∈ [0, 1]N+1 a piecewise constant function that is
defined by

fn,r,p(x) =

{

np|i|, if x ∈ Jn,i,with |i| < N,

npNr
|i|−N , if x ∈ Jn,i,with |i| ≥ N.

(14)

We also associate with fn,r,p the Borel measure Pn,r,p, where

Pn,r,p(B) :=

∫

B
fn,r,p(x) dx. (15)

Remark 2. Note that
∫

R

fn,r,p(x) dx = p0 +

N−1
∑

i=1

2pi +
2pN
1− r

=: Sr,p. (16)

If Sr,p = 1, then Pn,r,p is a probability measure with density fn,r,p. This distribution is symmetric
around the origin, i.e., fn,r,p(x) = fn,r,p(−x). Further, its tails decay almost geometrically: for (N+
1/2)/n < x1 < x2 one has fn,r,p(x2) = rnk · fn,r,p(x1) where k = (⌈nx2 − 1/2⌉ − ⌈nx1 − 1/2⌉) /n ≈
x2 − x1.

2Of course, simply because Gaussian is not optimal does not imply that there is no closed-form solution. It is
possible to write a set of KKT conditions for (10), which we have omitted from this paper in the interest of space.
This set of KKT conditions cannot be solved in closed-form.
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The main results of this section are: we show that the distribution family introduced in Defini-
tion 1 is optimal for (6), and we show that the optimal distribution within this family (which we
will call the cactus distribution) is obtainable via a tractable finite-dimensional convex optimization
problem.

We use the following notation. Consider the restriction of (10) to the mechanisms constructible
by Definition 1. For a fixed triplet (n,N, r) ∈ N

2×(0, 1), consider the set of mechanisms Cn,N,r ⊂ B,

Cn,N,r :=
{

Pn,r,p ; p ∈ [0, 1]N+1, Sr,p = 1
}

. (17)

(Recall the definition of Sr,p from (16).) Denote the optimal value achievable by the class Cn,N,r by

KL⋆
n,N,r(C) := inf

P∈Cn,N,r

EP [c]≤C

sup
|a|≤1

D(P‖TaP ). (18)

We show next that we may restrict the shift a in (18) to take values over the finite set
{1/n, 2/n, · · · , 1} (rather than varying over the whole interval [−1, 1]), thereby rendering (18)
a finite-dimensional optimization problem amenable to standard numerical convex-programming
methods.

For each i ∈ Z, we denote the constants

cn,i :=

∫

Jn,i

nc(x) dx. (19)

Theorem 2. Fix r ∈ (0, 1), and positive integers n < N . The minimization (18) can be recast as
the following convex program over the variable p = (p0, · · · , pN ) ∈ R

N+1

minimize
p

max
k∈{1,...,n}

1

2

N−k−1
∑

i=−N+1

(p|i| − p|i+k|) log
p|i|

p|i+k|
+

N−1
∑

i=N−k

(pi − pNr
i+k−N) log

pi
pNri+k−N

+ pN
1− rk

1− r
k log r−1

subject to p0cn,0 +

N−1
∑

i=1

2picn,i + 2pN

∞
∑

i=N

cn,ir
i−N ≤ C,

p0 +

N−1
∑

i=1

2pi +
2pN
1− r

= 1,

pi ≥ 0 for all i ∈ {0, . . . , N}. (20)

Proof. See Appendix B.

Figure 1 shows an example of the distribution that results from the finite-dimensional optimiza-
tion problem in (20) with a quadratic cost. The shape of this distribution3 has inspired the name
the “cactus distribution.” The following result shows that cactus mechanisms derived from the
optimization problem (20) are in fact globally optimal for the main optimization problem (6).

Theorem 3. Denote the optimal value a cactus distribution can achieve by

KL⋆
Cactus := lim

ε→0+
inf

(n,N,r)∈N2×(0,1)
KL⋆

n,N,r(C + ε). (21)

We have that KL⋆ = KL⋆
Cactus.

3In addition to the state of Arizona being home of several of the authors.
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Fig. 1: The optimal distribution p(z), found by solving (20) (and dubbed the cactus distribution),
plotted on a semi-log scale. The cost function is c(z) = z2, and the parameters are: s = 1, C = 0.25,
n = 200, N = 1600, and r = 0.9.

Proof. See Appendix C.

Remark 3. The proof of Theorem 3 gives some guidelines for choosing the parameters (n,N, r).
For example, optimal cactus distributions can be obtained by restricting the ratio N/n (chosen
sufficiently large), and choosing r = 1−Θα(N

−1).

4 Numerical Results

We solve the optimization problem (20) using an interior-point method. An example of the cactus
distribution for quadratic cost is shown in Figure 1. Figure 2 compares the maximal KL-divergence
achieved by the cactus to that of Gaussian distributions for fixed sensitivity s = 1 and various σ.
As noted above, varying σ with fixed s is equivalent to varying s with fixed σ. The KL-divergence
for cactus is computed numerically, and for Gaussian mechanisms the KL-divergence is exactly
1

2σ2 . The cactus distribution outperforms the Gaussian distribution in terms of KL-divergence for
all values of σ, although the difference decreases as σ grows such that for larger values of σ it
is difficult to discern any gap between the curves in Figure 2. (Our companion paper [1] gives a
theoretical explanation for why Gaussian is so close to optimal as s/σ decreases.) To illustrate that
this improvement in KL-divergence leads to an improvement in (ε, δ)-DP, we compute the achieved
privacy via moments accountant [17] for each mechanism. Figure 3 shows the resulting ε value as
a function of the number of compositions, for fixed δ = 10−3. Indeed, the cactus mechanism does
better than Gaussian.

To give a reasonable comparison in the context of machine learning, we modified the tutorial code
in TensorFlow-Privacy [26], which implements the DP-stochastic gradient descent (SGD) algorithm
with a Gaussian mechanism on a convolutional neural network (CNN) model. We use the training
results from the original tutorial as a benchmark, then replace the Gaussian mechanism with our
cactus mechanism, and train the model using the renewed setting. We select a noise level σ =

√
0.1.

We test the original and modified model on a popular image dataset, MNIST, which is of size 60000.
We choose a batch-size 250, such that each epoch consists of 240 iterations (i.e., compositions) and
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Fig. 2: Achieved maximal KL-divergence sup|a|≤sD(p‖Tap) versus σ, the (quadratic) cost constraint
is of the form E[Z2] ≤ σ2 = C with fixed sensitivity s = 1.
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Fig. 3: Privacy parameter ε versus the number of compositions, computed via the moments accoun-
tant, where δ = 10−3, and quadratic cost C = 0.1 with fixed sensitivity s = 1.

the sub-sampling rate4 is q = 250/60000 ≈ 0.00417. Figure 4 shows the achieved (ε, δ)-DP as
computed by the moments account in this setting. Fixing δ = 10−5, Figure 5 shows the tradeoff
between privacy ε and accuracy of the resulting CNN as the number of training iterations increases.
One can see that for a fixed privacy budget (i.e., fixed ε and δ), the cactus mechanism allows more
training iterations and, thus, better accuracy.

4The cactus mechanism is not optimized for subsampling. Nevertheless, we observe numerical performance of the
cactus mechanism in the subsampling setting outperforming that of the Gaussian mechanism.
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Fig. 4: Privacy parameter ε versus the number of compositions, computed via the moments ac-
countant, where δ = 10−5, subsampling rate q ≈ 0.00417, and quadratic cost C = 0.1 with fixed
sensitivity s = 1.
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Fig. 5: Model accuracy versus privacy parameter ε. The settings are the same as in Figure 4 and
experiment details are given in Section 4.
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A Proof of Theorem 1: Optimality of Additive Continuous Chan-

nels

Let F : R → [0,∞] denote the objective function in (6), i.e.,

F (PY |X) := sup
|u−v|≤s

D(PY |X=u‖PY |X=v). (22)

Thus,
KL⋆ = inf

PY |X∈P

F (PY |X). (23)

Fix a sequence of conditional distributions
{

P
(k)
Y |X

}

k∈N
⊂ P (24)

satisfying

KL⋆ = lim
k→∞

F
(

P
(k)
Y |X

)

. (25)

Recall that by assumption, the version of each conditional distribution P
(k)
Y |X we choose is regular,

i.e., x 7→ P
(k)
Y |X=x(B) is a Borel function for each Borel set B ⊂ R. Note that KL⋆ < ∞ since,

e.g., the Gaussian mechanism is feasible. Throwing away the first few elements in the sequence, we

assume that F
(

P
(k)
Y |X

)

<∞ for each k ∈ N.

We break the proof down into several steps:

1. Introduce Markov kernels P
(k)
Y |X as “continuous” convex combinations of the P (k)

Y |X .

2. The P
(k)
Y |X also satisfy the cost constraint.

3. The P
(k)
Y |X asymptotically achieve KL⋆.

4. The P
(k)
Y |X=x are asymptotically shifted versions TxP ⋆ of a fixed P ⋆ ∈ B.

5. P ⋆ achieves KL⋆.

• Step 1 : Averaging the P (k)
Y |X .

For k ∈ N, we will define the Markov kernel P
(k)
Y |X ∈ R by

P
(k)
Y |X=x(B) :=

1

2k

∫ k

−k
P

(k)
Y |X=x+z(B + z) dz. (26)

Of course, we need to check that (26) indeed yields a Markov kernel P
(k)
Y |X . In view of Fubini’s

theorem, it suffices to check that the map (x, z) 7→ P
(k)
Y |X=x+z(B+ z) is jointly Borel (for every fixed

Borel set B ⊂ R). This joint measurability is not self-evident, so we check next that it indeed holds.
Let the transition probability kernel L(k) : R2 × B(R) → [0, 1] be defined by

L(k)((x, z), A) := P
(k)
Y |X=x+z(A). (27)
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Let N (k) : R2 ×B(R) → [0, 1] denote the map

N (k)((x, z), B) := P
(k)
Y |X=x+z(B + z). (28)

For each (x, z) ∈ R
2 and Borel set B ⊂ R, we may write N (k)((x, z), B) as the integral of a

nonnegative Borel function against L((x, z), dy), namely,

N (k)((x, z), B) =

∫

R

1B(y − z)L((x, z), dy). (29)

Hence (see, e.g., [25, Chapter 1, Proposition 6.9]) (x, z) 7→ N (k)((x, z), B) is a Borel function. Hence,

P
(k)
Y |X as given by (26) is indeed a well-defined Markov kernel on R.

