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Abstract. How well can we approximate a quantum channel output state using a random codebook with a
certain size? In this work, we study the quantum soft covering problem. Namely, we use a random codebook
with codewords independently sampled from a prior distribution and send it through a classical-quantum
channel to approximate the target state. When using a random independent and identically distributed
codebook with a rate above the quantum mutual information, we show that the expected trace distance
between the codebook-induced state and the target state decays with exponent given by the sandwiched
Rényi information. On the other hand, when the rate of the codebook size is below the quantum mutual
information, the trace distance converges to one exponentially fast. We obtain similar results when using a
random constant composition codebook, whereas the sandwiched Augustin information expresses the error
exponent. In addition to the above large deviation analysis, our results also hold in the moderate deviation
regime. That is, we show that even when the rate of the codebook size approaches the quantum mutual
information moderately quickly, the trace distance still vanishes asymptotically.

1. Introduction

Consider a classical-quantum (c-q) channel NX→B : x 7→ ρxB that takes every input letter x ∈ X to
an output quantum state ρxB on a Hilbert space HB. Given a probability distribution pX on the input
alphabet X as an input to the channel, the corresponding output is then given by the marginal state
ρB =

∑

x∈X pX(x)ρxB . Suppose we do not directly possess pX but have a random codebook C ⊂ X , in
which the codewords are independently sampled from pX . It is natural to expect that for large size of C,
the marginal state ρB can be approximated by the codebook-induced output state defined by

ρCB :=
1

|C|
∑

x∈C
ρxB .

Namely, ρCB is generated by uniformly choosing codewords in C and passing through the channel NX→B.
Since the codebook C here is random, we take the expected value of the trace distance to quantify how
well the induced state ρCB approximates the true marginal state ρB , i.e.

ε(C) := 1

2
EC
∥

∥ρCB − ρB
∥

∥

1
. (1.1)

When the underlying channel is classical, such a problem is called soft covering and has been actively
investigated due to its ample applications in secrecy analysis and some coding problems [1–12]. In the
quantum scenario, this problem was simply termed as “covering”, and has been studied in the context of
identification, compression, and channel simulation [13–19], [20, §17]. In this work, we study, for different
types of random codebooks, how fast the trace distance in (1.1) converges to 0 or to 1, when the size
of the random codebook is fixed. We term this study the large deviation analysis for quantum soft
covering [11,12].
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Firstly, we establish a one-shot achievability bound (Theorem 1) and a one-shot strong converse bound
(Theorem 5) on the trace distance (1.1), respectively. These results directly apply to the n-shot extension
with product channelN⊗n

X→B. We prove that for an independent and identically distributed (i.i.d.) random

codebook Cn with rate R := 1
n log |Cn|, whose codewords being independently sampled from p⊗n

X , the
following hold for every n ∈ N (Propositions 3 and 7),











1

2
ECn

∥

∥ρC
n

Bn − ρ⊗n
B

∥

∥

1
≤ e−nE∗(R), R > I(X :B)ρ

1

2
ECn

∥

∥ρC
n

Bn − ρ⊗n
B

∥

∥

1
≥ 1− 4e−nE↓

sc(R), R < I(X :B)ρ

(1.2)

where the exponents E∗(R) := supα∈(1,2)
1−α
α (I∗α (X;B)ρ−R) and E

↓
sc(R) := supα∈( 1

2
,1)

1−α
α (I↓

2−1/α
(X :B)ρ−

R) are defined in terms of the order-α sandwiched Rényi information and a variant of the Petz-type Rényi
information (see the detailed definitions in Section 2). Our results hence imply that the quantum mutual
information I(X :B)ρ is the minimal achievable rate as well as the strong converse rate for quantum soft
covering using random i.i.d. codebook.

Secondly, we consider a constant composition random codebook where its codewords are independently
sampled uniformly from the type class of pX , whose distribution is

p̆Xn(xn) :=
1

|T n
p |

1{xn∈Tn
p },

and the type class T n
p is the set of all sequence xn with empirical distribution pX . We write

ρ̆Bn := N⊗n
X→B(p̆Xn)

as the corresponding channel output state. We show that, for every n ∈ N (Theorem 4 and Proposition 8),










1

2
EC̆n

∥

∥

∥ρC̆
n

Bn − ρ̆Bn

∥

∥

∥

1
≤ e−nĔ∗(R), R > I(X :B)ρ

1

2
EC̆n

∥

∥

∥
ρC̆

n

Bn − ρ̆Bn

∥

∥

∥

1
≥ 1− nkpe−nĔ↓

sc(R), R < I(X :B)ρ

(1.3)

where the exponents Ĕ∗(R) := supα∈(1,2)
1−α
α (Ĭ∗α(X :B)ρ −R) and Ĕ

↓
sc(R) := supα∈(1/2,1)

1−α
α (Ĭ↓2−1/α(X :B)ρ−

R) are defined in terms of the order-α sandwiched Augustin information and a variant of the Petz-type
Augustin information. Again, I(X :B)ρ acts as the fundamental limit for the minimal achievable rate.
However, notably both the exponents when using the random constant composition codebook are larger
than that of using the random i.i.d. codebook, which indicates a faster convergence. We remark that both
our results established in (1.2) and (1.3) hold for every finite blocklength n.