For the next steps, we will use the following notation

R
(k,x)
Y |X=z(B) := P

(k)
Y |X=x+z(B + z), (30)

P (k,x)(B) := P
(k)
Y |X=x(B), (31)

U (k)(B) :=
1

2k
· λ(B ∩ [−k, k]). (32)

Note that R(k,x)
Y |X ∈ R and P (k,x) ∈ B for each fixed (k, x) ∈ N× R, and (26) may be rewritten as

P (k,x) = R
(k,x)
Y |X ◦ U (k). (33)

• Step 2 : The P
(k)
Y |X satisfy the cost constraint.

Fix k ∈ N, and we will show next that P
(k)
Y |X ∈ P, i.e., that P

(k)
Y |X satisfies the cost constraint.

Recall that a Markov kernel PY |X ∈ R belongs to P if and only if it satisfies

sup
x∈R

EPY |X=x
[Txc] ≤ C. (34)

By the assumption that P (k)
Y |X ∈ P, we have that

E
P

(k)
Y |X=x

[Txc] ≤ C (35)

for every x ∈ R. Shifting the variable of integration in (35) by a fixed constant −z, we obtain that

E
T−zP

(k)
Y |X=x

[Tx−zc] ≤ C (36)

for every (x, z) ∈ R
2. Replacing x by x+ z in (36), we conclude that (see (30))

E
R

(k,x)
Y |X=z

[Txc] ≤ C (37)

for every (x, z) ∈ R
2. We proceed via the following standard approximation by simple functions

argument.
Fix x ∈ R, and let

∑

j aj1Bj (y) be a nonnegative simple function upper bounded by (Txc)(y).

Integrating against R(k,x)
Y |X=z(dy) we deduce from (37) that

∑

j

ajR
(k,x)
Y |X=z(Bj) ≤ C (38)

12



for every z ∈ R. Integrating (38) against U (k)(dz), and noting that P (k,x) = R
(k,x)
Y |X ◦U (k) (see (33)),

we deduce that
∑

j

ajP
(k,x)(Bj) ≤ C. (39)

Now, as (39) holds for all nonnegative simple functions below Txc, taking an increasing sequence of
nonnegative simple function converging pointwise to Txc we conclude that

EP (k,x)[Txc] ≤ C. (40)

In other words (see (31)),
E
P

(k)
Y |X=x

[Txc] ≤ C. (41)

As (41) holds for all x ∈ R, we have shown that P
(k)
Y |X ∈ P.

• Step 3 : The P
(k)
Y |X are asymptotically optimal.

Next, we use monotonicity of the KL-divergence under conditioning (see Lemma 1) to show the
limit

KL⋆ = lim
k→∞

F
(

P
(k)
Y |X

)

. (42)

Shift-invariance of the KL-divergence implies that, for each x, x′, z ∈ R,

D
(

R
(k,x)
Y |X=z

‖R(k,x′)
Y |X=z

)

= D
(

P
(k)
Y |X=x+z

‖P (k)
Y |X=x′+z

)

. (43)

Thus, as (x+ z)− (x′ + z) = x− x′, we conclude that

sup
|x−x′|≤s

z∈R

D
(

R
(k,x)
Y |X=z‖R

(k,x′)
Y |X=z

)

= F
(

P
(k)
Y |X

)

(44)

By assumption of optimality of the P (k)
Y |X (see (25)), there exists a k0 such that for all k ≥ k0,

sup
|x−x′|≤s

z∈R

D
(

R
(k,x)
Y |X=z

‖R(k,x′)
Y |X=z

)

≤ KL⋆ + δ. (45)

By definition of KL-divergence, we infer R(k,x)
Y |X=z ≪ R

(k,x′)
Y |X=z for all z ∈ R and |x−x′| ≤ s. Also, (45)

shows in particular that

sup
|x−x′|≤s

Eξ∼U (k)

[

D
(

R
(k,x)
Y |X=ξ‖R

(k,x′)
Y |X=ξ

)]

≤ KL⋆ + δ. (46)

Using (33), Lemma 1 yields that

sup
|x−x′|≤s

D
(

P (k,x)‖P (k,x′)
)

≤ KL⋆ + δ. (47)

Taking δ → 0+, we see that (42) holds.

• Step 4 : P (k,x) is asymptotically TxP ⋆ for a fixed P ⋆.
Next, we show that there is a measure P ⋆ ∈ B such that, for every x ∈ R, we have the weak

convergence
P (k,x) → TxP

⋆ (48)
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as k → ∞.
First, for each fixed x ∈ R, we establish the total-variation distance convergence

lim
k→∞

∥

∥

∥P (k,x) − TxP
(k,0)

∥

∥

∥

TV
= 0. (49)

We may write
(

TxP
(k,0)

)

(B) =
1

2k

∫ k−x

−k−x
R

(k,x)
Y |X=z(B) dz. (50)

Therefore, for any Borel set B ⊂ R we have that
∣

∣

∣P (k,x)(B)− TxP
(k,0)(B)

∣

∣

∣ ≤ 1

2k

∫

[−k,k]∆[−k−x,k−x]
R

(k,x)
Y |X=z(B) dz ≤ |x|

k
, (51)

where ∆ denotes the symmetric difference. As the bound (51) is uniform in B, we conclude that
the total-variation limit in (49) holds.

The next ingredient we need is that the set {P (k,0)}k∈N ⊂ B is tight, i.e., that for any ε > 0
there exists an n > 0 such that

sup
k∈N

P (k,0)(R \ [−n, n]) ≤ ε. (52)

Fix ε > 0. By the assumption that c(x) ∼ β|x|α where α, β > 0, we have lim|x|→∞ c(x) = ∞. Thus
there exists an integer n such that c(x) ≥ C/ε whenever |x| ≥ n. Then, for each (z, k) ∈ R× N,

R
(k,0)
Y |X=z (R \ [−n, n]) = P

(k)
Y |X=z (R \ [−n+ z, n + z]) (53)

≤
∫

R\[−n+z,n+z]

c(y − z)

c(n)
dP

(k)
Y |X=z(y) (54)

≤ c(n)−1
E
P

(k)
Y |X=z

[Tzc] (55)

≤ c(n)−1 · C (56)

≤ ε, (57)

where (54) follows by monotonicity of c, (55) by nonnegativity of c, and (56) since P (k)
Y |X ∈ P.

Hence,
sup

(z,k)∈R×N

R
(k,0)
Y |X=z (R \ [−n, n]) ≤ ε. (58)

Averaging over z, we deduce that (52) holds, i.e., that {P (k,0)}k∈N is tight.
By tightness of {P (k,0)}k∈N, we conclude via Prokhorov’s theorem [25, Chapter 3, Theorem 5.13]

after passing to a subsequence that there is a P ⋆ ∈ B such that P (k,0) → P ⋆ weakly as k → ∞, i.e.,
for every continuous and bounded function f : R → R we have

lim
k→∞

EP (k,0) [f ] = EP ⋆[f ]. (59)

This immediately implies that, for each x ∈ R, we also have

TxP
(k,0) → TxP

⋆ (60)

weakly as k → ∞. As convergence in total variation is stronger than weak convergence, we conclude
from (49) and (60) that for every x ∈ R

P (k,x) → TxP
⋆ (61)
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weakly as k → ∞.

• Step 5 : The additive mechanism P ⋆ is optimal.
The final step is showing that P ⋆ attains KL⋆ and satisfies the cost constraint. By joint lower-

semicontinuity of the KL-divergence [27, Theorem 1], we deduce from (61) that for each x ∈ R

D(P ⋆‖TxP ⋆) ≤ lim inf
k→∞

D
(

P (k,0)‖P (k,x)
)

. (62)

But we also have
sup
|x|≤s

D
(

P (k,0)‖P (k,x)
)

≤ F
(

P
(k)
Y |X

)

. (63)

Therefore, taking the supremum over |x| ≤ s in (62), we infer from (42) that

sup
|x|≤s

D(P ⋆‖TxP ⋆) ≤ KL⋆. (64)

Hence, it only remains to check that P ⋆ ∈ Padd for us to conclude that equality holds in (64).
For every A > 0 and x ∈ R, the function 1[−A,A] · Txc is continuous and bounded. Hence, the

weak convergence P (k,x) → TxP
⋆ yields

ETxP ⋆

[

1[−A,A] · Txc
]

= lim
k→∞

EP (k,x)

[

1[−A,A] · Txc
]

. (65)

As P
(k)
Y |X ∈ P, nonnegativity of c implies in view of (65) that

ETxP ⋆

[

1[−A,A] · Txc
]

≤ C. (66)

By the monotone convergence theorem, taking A→ ∞ yields

ETxP ⋆ [Txc] ≤ C, (67)

In other words, P ⋆ ∈ Padd. Therefore, we must have

KL⋆ ≤ KL⋆
add ≤ sup

|x|≤s
D(P ⋆‖TxP ⋆). (68)

Combining this inequality with (64), we conclude that

KL⋆ = KL⋆
add = sup

|x|≤s
D(P ⋆‖TxP ⋆). (69)

This completes the proof of the first statement of the theorem.
For the last statement of the theorem, we show that the relation µ ≪ Txµ for every |x| ≤ s

(which holds for P ⋆ by (69) and KL⋆ < ∞) is enough to conclude that µ ≪ λ. Fix a Borel set
B ⊂ R such that λ(B) = 0, and we will show that µ(B) = 0. Note that the function x 7→ (Txµ)(B)
is Borel as it is given by the convolution 1B ∗ η where η(A) := µ(−A). Then, by Tonelli’s theorem
and translation-invariance of the Lebesgue measure,

∫

R

(Txµ)(B) dλ(x) =

∫

R2

1B−x(b) dµ(b) dλ(x) (70)

=

∫

R2

1B−x(b) dλ(x) dµ(b) (71)
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=

∫

R2

1B−b(x) dλ(x) dµ(b) (72)

=

∫

R

(Tbλ)(B) dµ(b) (73)

=

∫

R

λ(B) dµ(b) = 0. (74)

Thus, (Txµ)(B) = 0 for λ-almost every x. In particular, (Txµ)(B) = 0 for at least one x ∈ [−s, s].
Thus, µ≪ Txµ implies µ(B) = 0, and the proof is complete.

Remark 4. The lemma stated below, showing that conditioning increases divergence, is a well-
known fact. It is shown in the literature under various assumptions on the underlying distributions
(see, e.g., [28, Theorem 2.2 and Section 2.6]). We use it in the proof of Theorem 1 in the specific
situation where one of the conditional distributions is absolutely continuous with respect to the
other for each individual input. As in [28, Remark 2.4], Doob’s version of the Radon-Nikodym
theorem can be used to derive that conditioning increases divergence in our case. For completeness,
we add a proof of this lemma here.

Lemma 1 (Conditioning increases divergence). Let PY |X , P
′
Y |X be Markov kernels on R such that

PY |X=x ≪ P ′
Y |X=x for every x ∈ R. Then, denoting the marginalizations of PX,Y := PY |X ⊗

PX , P
′
X,Y := P ′

Y |X ⊗ PX in the second coordinate by PY , P
′
Y , we have that

D
(

PY ‖P ′
Y

)

≤ Eξ∼PX

[

D
(

PY |X=ξ‖P ′
Y |X=ξ

)]

. (75)

Proof. Since by assumption PY |X=x ≪ P ′
Y |X=x for every x ∈ R, a generalization of the Radon-

Nikodym theorem by Doob (see [25, Chapter 5, Theorem 4.44]) yields the existence of a version of
the Radon-Nikodym derivatives dPY |X=x/dP

′
Y |X=x such that the function

(x, y) 7→
dPY |X=x

dP ′
Y |X=x

(y) (76)

is jointly measurable. We show that this function is a version of dPX,Y /dP
′
X,Y . First, note that

PX,Y ≪ P ′
X,Y are equivalent. Indeed, for any Borel set E ⊂ R, denoting the sections by Ex :=

{y ∈ R ; (x, y) ∈ E}, we have that PX,Y (E) = 0 if and only if PY |X=x(Ex) = 0 for PX-a.e. x, and
a similar statement holds for P ′

X,Y . By assumption, PY |X=x ≪ P ′
Y |X=x for each x, so we obtain

PX,Y ≪ P ′
X,Y . By joint measurability and nonnegativity, using the disintegration theorem (see,

e.g., [25, Chapter 1, Theorem 6.11]) we obtain that for any Borel E ⊂ R
2

∫

E

dPY |X=x

dP ′
Y |X=x

(y) dP ′
X,Y (x, y) =

∫

R

∫

Ex

dPY |X=x

dP ′
Y |X=x

(y) dP ′
Y |X=x(y) dPX (x) (77)

=

∫

R

∫

Ex

dPY |X=x(y) dPX(x) (78)

= PX,Y (E). (79)

Thus, we have the equality
dPX,Y

dP ′
X,Y

(x, y) =
dPY |X=x

dP ′
Y |X=x

(y) (80)

for P ′
X,Y -a.e. (x, y).
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Define f : [0,∞) → [−1/e,∞) by f(0) = 0 and f(t) = t log t for t > 0. By the disintegration
theorem and (80), we have the equality

D
(

PX,Y ‖P ′
X,Y

)

=

∫

R2

f

(

dPX,Y

dP ′
X,Y

)

dP ′
X,Y (81)

=

∫

R

∫

R

f

(

dPY |X=x

dP ′
Y |X=x

(y)

)

dP ′
Y |X=x dPX(x) (82)

= Eξ∼PX

[

D
(

PY |X=ξ‖P ′
Y |X=ξ

)]

. (83)

On the other hand, disintegration with respect to Y yields the following bound. Denote by
PX|Y , P

′
X|Y the disintegrations of PX,Y , P

′
X,Y with respect to PY , P

′
Y . In particular, PX|Y and P ′

X|Y
are Markov kernels on R. By the disintegration theorem and Jensen’s inequality,

D
(

PX,Y ‖P ′
X,Y

)

=

∫

R2

f

(

dPX,Y

dP ′
X,Y

)

dP ′
X,Y (84)

=

∫

R

∫

R

f

(

dPX,Y

dP ′
X,Y

(x, y)

)

dP ′
X|Y=x(x) dP

′
Y (y) (85)

≥
∫

R

f (g(y)) dP ′
Y (y) (86)

where

g(y) :=

∫

R

dPX,Y

dP ′
X,Y

(x, y) dP ′
X|Y =x(x). (87)

For this application of Jensen’s inequality, we use the fact, shown next, that g is finite P ′
Y -a.e. In

fact, we show that g is a version of dPY /dP
′
Y . Note that PX,Y ≪ P ′

X,Y implies that PY ≪ P ′
Y . Now,

for any Borel B ⊂ R, the disintegration theorem yields that
∫

B
g dP ′

Y =

∫

B

∫

R

dPX,Y

dP ′
X,Y

(x, y) dP ′
X|Y =x(x) dP

′
Y (y) (88)

=

∫

R×B

dPX,Y

dP ′
X,Y

dP ′
X,Y (89)

= PX,Y (R×B) = PY (B). (90)

Thus, we have that

g(y) =
dPY

dP ′
Y

(y). (91)

for P ′
Y -a.e. y. Hence, we obtain from inequality (86) that

D
(

PX,Y ‖P ′
X,Y

)

≥ D
(

PY ‖P ′
Y

)

. (92)

Combining inequality (92) and equation (83) we obtain the desired inequality (75).

B Proof of Theorem 2: Finite-Dimensionality

Note that the vector p only includes pi for 0 ≤ i ≤ N . We will simplify our analysis by defining pi
for all integers i. Specifically, for i ∈ Z \ {0, · · · , N}, we denote

pi :=

{

p|i|, if −N ≤ i ≤ −1,

pNr
|i|−N , if |i| > N.

(93)
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Thus we may rewrite the formula for fn,r,p in (14) as

fn,r,p(x) = npi if x ∈ Jn,i. (94)

We show first that

sup
a∈R:|a|≤1

D(Pn,r,p‖TaPn,r,p) = max
k∈Z:|k|≤n

∑

i∈Z

pi log
pi
pi+k

, (95)

then we show that this formula is equal to the objective function in (20). For convenience, we drop
the subscripts on fn,r,p and Pn,r,p throughout this proof. We may assume p > 0, since any vector
p with some zero coordinate will be infeasible in both optimization problems (18) and (20).

Fix a ∈ [−1, 1]. For each i ∈ Z, let J ◦
n,i =

(

i−1/2
n , i+1/2

n

)

denote the interior of Jn,i. We start

by showing that the function

Fa := f log
f

T−af
(96)

is integrable, which would allow us to use countable additivity of the Lebesgue integral to split
D(P‖T−aP ) into a sum of integrals over the J ◦

n,i. Let k ∈ Z be the unique integer such that
a+ 1

2n ∈ Jn,k, and denote ∆ := k − an. From

k − 1/2

n
≤ a+

1

2n
≤ k + 1/2

n
, (97)

we conclude that 0 ≤ ∆ ≤ 1. Consider an integer i and a real x ∈ J ◦
n,i. If x < (i−1/2+∆)/n, then

x+ a = x+
k −∆

n
<
i+ k − 1/2

n
=

(i+ k − 1) + 1/2

n
(98)

and, since ∆ ≤ 1,

x+ a = x+
k −∆

n
>
i− 1/2

n
+
k − 1

n
=

(i+ k − 1)− 1/2

n
. (99)

Inequalities (98) and (99) together imply that x+ a ∈ J ◦
n,i+k−1. Similarly, if x > (i − 1/2 + ∆)/n

then x+a ∈ J ◦
n,i+k. We may ignore the countably many cases x = (i− 1/2+∆)/n (as i varies over

Z) for the sake of integrating Fa. We conclude that for every x ∈ R such that nx−∆+ 1
2 is not an

integer,

Fa(x) =

{

npi log
pi

pi+k−1
, if x ∈ Jn,i, x < i−1/2+∆

n ,

npi log
pi

pi+k
, if x ∈ Jn,i, x > i−1/2+∆

n .
(100)

Since
∫

R
|Fa| =

∑

i∈Z

∫

J ◦
n,i

|Fa|, we obtain

∫

R

|Fa| =
∑

i∈Z

pi

(

∆

∣

∣

∣

∣

log
pi

pi+k−1

∣

∣

∣

∣

+ (1−∆)

∣

∣

∣

∣

log
pi
pi+k

∣

∣

∣

∣

)

. (101)

Now, we may conclude that Fa ∈ L1(R) by comparison with a geometric series. Indeed, we show
the convergence of the series

Sℓ :=
∑

i∈Z

pi

∣

∣

∣

∣

log
pi
pi+ℓ

∣

∣

∣

∣

(102)
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for each fixed ℓ ∈ Z. Consider the set of indices

I = Z \ {−N − |ℓ|, · · · , N + |ℓ|}, (103)

and note that for each i ∈ I we have pi+j = pNr
|i+j|−N for both values j ∈ {0, ℓ}. In particular, for

i ∈ I we have that
∣

∣

∣

∣

log
pi
pi+ℓ

∣

∣

∣

∣

= ||i| − |i+ ℓ|| · log 1

r
≤ |ℓ| · log 1

r
. (104)