Our result extends to the moderate deviation regime. Namely, as the rate R of both the random
codebooks approaches I(X :B)ρ from above at a speed no faster than O(1/

√
n), the trace distances still

vanishes asymptotically1 (Propositions 9 and 10):

1

2
ECn

∥

∥ρC
n

Bn − ρ⊗n
B

∥

∥

1
. e

− na2n
2V (X :B)ρ → 0, R = I(X :B)ρ + an;

1

2
EC̆n

∥

∥

∥ρC̆
n

Bn − ρ̆Bn

∥

∥

∥

1
. e

− na2n
2V̆ (X :B)ρ → 0, R = I(X :B)ρ + an.

Here, V (X :B)ρ is the quantum information variance, V̆ (X :B)ρ is a variant of it, and (an)n∈N is any
moderate deviation sequence satisfying an ↓ 0 and na2n ↑ ∞.

Our lower estimates in trace distance can be compared to the covering lemma in [20, §17] (see also [14]),
which proves that for any R > I(X :B)ρ and δ > 0, the probability of ε(C) ≥ δ converges to 0 in
probability.Note that our upper estimates in (1.2) and (1.3) for the trace norm also implies exponential
convergence in probability.

1Here, by “f(n) . g(n)” we meant limn→∞
1

na2
n

log f(n) ≤ limn→∞
1

na2
n

log g(n). See Propositions 9 and 10 for the precise

statements.
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This paper is organized as following. Section 2 presents necessary notation and information quantities.
In Section 3, we prove the achievability (i.e. exponential upper bound), and in Section 4, we prove the
exponential strong converse. Section 5 presents moderate deviation analysis. We conclude this paper in
Section‘6. Appendix 6 introduces basics of the complex interpolation theory.

2. Notation and Information Quantities

For a Hilbert space H, we denote B(H) and B≥0(H) the set of bounded linear operators and the set of
positive semi-definite operators onH. The set of density operators S(H) is positive semi-definite operators

with unit trace. For p ≥ 1, the Schatten p-norm is ‖M‖Sp(H) = (Tr [|M |p])1/p. The set of bounded linear

operators with finite Schatten p-norm is denoted as the Schatten p-class Sp(H). We will often shorthand
‖ · ‖p ≡ ‖ · ‖Sp(H) if the underlying Hilbert space is clear and there is possibility of confusion. We use
supp(·) to stand for the support of an operator or the support of a function. We use Ex∼pX to denote
taking expectation with respect to random variable x governed by probability distribution pX , e.g..

Ex∼pX [|x〉〈x| ⊗ ρxB ] =
∑

x∈X
pX(x)|x〉〈x| ⊗ ρxB = ρXB .

We define the order-α Petz–Rényi divergence Dα [21] and the sandwiched Rényi divergence D∗
α [22,23]

for ρ ∈ S(H) and σ ∈ B≥0(H) and α ∈ (0,∞)\1 as

Dα(ρ‖σ) :=
1

α− 1
log Tr

[

ρασ1−α
]

,

D∗
α(ρ‖σ) :=

1

α− 1
log ‖ σ

1−α
2α ρσ

1−α
2α ‖αα .

Note that both Rényi divergences converge to the quantum relative entropy [24], [25, Lemma 3.5], i.e.

lim
α→1

Dα(ρ‖σ) = lim
α→1

D∗
α(ρ‖σ) = D(ρ‖σ) := Tr [ρ(log ρ− log σ)] .

We define the relative entropy variance V (ρ‖σ) is defined by

V (ρ‖σ) := Tr
[

ρ(log ρ− log σ)2
]

− (D(ρ‖σ))2 .
For a classical-quantum (c-q) state ρXB =

∑

x∈X pX(x)|x〉〈x| ⊗ ρxB , we define the order-α sandwiched

Rényi information I∗α (X :B)ρ and the order-α sandwiched Augustin information Ĭ∗α (X :B)ρ as following:

I∗α (X :B)ρ := inf
σB∈S(HB)

D∗
α (ρXB‖pX ⊗ σB)

= inf
σB∈S(HB)

α

α− 1
log

(

∑

x∈X
pX(x)

∥

∥

∥

∥

σ
1−α
2α

B ρxBσ
1−α
2α

B

∥

∥

∥

∥

α

α

)
1
α

;
(2.1)

Ĭ∗α (X :B)ρ := inf
σB∈S(HB)

∑

x∈X
pX(x)D∗

α (ρ
x
B‖σB)

= inf
σB∈S(HB)

α

α− 1

∑

x∈X
pX(x) log

∥

∥

∥

∥

σ
1−α
2α

B ρxBσ
1−α
2α

B

∥

∥

∥

∥

α

.
(2.2)

Here the infimum σB is taken over all densities on B. Moreover, we define the following variants of the
Petz-type information quantities:

I↓α(X :B)ρ := Dα (ρXB‖ρX ⊗ ρB) ; (2.3)

Ĭ↓α(X :B)ρ :=
∑

x∈X
pX(x)Dα (ρxB‖ρB) .