Therefore, we obtain the bound

Sℓ ≤
|ℓ|pN log 1

r

rN
· 1 + r

1− r
+

∑

|i|≤N+|ℓ|

pi

∣

∣

∣

∣

log
pi
pi+ℓ

∣

∣

∣

∣

<∞. (105)

As Sk and Sk−1 are both finite, we conclude from (101) that Fa ∈ L1(R). Therefore, by countable
additivity,

D(P‖T−aP ) =
∑

i∈Z

∫

J ◦
n,i

Fa, (106)

i.e.,

D(P‖T−aP ) =
∑

i∈Z

pi

(

∆ log
pi

pi+k−1
+ (1−∆) log

pi
pi+k

)

. (107)

Let Bℓ denote the same sum as Sℓ but without the absolute value sign,

Bℓ :=
∑

i∈Z

pi log
pi
pi+ℓ

. (108)

Finiteness of the Sℓ yields from (107) that

D(P‖T−aP ) = ∆Bk−1 + (1−∆)Bk. (109)

Also, the relation we are aiming to prove (95) can be restated as

sup
|d|≤1

D(P‖TdP ) = max
|ℓ|≤n

Bℓ. (110)

We deduce from k = an+∆, |a| ≤ 1, and 0 ≤ ∆ ≤ 1 that we must have −n ≤ k ≤ n+1. If it holds
that −n+ 1 ≤ k ≤ n, then what we have shown in (109) implies, in view of 0 ≤ ∆ ≤ 1, that

D(P‖T−aP ) ≤ max
|ℓ|≤n

Bℓ. (111)

We treat the remaining two extreme cases k ∈ {−n, n+1} separately. First, if k = −n then ∆ = 0,
in which case

D(P‖T−aP ) = B−n ≤ max
|ℓ|≤n

Bℓ. (112)

Second, if k = n+ 1 then ∆ = 1, in which case

D(P‖T−aP ) = Bn ≤ max
|ℓ|≤n

Bℓ. (113)

Combining all cases, we conclude that

sup
|d|≤1

D(P‖TdP ) ≤ max
|ℓ|≤n

Bℓ. (114)
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We establish now that the reverse inequality in (114) also holds. Let ℓ ∈ {0, · · · , n}. The shift
aℓ := ℓ/n satisfies |aℓ| ≤ 1 and aℓ +

1
2n ∈ Jn,ℓ. Also, ∆ℓ := ℓ − aℓn = 0. Therefore, we conclude

from (109) that
D(P‖T−aℓP ) = Bℓ. (115)

This shows that
sup
|d|≤1

D(P‖TdP ) ≥ max
0≤ℓ≤n

Bℓ. (116)

In addition, consider ℓ ∈ {−n, · · · ,−1} and the shift a′ℓ := ℓ/n. Then, in this case a′ℓ +
1
2n ∈ Jn,ℓ+1.

Also, ∆′
ℓ := (ℓ+ 1)− a′ℓn = 1. Thus, by (109), we have that

D(P‖T−a′ℓ
P ) = B(ℓ+1)−1 = Bℓ. (117)

Therefore,
sup
|d|≤1

D(P‖T−dP ) ≥ max
−n≤ℓ≤−1

Bℓ. (118)

Combining (116) and (118), we conclude that

sup
|d|≤1

D(P‖T−dP ) ≥ max
|ℓ|≤n

Bℓ. (119)

Inequality (119) together with the reverse inequality (114) yield that the desired equation (95) holds,
i.e.,

sup
|a|≤1

D(P‖TaP ) = max
|k|≤n

∑

i∈Z

pi log
pi
pi+k

. (120)

Next, we show that the expression

max
|k|≤n

∑

i∈Z

pi log
pi
pi+k

(121)

reduces to the form given in the statement of the theorem. By construction, pi = p−i for each i ∈ Z.
Thus, we have for each k ∈ Z

Bk =
∑

i∈Z

pi log
pi
pi+k

=
∑

j∈Z

p−j log
p−j

p−j+k
=
∑

j∈Z

pj log
pj
pj−k

= B−k. (122)

Therefore, Bk = (Bk + B−k)/2 for every k ∈ Z. Note that this is a symmetric expression in k. As
B0 = 0, the KL-divergence is nonnegative, and Bk ≥ 0 for every |k| ≤ n (see (115) and (117)), we
conclude that

sup
|a|≤1

D(P‖TaP ) = max
1≤k≤n

1

2
(Bk +B−k). (123)

We now rewrite (123) in terms of pi for only 0 ≤ i ≤ N , by taking advantage of (93). Fix
k ∈ {1, · · · , n}. We may write

B−k =
∑

j∈Z

pj log
pj
pj−k

=
∑

i∈Z

pi+k log
pi+k

pi
, (124)

so
Bk +B−k =

∑

i∈Z

(pi − pi+k) log
pi
pi+k

. (125)
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We split this sum at the points −N,N − k, and N . For any k ∈ {1, . . . , n}, using the assumption
that n < N , we may write

∑

i∈Z

(pi − pi+k) log
pi
pi+k

=
N−k−1
∑

i=−N+1

(p|i| − p|i+k|) log
p|i|

p|i+k|

+
∞
∑

i=N−k

(pi − pi+k) log
pi
pi+k

+
−N
∑

i=−∞

(pi − pi+k) log
pi
pi+k

. (126)

In fact, the third term in (126) is identical to the second. This is proved by

−N
∑

i=−∞

(pi − pi+k) log
pi
pi+k

=

∞
∑

i=N

(p−i − p−i+k) log
p−i

p−i+k
(127)

=
∞
∑

i=N

(pi − pi−k) log
pi
pi−k

(128)

=
∞
∑

i=N−k

(pi+k − pi) log
pi+k

pi
(129)

=
∞
∑

i=N−k

(pi − pi+k) log
pi
pi+k

. (130)

Moreover, we may rewrite this expression as

∞
∑

i=N−k

(pi − pi+k) log
pi
pi+k

=

N−1
∑

i=N−k

(pi − pNr
i+k−N) log

pi
pNri+k−N

+

∞
∑

i=N

(pNr
i−N − pNr

i+k−N) log
pNr

i−N

pNri+k−N
(131)

=

N−1
∑

i=N−k

(pi − pNr
i+k−N) log

pi
pNri+k−N

+ pN

∞
∑

i=N

ri−N(1− rk) log r−k (132)

=
N−1
∑

i=N−k

(pi − pNr
i+k−N) log

pi
pNri+k−N

+ pN
1− rk

1− r
k log r−1. (133)

Putting all of the above together shows that (123) is exactly equal to the objective function in (20).
Finally, we show that the cost constraint

EP [c] ≤ C (134)

is equivalent to the one given in (20). By nonnegativity of c, we have that

EP [c] =

∫

R

fc =
∑

i∈Z

∫

Jn,i

npic =
∑

i∈Z

picn,i = p0cn,0 + 2
N−1
∑

i=1

picn,i + 2pN

∞
∑

i=N

cn,ir
i−N , (135)

and the proof is complete.
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C Proof of Theorem 3: Optimality of Cactus

We will use the integration shorthand
∫

A
f :=

∫

A
f(x) dx. (136)

Define

γ :=

{

1/2 if α > 1,
α/2 otherwise.

(137)

Note that γ ∈ (0, 1/2] and γ < α. Define the PDF

ψ(x) := exp (−|x|γ) · χ−1, (138)

where

χ :=

∫

R

exp (−|x|γ) dx (139)

is the normalization constant. As γ ∈ (0, 1], the function z 7→ |z|γ is subadditive. Hence, for any
x, y ∈ R we have the inequality

ψ(x+ y)

ψ(x)
≤ exp (|y|γ) . (140)

For each σ > 0, denote the dilated PDF

ψσ(x) :=
1

σ
ψ
(x

σ

)

. (141)

We denote the result of convolving a PDF q with ψσ by qσ,

qσ := q ∗ ψσ. (142)

For any a ∈ R, it is easy to see that
Ta(qσ) = (Taq)σ , (143)

so we denote this common quantity by Taqσ.
Due to the length of the proof, we break down some of the initial steps into the following five

auxiliary lemmas. The proof resumes in the subsequent subsection.

C.1 Auxiliary Lemmas

The first lemma helps reduce the problem to considering only continuous PDFs. Specifically, it
shows that a convolution qσ can perform arbitrarily close to how the original PDF q does.

Lemma 2. For any PDF q and constant η > 0, there is a constant σ0 ∈ (0, 1) such that σ ∈ (0, σ0]
implies the inequalities

D(qσ‖Taqσ) ≤ D(q‖Taq), for all a ∈ R, (144)

Eqσ [c] ≤ Eq[c] + η. (145)

Proof. First, by the data-processing inequality, for any a ∈ R and σ > 0,

D(qσ‖Taqσ) ≤ D(q‖Taq). (146)
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Thus, (144) always holds. We may assume that Eq[c] <∞, for otherwise (145) trivially holds. Now,
we will establish (145) for all small σ by proving the limit

lim
σ→0+

Eqσ [c] = Eq[c]. (147)

Let (Ω,F , P ) be a probability space and Z, V : Ω → R be independent random variables with
PDFs q and ψ, respectively, with respect to λ, i.e., with PZ(B) := P (Z−1(B)) and PV (B) :=
P (V −1(B)) we have

dPZ

dλ
= q,

dPV

dλ
= ψ. (148)

Then, for any σ > 0, the random variable Zσ := Z + σV has PDF qσ (see equations (137)–(142)).
Denote integration against P by E; in particular,

E[f(Z, V )] :=

∫

Ω
f(Z(ω), V (ω)) dP (ω) (149)

for any Borel function f : R2 → R.
By Slutsky’s theorem, we have that Zσ → Z in distribution. By the continuous mapping theorem,

we also have that c(Zσ) → c(Z) in distribution. Thus, by the Lebesgue-Vitali theorem [29, Theorem
4.5.4], to conclude that (147) holds, it suffices to show uniform integrability of {c(Zσ)}0<σ≤1, i.e.,
it suffices to show that

lim
K→∞

sup
0<σ≤1

E
[

c(Zσ) · 1(K,∞)(c(Zσ))
]

= 0. (150)

To establish (150), it suffices to uniformly upper bound the c(Zσ) (for σ ∈ (0, 1]) by an integrable
random variable. To see this, note that if

sup
0<σ≤1

c(Zσ) ≤ U (151)

for some random variable U : Ω → R with E[U ] <∞, then we have the inequality

sup
0<σ≤1

E
[

c(Zσ) · 1(K,∞)(c(Zσ))
]

≤ E
[

U · 1(K,∞)(U)
]

, (152)

and the limit
lim

K→∞
E
[

U · 1(K,∞)(U)
]

= 0 (153)

follows by absolute continuity of the Lebesgue integral in view of E[U ] <∞.
Now, we show that a uniform bound as in (151) holds. Recall that for any (u, v) ∈ R

2 and
0 < s < t, denoting ‖(u, v)‖s := (|u|s + |v|s)1/s, one has from Hölder’s inequality that

‖(u, v)‖t ≤ ‖(u, v)‖s ≤ 2
1
s
− 1

t ‖(u, v)‖t. (154)

In particular, for any r > 0, denoting ℓr := max(1, 2r−1), one has that

(|u|+ |v|)r ≤ ℓr(|u|r + |v|r). (155)

In addition, by the tail-regularity assumption on c, there is a constant β1 > 0 such that

c(x) ≤ β1 (1 + |x|α) (156)
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for every x ∈ R. Then, for any u, v ∈ R, we have that

c(u+ v) ≤ β1 (1 + ℓα (|u|α + |v|α)) . (157)

In particular, for every σ ∈ (0, 1],

c(Zσ) ≤ β1 (1 + ℓα (|Z|α + |V |α)) =: U. (158)

Now, we have that E[|V |α] <∞ by definition of ψ. Further, by assumption on c, there are A, β2 > 0
such that |x| > A implies

β2|x|α ≤ c(x). (159)

Then, as

|Z|α ≤ Aα + |Z|α · 1R\[−A,A](Z) ≤ Aα + c(Z)/β2 (160)

and E[c(Z)] = Eq[c] < ∞ by assumption, we also have that E[|Z|α] < ∞. Thus, E[U ] <∞. Hence,
by absolute continuity of the Lebesgue integral, the uniform bound in (158) implies the uniform
integrability of the set {c(Zσ)}0<σ≤1, so (147) follows by the Lebesgue-Vitali theorem, and the proof
is complete.

The following lemma shows that the integrands when computing D(qσ‖Taqσ) have equi-small
tails as a varies over [−1, 1]. This will allow us to focus on approximating qσ by a cactus distribution
only in a bounded interval.

Lemma 3. If the PDF q satisfies
sup
|a|≤1

D(q‖Taq) <∞ (161)

then for any σ > 0

lim
z→∞

sup
|a|≤1

∫

R\[−z,z]
qσ

∣

∣

∣

∣

log
qσ
Taqσ

∣

∣

∣

∣

= 0. (162)

Proof. Assume that q satisfies (161). By the data processing inequality, we also have

sup
|a|≤1

D(qσ‖Taqσ) <∞. (163)

Suppose, for the sake of contradiction, that (162) does not hold. That is, suppose there exists ε > 0
where

lim sup
z→∞

sup
|a|≤1

∫

R\[−z,z]
qσ

∣

∣

∣

∣

log
qσ
Taqσ

∣

∣

∣

∣

= ε. (164)

This implies that there exists a sequence {(zn, an)}n∈N, where zn ր ∞ and supn∈N |an| ≤ 1, such
that for all n

∫

R\[−zn,zn]
qσ

∣

∣

∣

∣

log
qσ

Tanqσ

∣

∣

∣

∣

≥ ε/2. (165)

Since [−1, 1] is a compact set, there exists a convergent subsequence {ank
}k∈N, say ank

→ a where
a ∈ [−1, 1]. Moreover, for any z > 0, for sufficiently large k we have znk

≥ z, which implies

lim sup
k→∞

∫

R\[−z,z]
qσ

∣

∣

∣

∣

∣

log
qσ

Tank
qσ

∣

∣

∣

∣

∣

≥ ε/2. (166)
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Recall that ψ is as defined in (138) and that, as shown in (140), it satisfies the inequality

ψ(x+ y)

ψ(x)
≤ exp (|y|γ) (167)

for every x, y ∈ R. Thus, for any a, b, z ∈ R,

(Taqσ)(z) = qσ(z − a) (168)

=

∫

R

q(x)
1

σ
ψ

(

z − a− x

σ

)

dx (169)

≤ e|a−b|γ/σγ

∫

R

q(x)
1

σ
ψ

(

z − b− x

σ

)

dx (170)

= e|a−b|γ/σγ
(Tbqσ)(z). (171)

Thus, for any a, b ∈ R, we have the uniform bound
∥

∥

∥

∥

log
Taqσ
Tbqσ

∥

∥

∥

∥

L∞(R)

≤
( |a− b|

σ

)γ

. (172)

Applying this bound to the integral in (166) gives

∫

R\[−z,z]
qσ ·

∣

∣

∣

∣

∣

log
qσ

Tank
qσ

∣

∣

∣

∣

∣

=

∫

R\[−z,z]
qσ ·

∣

∣

∣

∣

∣

log
qσ
Taqσ

+ log
Taqσ
Tank

qσ

∣

∣

∣

∣

∣

(173)

≤
∫

R\[−z,z]
qσ ·

(∣

∣

∣

∣

log
qσ
Taqσ

∣

∣

∣

∣

+

( |ank
− a|
σ

)γ)

(174)

≤
( |ank

− a|
σ

)γ

+

∫

R\[−z,z]
qσ ·

∣

∣

∣

∣

log
qσ
Taqσ

∣

∣

∣

∣

. (175)

Recalling inequality (166) and that ank
→ a as k → ∞, we have, for any z > 0,

∫

R\[−z,z]
qσ

∣

∣

∣

∣

log
qσ
Taqσ

∣

∣

∣

∣

≥ ε/2. (176)

Finally, note that by finiteness of the KL-divergence D(qσ‖Taqσ) (see (163)), we also have that

∫

R

qσ

∣

∣

∣

∣

log
qσ
Taqσ

∣

∣

∣

∣

<∞. (177)

Indeed, the function f(t) := t log t over (0,∞) is lower bounded by −1/e, so dividing the integration
region over the two regions where f is positive or negative we obtain

∫

R

qσ

∣

∣

∣

∣

log
qσ
Taqσ

∣

∣

∣

∣

= ETaqσ

[∣

∣

∣

∣

f ◦ qσ
Taqσ

∣

∣

∣

∣

]

≤ D (qσ‖Taqσ) +
2

e
<∞. (178)

Thus, by the monotone convergence theorem, we must have

lim
z→∞

∫

R\[−z,z]
qσ

∣

∣

∣

∣

log
qσ
Taqσ

∣

∣

∣

∣

= 0. (179)

As this contradicts (176), the lemma is proved.
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The following lemma gives an exp(−O(wγ)) lower bound on the minimum value of qσ over
[−w,w] and on the probability that Zσ ∼ qσ exceeds w, both as w → ∞.

Lemma 4. For a PDF q and a constant σ > 0, we have that
∫

[w,∞)
qσ = exp (−O(wγ)) (180)

and
min
|x|≤w

qσ(x) = exp (−O(wγ)) , (181)

both as w → ∞.

Proof. First, we show that there is a bounded Borel set B with λ(B) > 0 such that

µ := inf
x∈B

q(x) > 0. (182)

Note that we may remove the boundedness condition on B. Indeed, if the Borel set B satisfies
λ(B) > 0 and infx∈B q(x) > 0, then the bounded Borel sets Am := B ∩ [−m,m] also satisfy
λ(Am) > 0 and infx∈Am q(x) > 0 for all large m by continuity of λ and the definition of the infimum.
Now, to see that such a B exists, consider the Borel sets Bn := q−1([1/n,∞)) for integers n ≥ 1.
For each n ≥ 1, we have that infx∈Bn q(x) ≥ 1/n. Suppose, for the sake of contradiction, that
λ(Bn) = 0 for each n. Then we would have

λ(q−1((0,∞))) = λ



q−1





⋃

n≥1

[1/n,∞)







 = λ





⋃

n≥1

Bn



 = 0. (183)

Hence, q = 0 a.e. However, this would contradict that q is a PDF. Thus, we conclude that λ(Bn) > 0
for some n. In short, there must exist a bounded Borel set B with λ(B) > 0 and infx∈B q(x) > 0.
Fix such a B, and let x0 > 0 be such that B ⊂ [−x0, x0].

Recall that we define qσ = q ∗ψσ (see equations (137)–(142)). For each w ∈ R, Tonelli’s theorem
implies that

∫

[w,∞)
qσ =

∫

R

q(x)

∫ ∞

w
ψ

(

y − x

σ

)

1

σ
dy dx. (184)

Performing a change of variable, we have for every x,w ∈ R

∫ ∞

w
ψ

(

y − x

σ

)

1

σ
dy =

∫

[(w−x)/σ,∞)
ψ. (185)

Further, for any z ≥ 0, by definition of ψ, we have the bound
∫

[z,∞)
ψ ≥

∫

[z,z+1]
ψ ≥ exp (− (z + 1)γ) · χ−1, (186)

where χ =
∫

R
exp(−|u|γ) du is the normalization constant for ψ. Therefore, whenever w ≥ x we

have
∫

[(w−x)/σ,∞)
ψ ≥ exp

(

−
(

w − x+ σ

σ

)γ)

· χ−1. (187)

Now, combining (184) and (185), nonnegativity of the PDFs q and ψ implies the bound
∫

[w,∞)
qσ ≥

∫

B
q(x)

∫

[(w−x)/σ,∞)
ψ(u) du dx. (188)
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Since B ⊂ [−x0, x0], we conclude from (187) that for every w ≥ x0

∫

[w,∞)
qσ ≥

∫

B
µ · exp

(

−
(

w − x+ σ

σ

)γ)

· χ−1 dx (189)

≥ λ(B)µχ−1 · exp
(

−
(

w + x0 + σ

σ

)γ)

. (190)

The estimate in (180) follows by taking w → ∞.
Finally, we show that (181) holds. Let w0 > 0 be such that

∫

[−w,w] q ≥ 1/2 for every w ≥ w0.
Then, for any w ≥ w0 and x ∈ [−w,w],

qσ(x) =

∫

R

q(u)ψσ(x− u) du (191)

= (σχ)−1

∫

R

q(u) exp (−|x− u|γ/σγ) du (192)

≥ (σχ)−1

∫ w

−w
q(u) exp (−|x− u|γ/σγ) du (193)

≥ (σχ)−1 exp (−(2/σγ)wγ)

∫

[−w,w]
q (194)

≥ (2σχ)−1 exp (−(2/σγ)wγ) . (195)

The estimate (181) follows by taking w → ∞.

Conversely, the following lemma gives an upper bound on the tail of any distribution that satisfies
the cost constraint.

Lemma 5. For any P ∈ B, if EP [c] <∞ then

P (R \ [−x, x]) = o
(

c(x)−1
)

(196)

as x→ ∞.

Proof. We start by showing that
lim
t→∞

P ({c > t}) · t = 0. (197)

Denote f(t) := P ({c > t}) for t > 0. Note that f is a decreasing nonnegative function over (0,∞).
Further, f is integrable by nonnegativity of c and by the assumption in the lemma since

∫ ∞

0
P ({c > t}) dt = EP [c] <∞. (198)

We show that these three properties of f yield that f(t) = o(t−1).
Suppose, for the sake of contradiction, that there is an ε > 0 and an increasing sequence tn ր ∞

of strictly positive numbers such that

f(tn) ≥
ε

tn
(199)

for every n ∈ N. Since f is decreasing, we infer from (199) that

f(t) ≥
∑

n∈N

ε

tn+1
· 1(tn,tn+1](t) (200)
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for every t > t1. Integrating both sides in (200), integrability of f implies that

∞ >

∫

(t1,∞)
f ≥

∑

n∈N

ε

(

1− tn
tn+1

)

. (201)

By convergence of the series in (201), we conclude that tn/tn+1 ∼ 1 as n → ∞. In particular, the
constant

τ := inf
n∈N

tn
tn+1

(202)

satisfies τ ∈ (0, 1). Set δ = ετ , and note that δ > 0. Then, from (200) we obtain

f(t) · 1(t1,∞)(t) ≥
∑

n∈N

δ

τ · tn+1
· 1(tn,tn+1](t) (203)

≥
∑

n∈N

δ

tn
· 1(tn,tn+1](t) (204)

≥
∑

n∈N

δ

t
· 1(tn,tn+1](t) =

δ

t
· 1(t1,∞)(t). (205)

However, (205) contradicts the integrability of f . Thus, we conclude that it must be the case that

f(t) = o
(

t−1
)

(206)

as t→ ∞.
To finish the proof of the lemma, recall by the tail-regularity assumption on c that we have

lim
|x|→∞

c(x)

|x|α = β (207)

for some α, β > 0. Thus there are 0 < β1 < β < β2 such that for sufficiently large |x|, β1|x|α ≤
c(x) ≤ β2|x|α. Then, for all large enough t, we have that

P ({c > t}) ≥ P
(

R \
[

−(t/β1)
1/α, (t/β1)

1/α
])

. (208)

Writing x = (t/β1)
1/α, we conclude that for all large x

c(x)P (R \ [−x, x]) ≤ β2x
αP (R \ [−x, x]) (209)

=
β2
β1
tP
(

R \
[

−(t/β1)
1/α, (t/β1)

1/α
])

(210)

≤ β2
β1
tP ({c > t}) . (211)

Taking t→ ∞, we obtain from (206) that

c(x)P (R \ [−x, x]) → 0, (212)

as desired.

The final auxiliary lemma gives an upper bound on the tail of the cost constraint incurred by a
cactus distribution.
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Lemma 6. Fix r ∈ (0, 1) and integers N > n ≥ 1, and set w = (N − 1/2)/n. Assume that
c(x) ≤ β1x

α for x ≥ w. Then, we have the bound

∑

i≥N

cn,ir
i−N ≤ β1ℓα

(

wα

1− r
+

2
(

α
e

)α
log 1

r + Γ(α+ 1)

rnα
(

log 1
r

)α+1

)

, (213)

where ℓα := max(1, 2α−1).

Proof. By monotonicity of c,

∑

i≥N

cn,ir
i−N =

∑

i≥N

∫ (i+1/2)/n

(i−1/2)/n
ncri−N (214)

≤
∑

i≥N

β1

(

i+ 1/2

n

)α

ri−N (215)

= β1
∑

i≥0

(

w +
i+ 1

n

)α

ri (216)

≤ β1ℓα

(

wα

1− r
+

Li−α(r)

rnα

)

, (217)

where
Li−α(r) :=

∑

k≥1

kαrk (218)

is the polylogarithm function. To finish the proof of the lemma, we show next that

Li−α(r) ≤ 2

(

α

e log 1
r

)α

+
Γ(α+ 1)
(

log 1
r

)α+1 . (219)

Now, consider the function g : (0,∞) → (0,∞) defined by

g(x) := xαrx. (220)

We have that
g′(x) = (α+ x log r)xα−1rx. (221)

Thus, g increases until it reaches a maximum at x0 = α/ log 1
r then it decreases. Thus,

Li−α(r) ≤ g(⌊x0⌋) + g(⌈x0⌉) +
∫

(0,∞)
g. (222)

We have

g(⌊x0⌋) + g(⌈x0⌉) ≤ 2g(x0) = 2

(

α

e log 1
r

)α

, (223)

and
∫

(0,∞)
g =

Γ(α+ 1)
(

log 1
r

)α+1 . (224)

The proof is thus complete.
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C.2 Proof of Theorem 3

By Theorem 1, there is a PDF q⋆ that satisfies both

sup
|a|≤1

D(q⋆‖Taq⋆) = KL⋆, (225)

Eq⋆[c] ≤ C. (226)

We may assume that q⋆ is even; indeed, we may replace q⋆ with the even PDF (q⋆(x) + q⋆(−x))/2,
which satisfies the cost constraint by evenness of c, and which also has a better KL-divergence than
that of q⋆ by joint convexity of the KL-divergence. Fix arbitrary constants δ, η > 0, and we will
find a cactus distribution that attains the KL-divergence (225) to within δ and the cost (226) to
within η.

By Lemma 2, there is a σ > 0 such that the PDF q⋆σ satisfies the bounds

sup
|a|≤1

D(q⋆σ‖Taq⋆σ) ≤ KL⋆, (227)

Eq⋆σ [c] ≤ C +
η

2
. (228)

Throughout the proof, we will denote
q := q⋆σ (229)

for short. Let

Q(B) :=

∫

B
q (230)

be the probability measure induced by q. We will construct a cactus distribution that approximates
q.

We first note a few properties of q. Note that q is an even PDF. Further, it is uniformly
continuous, and strictly positive over R. Thus, q is locally bounded away from zero. For each z ≥ 0,
denote the minimum

µz := min
|x|≤z

q(x), (231)

so µz > 0 for every z. In addition, q is upper bounded: by Young’s inequality, we have that

‖q‖L∞(R) = ‖q⋆ ∗ ψσ‖L∞(R) ≤ ‖q⋆‖L1(R) · ‖ψσ‖L∞(R) = (σχ)−1 =:M. (232)

In fact, q satisfies a property resembling local γ-Hölder continuity. Specifically, as in the proof of
Lemma 3 (see (167)–(171)), we have that

q(x) ≤ e|x−y|γ/σγ
q(y) (233)

for every x, y ∈ R. Therefore, for some |tx,y| ≤ 1 we have

|q(x)− q(y)| = q(y)
∣

∣

∣
etx,y|x−y|γ/σγ − 1

∣

∣

∣
≤ 2M

σγ
|x− y|γ , (234)

where the latter inequality follows whenever |x− y| ≤ σ. In particular, for all ε ∈ (0, 2M), we have
that

|q(x)− q(y)| ≤ ε whenever |x− y| ≤ σ ·
( ε

2M

)1/γ
. (235)

Before constructing the parameters (n,N, r) of the cactus distribution, we note a fundamental
lower bound on n. For the cost constraint to be satisfied, we need cn,0 < C to hold. Nevertheless,
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by continuity of c, every real number is a Lebesgue point of c. In particular, as 0 is a Lebesgue
point of c, we obtain

cn,0 =

∫

[−1/(2n),1/(2n)] c

1/n
→ c(0) = 0 (236)

as n→ ∞. Let nmin be the least positive integer such that

cn,0 < C (237)

for every n ≥ nmin. Note that nmin depends only on c and C.
Now, we choose the integers n and N . Denote the constants

θα := 4
(α

e

)α
+ 2Γ(α+ 1) (238)

θ′α := (2θα)
1/α (239)

γ′ :=
γ + α

2
∈ (γ, α) (240)

εmin := 2M ·min

(

2

σnmin
,

1

θ′ασ

)γ

(241)

zmin,0 :=

(

log

(

4

σ
·
(

2M

εmin

)1/γ
))1/γ′

(242)

zmin,1 :=

(

η

δ
· 2eθ

′
α

β1ℓα

)1/(α+1)

(243)

zmin,2 :=

(

2α+1

β1ℓα

)1/(α−γ′)

(244)

zmin := max

(

zmin,0, zmin,1, zmin,2,
δ

12M

)

. (245)

Since q = q⋆σ (see (229)), Lemma 3 yields the existence of a constant z0 > 0 such that z ≥ z0 implies
the uniform bound

sup
|a|≤1

∫

R\[−z,z]
q

∣

∣

∣

∣

log
q

Taq

∣

∣

∣

∣

≤ δ

3
. (246)

In addition, Lemma 4 yields the existence of constants τ, z1 > 0 such that z ≥ z1 implies (see (230)
and (231))

min (µz, Q([z,∞))) ≥ exp (−τzγ) . (247)

By the tail-regularity assumption on c, there are constants β1, β2, z2 > 0 such that

β2z
α ≤ c(z) ≤ β1z

α (248)

for every z ≥ z2. By Lemma 5, we have that (see (230))

lim
z→∞

Q(R \ [−z, z])c(z) = 0. (249)

Let z3 > 0 be large enough that z ≥ z3 implies

Q (R \ [−z, z]) c(z) ≤ β2
β1ℓα

· η
6
. (250)
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If z ≥ max(z2, z3), then by (248) and (250) we may bound the tail of Q also by

Q (R \ [−z, z]) ≤ 1

β1ℓαzα
· η
6
. (251)

Let z4 > 0 be the smallest number such that both inequalities

eτz
γ ≥ δβ1ℓα

2Mη
· zα (252)

eγz
γ′ ≥

(

4

σ

)γ

· 48M
2

δ
· zeτzγ (253)

hold for all z ≥ z4. Fix a rational number

z > max(zmin, z0, z1, z2, z3, z4, 2θ
′
α) (254)

that is a ratio of an odd integer by an even integer, and set

w := z + 1. (255)

We choose z (hence also w) here to belong in N+ 1
2 for simplicity, but we note that any other choice

(of denominator) is also valid provided that w is increased so that the subsequent choices in (260)
below can be made. Set

ε :=
22γ+1M

σγ
· e−γwγ′

. (256)

Denote

n0 :=
2

σ
·
(

2M

ε

)1/γ

, (257)

By the uniform continuity of q shown in (235), we have that

|q(x)− q(y)| ≤ ε whenever |x− y| ≤ 2

n0
. (258)

Note that nmin < n0 since ε < εmin, which in turn follows because w > zmin,0. We note also that
ε < εmin implies 2θ′α < n0. Set

n1 := ew
γ′

. (259)

By construction, we have that n1 = 2n0. Thus, we may choose integers n ∈ [n0, n1] and N > n
such that

w =
2N − 1

2n
(260)

Next, we choose the parameter r, thereby completing the cactus distribution construction. De-
fine, for i ∈ {0, · · · , N − 1},

pi := inf
x∈Jn,i

q(x)

n
. (261)

By evenness, continuity, and strict positivity of q, we have that

p0 +
N−1
∑

i=1

2pi =

∫

[−w,w]

∑

|i|≤N−1

np|i| · 1Jn,i ≤
∫

[−w,w]
q < 1. (262)
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Thus, for any r ∈ (0, 1), setting

pN :=
1− r

2

(

1−
(

p0 +

N−1
∑

i=1

2pi

))

, (263)

we infer from (262) that the vector p = (p0, · · · , pN ) belongs to (0, 1]N+1, and by construction it
satisfies Sr,p = 1. We will choose r as

r := 1− θ′α
wn

, (264)

and define pN as in (263) for this choice of r.
Therefore, fn,r,p is a valid cactus distribution. By uniform continuity of q (see (258)) and by

definition of the pi (see (261)), we have that fn,r,p uniformly approximates q from below over [−w,w]:
for every x ∈ [−w,w] we have that

0 ≤ q(x)− fn,r,p(x) ≤ ε. (265)

We will deduce from the uniform bound (265) that fn,r,p approximates q in the two senses:

Efn,r,p [c] ≤ Eq[c] +
η

2
(266)

and
sup
|a|≤1

D(fn,r,p‖Tafn,r,p) ≤ sup
|a|≤1

D(q‖Taq) + δ. (267)

Combined with (227)–(228), we would conclude from (266)–(267) that

Efn,r,p [c] ≤ C + η (268)

and
sup
|a|≤1

D(fn,r,p‖Tafn,r,p) ≤ KL⋆ + δ. (269)

Now, we show that fn,r,p satisfies the cost constraint (268). Since fn,r,p|[−w,w] ≤ q|[−w,w], we
have that

Efn,r,p [c · 1[−w,w]] ≤ Eq[c] ≤ C +
η

2
. (270)

We show next that
Efn,r,p [c · 1R\[−w,w]] ≤

η

2
. (271)

By construction of fn,r,p, and since w = (N − 1/2)/n (see (260)), we have the expression

Efn,r,p [c · 1R\[−w,w]] = 2pN
∑

i≥N

cn,ir
i−N . (272)

We bound the terms 2pN and
∑

i≥N cn,ir
i−N separately. By Lemma 6, we have the bound

∑

i≥N

cn,ir
i−N ≤ β1ℓα

(

wα

1− r
+

2
(

α
e

)α
log 1

r + Γ(α+ 1)

rnα
(

log 1
r

)α+1

)

. (273)

By definition of r (see (264)), and since w ≥ 1 and n ≥ 2θ′α, we have that r ≥ 1/2 > 1/e. Thus, we
deduce from (273) that

∑

i≥N

cn,ir
i−N ≤ β1ℓα

(

wα

1− r
+

θα

nα
(

log 1
r

)α+1

)

, (274)
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where θα is as defined in (238). In addition, we have that (recall that we denote by Pn,r,p the
probability measure associated with fn,r,p)

2pN
1− r

= Pn,r,p (R \ [−w,w]) = 1− Pn,r,p ([−w,w]) . (275)

As fn,r,p uniformly approximates q from below over [−w,w] to within ε (see (265)), we have that

Pn,r,p ([−w,w]) ≥ Q ([−w,w]) − 2εw. (276)

Thus, by the bound on the tail of Q in (251)

2pN
1− r

≤ Q (R \ [−w,w]) + 2εw ≤ 1

β1ℓαwα
· η
6
+ 2εw. (277)

Further, combining inequalities (252)–(253) and using the definition of ε in (256), we obtain

ε ≤ η

12β1ℓαwα+1
. (278)

Thus, we deduce

2pN ≤ η · (1− r)

3β1ℓαwα
. (279)

From the expression in (272), multiplying inequalities (274) and (279) and noting that 1−r ≤ log 1
r ,

we obtain

Efn,r,p [c · 1R\[−w,w]] ≤
η

3

(

1 +
θα

(

wn log 1
r

)α

)

. (280)

By definition of r, we have that

log
1

r
≥ 1− r =

θ′α
wn

. (281)

Using inequality (281) in (280), we obtain

Efn,r,p [c · 1R\[−w,w]] ≤
η

3
· 3
2
=
η

2
, (282)

which is inequality (271). Combining (270)–(271), we deduce (268), i.e.,

Efn,r,p [c] ≤ C + η. (283)

Next, we show that fn,r,p satisfies the KL bound (269). We begin by splitting the integration
at the points ±z. By finiteness of the considered KL-divergences, we have for each |a| ≤ 1

D(fn,r,p‖T−afn,r,p)−D(q‖T−aq) ≤
∫

[−z,z]

(

fn,r,p log
fn,r,p

T−afn,r,p
− q log

q

T−aq

)

+

∫

R\[−z,z]
fn,r,p log

fn,r,p
T−afn,r,p

+

∫

R\[−z,z]
q log

q

T−aq
. (284)

We already have a uniform bound for the last integral in (284): since z ≥ z0, the estimate in (246)
holds and we obtain

sup
|a|≤1

∫

R\[−z,z]
q log

q

Taq
≤ δ

3
. (285)
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We proceed to bounding the first integral in (284) uniformly by

sup
|a|≤1

∫

[−z,z]

(

fn,r,p log
fn,r,p

T−afn,r,p
− q log

q

T−aq

)

≤ δ

3
. (286)

We do this via deriving an upper bound on the integrand that is uniform in both a and the variable
of integration. From w ≥ δ/(12M) (245), µw ≥ e−τwγ

(247), and (253), we have that

ε ≤ µw
2

·min

(

1,
δ

12Mw

)

. (287)

Define the function g : [−w,w] → [0, ε] by

g := q − fn,r,p. (288)

That the range of g is contained within [0, ε] follows since fn,r,p approximates q from below uniformly
over [−w,w] to within ε. Thus, z = w − 1 yields

sup
|a|≤1

‖Tag‖L∞([−z,z]) ≤ ε. (289)

We note that, over [−z, z], the inequality

fn,r,p log
fn,r,p

T−afn,r,p
− q log

q

T−aq
≤ −q log

(

1− T−a
g

q

)

− g log

(

1− g

q

)

+ g log
T−aq

q
(290)

holds; that all the logarithms are well defined follows since g ≤ q over [−w,w]. Indeed, subtracting
the left hand side from the right hand side in (290), we get the function

− q log

(

1− g

q

)

− g log

(

1− T−a
g

q

)

, (291)

which is nonnegative over [−z, z] since g is nonnegative over [−w,w]. Now, we bound each of the
terms in (290). It is easy to see that for 0 ≤ t ≤ 1/2 one has

− log(1− t) ≤ 2t. (292)

Now, we show that g/q ≤ 1/2 over [−w,w]. Indeed, this is equivalent to q ≤ 2fn,r,p over [−w,w].
But q − ε ≤ fn,r,p over [−w,w], which implies in view of ε ≤ µw/2 ≤ q/2 (over [−w,w]) that
q ≤ 2fn,r,p, as desired. Thus, we obtain that over [−z, z]

− q log

(

1− T−a
g

q

)

≤ 2qT−a
g

q
≤ 2Mε

µw
, (293)

and

− g log

(

1− g

q

)

≤ 2g2

q
≤ 2ε2

µw
≤ ε. (294)

It is also clear that over [−z, z]

g log
T−aq

q
≤ ε log

M

µw
≤ ε

(

M

µw
− 1

)

. (295)
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Plugging in inequalities (293)–(295) into (290), we obtain the uniform bound

fn,r,p log
fn,r,p

T−afn,r,p
− q log

q

T−aq
≤ 3Mε

µw
(296)

over [−z, z]. Integrating, we deduce
∫

[−z,z]
fn,r,p log

fn,r,p
T−afn,r,p

− q log
q

T−aq
≤ 6zMε

µw
<
δ

3
, (297)

where the last inequality follows by (287).
It remains to upper bound the middle integral in (290), for which we also derive a uniform upper

bound

sup
|a|≤1

∫

R\[−z,z]
fn,r,p log

fn,r,p
T−afn,r,p

≤ δ

3
. (298)

We will further split the integration at the points ±(w+1). By evenness of fn,r,p, we have that this
integral depends only on |a|, i.e., for each a ∈ [−1, 1]

∫

R\[−z,z]
fn,r,p log

fn,r,p
T−afn,r,p

=

∫

R\[−z,z]
fn,r,p log

fn,r,p
Tafn,r,p

. (299)

Thus, it suffices for (298) to show that

sup
0<a≤1

∫

R\[−z,z]
fn,r,p log

fn,r,p
T−afn,r,p

≤ δ

3
. (300)

Consider first the integral
∫

R\[−(w+1),w+1]
fn,r,p log

fn,r,p
T−afn,r,p

(301)

for fixed a ∈ (0, 1]. From the proof of Theorem 2, we can write the integrand in (301) as follows.
Extend the definition of pi to all i ∈ Z by

pi :=

{

p|i|, if −N ≤ i ≤ −1,

pNr
|i|−N , if |i| > N.

(302)

For each i ∈ Z, there is an integer j with |j| ≤ n, such that we have

fn,r,p log
fn,r,p

T−afn,r,p
= npi log

pi
pi+j

(303)

over Jn,i except possibly at a single point. By definition of w, we have that

R \ [−(w + 1), w + 1] =
⋃

|i|≥N+n

Jn,i. (304)

Further, if |i| ≤ N +n and |j| ≤ n, then |i+ j| ≥ N . Hence, from (303) we have that over Jn,i with
|i| ≥ N + n

fn,r,p log
fn,r,p

T−afn,r,p
= npNr

|i|−N(|i| − |i+ j|) log r ≤ n2pNr
|i|−N log

1

r
. (305)
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Summing over |i| ≥ N + n, we obtain
∫

R\[−(w+1),w+1]
fn,r,p log

fn,r,p
T−afn,r,p

=
∑

|i|≥N+n

∫

Jn,i

fn,r,p log
fn,r,p

T−afn,r,p
(306)

≤ npN log
1

r

∑

|i|≥n

r|i| =
2npNr

n log 1
r

1− r
. (307)

Using the upper bound on pN in (279), we obtain that

∫

R\[−(w+1),w+1]
fn,r,p log

fn,r,p
T−afn,r,p

≤ ηnrn log 1
r

3β1ℓαwα
. (308)

As 1/e ≤ r ≤ 1 and log 1
r ≤ 1

r − 1, using the definition of r given in (264) and w ≥ z4 (see (245)),
we have the bound

ηnrn log 1
r

3β1ℓαwα
≤ eηn(1− r)

3β1ℓαwα
≤ eηθ′α

3β1ℓαwα+1
≤ δ

6
. (309)

Thus, we have shown that

sup
a∈(0,1]

∫

R\[−(w+1),w+1]
fn,r,p log

fn,r,p
T−afn,r,p

≤ δ

6
. (310)

The final integral bound we need is the following:

sup
0<a≤1

∫

w−1<|x|≤w+1
fn,r,p(x) log

fn,r,p(x)

T−afn,r,p(x)
dx ≤ δ

6
. (311)

By evenness of fn,r,p, we have that

∫

w−1<|x|≤w+1
fn,r,p(x) log

fn,r,p(x)

T−afn,r,p(x)
dx =

∫

(w−1,w+1]
fn,r,p log

f2n,r,p
(T−afn,r,p) · (Tafn,r,p)

. (312)

Consider the function inside the logarithm in the integrand:

ρ(x; a) :=
fn,r,p(x)

2

fn,r,p(x+ a)fn,r,p(x− a)
. (313)

We will prove the uniform upper bound

sup
x∈(w−1,w+1]

a∈(0,1]

ρ(x; a) ≤ exp
(

2wγ′
)

, (314)

where γ′ := (γ + α)/2 ∈ (γ, α) is as defined in (240). Note that

(w − 1, w + 1] =
N+n
⋃

i=N−n

Jn,i. (315)

For each a ∈ (0, 1] and x ∈ (w − 1, w + 1], there are integers N − n ≤ i ≤ N + n and 0 ≤ j, k ≤ n
such that

ρ(x; a) =
p2i

pi+jpi−k
. (316)
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Thus, it suffices to show that exp(wγ′
) is an upper bound on each of the terms

pi
pj
,

pk
pNrn

,
pN
pk
,

1

rn
(317)

for 0 ≤ i, j, k ≤ N − 1 with |i − j| ≤ n. First, for 1/rn, denoting m = nw/(2θα)
1/α ≥ 2, we have

the bound

rn =

((

1− 1

m

)m)(2θα)1/α/w

≥ 4−(2θα)1/α/w ≥ 1

2
. (318)

Hence,
1

rn
≤ 2 ≤ ew

γ′

. (319)

For pk/pN with 0 ≤ k ≤ N − 1, we have the bound

pk
pN

≤ M

npN
=

2M/(1 − r)

n · (2pN/(1− r))
=

2M/(1 − r)

nPn,r,p(R \ [−w,w]) (320)

≤ 2M/(1 − r)

nQ(R \ [−w,w]) ≤ M/(1− r)

ne−τwγ =
Mweτw

γ

θ′α
. (321)

Hence,
pk
pNrn

≤ 2Mweτw
γ

θ′α
≤ ew

γ′

, (322)

where the last inequality follows from (253) for all small δ, e.g., for

δ ≤ 3 · 22γ+2 · θ′α · χ−1 (323)

(alternatively, we may increase the size of w at the outset). Consider next pi/pj for 0 ≤ i, j ≤ N − 1
with |i− j| ≤ n. By definition of the pk and uniform continuity of q, we have for 0 ≤ k ≤ N − 2

|pk − pk+1| ≤
ε

n
. (324)

By the triangle inequality, we deduce

|pi − pj| ≤
|i− j|ε
n

≤ ε. (325)

Thus,
pi
pj

≤ 1 +
ε

pj
≤ 1 +

nε

µw
≤ 1 +

n

2
≤ ew

γ′

. (326)

The last term pN/pk can be bounded using (279) to obtain

pN
pk

≤ η · (1− r)/(6β1ℓαw
α)

µw/n
=

ηθ′α
6β1ℓαµwwα+1

≤ ηθ′α
6β1ℓα

· eτwγ ≤ ew
γ′

, (327)

where the last inequality follows from (253) for all small η, e.g., for

η ≤ 24β1ℓα · χ−1 · (θ′α)−2 (328)

(alternatively, we may increase the size of w at the outset). Collecting (319), (322), (326), and (327),
we obtain the following upper bound on the integral in (312):

Pn,r,p((w − 1, w + 1]) · 2wγ′
. (329)
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Further,

Pn,r,p((w − 1, w + 1])] ≤ Pn,r,p((w − 1, w]) + Pn,r,p((w,∞)) (330)

≤ Q((w − 1, w]) +
1

2
− Pn,r,p([0, w]) (331)

≤ Q((w − 1, w]) +
1

2
− (Q([0, w]) − εw) (332)

= εw +Q((z,∞)) (333)

≤ εw +
η

12β1ℓαzα
(334)

≤ η

6β1ℓαzα
, (335)

where the last inequality follows by (278). Hence, the integral in (312) is upper bounded by

2α

3β1ℓαwα−γ′ · η ≤ η

6
, (336)

where the last inequality follows since w ≥ zmin (see (245)). Thus, we have shown that (311) holds,
which when combined with (310) gives (298).

Combining (285), (286), and (298) gives, in view of (284), the desired inequality (269):

sup
|a|≤1

D(fn,r,p‖Tafn,r,p) ≤ KL⋆ + δ. (337)

Recall that we showed in (268) that

Efn,r,p [c] ≤ C + η. (338)

To sum up, we make the dependence on C explicit in the optimal values, i.e., we write KL⋆(C),
KL⋆

n,N,r(C), and KL⋆
Cactus(C). What we have shown above yields that

KL⋆
n,N,r(C + η) ≤ KL⋆(C) + δ. (339)

Consider the values
KL◦

Cactus(C) := inf
(n,N,r)∈N2×(0,1)

KL⋆
n,N,r(C), (340)

so (as defined by (21) in the statement of the theorem) KL⋆
Cactus(C) = limη→0+ KL◦

Cactus(C + η).
We conclude that

KL⋆(C + η) ≤ KL◦
Cactus(C + η) ≤ KL⋆(C) + δ. (341)

Taking δ → 0+, we have

KL⋆(C + η) ≤ KL◦
Cactus(C + η) ≤ KL⋆(C). (342)

Finally, being the infimum of a jointly convex function over a convex set, the function C 7→ KL⋆(C)
is convex. Since it is also finite, we see that KL⋆(C) is continuous over (0,∞). Thus, taking η → 0+,
we see that

KL⋆
Cactus(C) = KL⋆(C), (343)

completing the proof of the theorem.
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