All the fourth information quantities converges to the quantum mutual information, i.e.

lim
α→1

I∗α (X :B)ρ = lim
α→1

Ĭ∗α (X :B)ρ = lim
α→1

I↓α(X :B)ρ = lim
α→1

Ĭ↓α(X :B)ρ

= I(X :B)ρ := D(ρXB‖ρX ⊗ ρB).
(2.4)
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For a c-q state ρXB =
∑

x∈X pX(x)|x〉〈x| ⊗ ρxB , we define the mutual information variance V (X :B)ρ and

a variant V̆ (X :B)ρ as

V (X :B)ρ := V (ρXB ‖ ρX ⊗ ρB);

V̆ (X :B)ρ := Ex∼pX [V (ρxB ‖ ρB)] .
We remark that both the quantities introduced in (2.1) and (2.2) do not have a closed-form expression.

However, an iterative optimization algorithm with convergence guarantees has been proposed to compute
them [26].

3. Achievability

Let ρXB :=
∑

x∈X pX(x)|x〉〈x| ⊗ ρxB be a classical-quantum state. The goal of quantum soft covering
is to approximate the marginal state at the channel output, i.e. ρB =

∑

x∈X pX(x)ρxB , given access to the
classical-quantum channel x 7→ ρxB and sampling from the prior distribution pX .

To that end, we consider a random codebook C = {x(m)}Mm=1 ⊆ X of size M , where its codewords
x(1), · · · , x(m) are independently generated according to pX . Then, the average state induced by the
random codebook C is:

ρCB :=
1

M

∑

x∈C
ρxB .

Hence, we take the expected value (over the random codebook C) of the trace distance between the
codebook-induced state ρCB and the true marginal state ρB as the figure of merit:

1

2
EC
∥

∥ρCB − ρB
∥

∥

1
.

The main result of this section is to prove the following upper bound on the trace distance when the
codebook size M is fixed.

Theorem 1 (A one-shot achievability via Rényi Information). The trace distance between the induced
state ρCB and the true state ρB is upper bounded by

1

2
EC
∥

∥ρCB − ρB
∥

∥

1
≤ 2

2
α
−2 e

α−1
α (I∗α(X :B)ρ−logM), α ∈ (1, 2).

Here, the order-α sandwiched Rényi information I∗α (X :B)ρ is defined in (2.1).

This one-shot achievability bound applies to the n-shot scenario when using a random independent
and identically distributed (i.i.d.) codebook (Section 3.1) and a random constant composition codebook
(Section 3.2).

To prove achievability on random codebook, we start with a lemma to exploit the independence between
random codewords. Let L∞(Ω, µ) be a probability space. For M ≥ 1, we write ΩM = Ω× · · · × Ω for an
M -fold product space of Ω. For 1 ≤ i ≤ M , we define the following maps:

πi : L∞(Ω, µ) → L∞
(

ΩM , µ
)

,

πi(f)(ω1, . . . , ωM ) = f(ωi) ,

E : L∞(Ω, µ) → L∞(ΩM , µ) ,

E(f)(ω1, . . . , ωM ) =

∫

Ω
f(ω)dµ(ω) =: Eµ(f) ,

Θ := : L∞(Ω, µ) → L∞
(

ΩM , µ
)

,

Θ(f) =
1

M

M
∑

i=1

πi(f)− E(f),

where (ω1, · · · , ωM ) ∈ Ω×M . Here, πi is an embedding such that πi(f) only depends on the i-th coordinate
ωi via f , and E sends f to the constant function of its mean Eµ(f). It is clear to see that πi(f) forms

4



an i.i.d. copy of distribution of f . Our key lemma in achievability is to upper bounds the norm of the
operation Θ on operator-valued functions.

Lemma 2. Let Θ be the map defined above. Then, for any Hilbert space H and 1 ≤ p ≤ 2, we have

‖ Θ⊗ id : Lp(Ω, Sp(H)) → Lp

(

ΩM , Sp(H)
)

‖≤ 2
2
p
−1

M
1−p
p ,

where the identity map id is acting on Sp(H).

Proof. For any p ≥ 1, it is clear that for each i, πi gives an isometry on Lp-spaces

‖ πi ⊗ id(f) ‖p
Lp(Ω×M ,Sp(H))

=

∫

ΩM

‖ πi ⊗ id(f)(ω1, · · · , ωM ) ‖pp dµ(ω1) · · · dµ(ωM )

=

∫

Ω
‖ f(ωi) ‖pp dµ(ωi) =‖ f ‖pLp(Ω,Sp(H)) .

Moreover, by convexity of Sp(H) norm, the map E is a contraction, i.e.

‖ E(f) ‖Lp(ΩM ,Sp(H))=‖ Eµ(f) ‖Sp(H)

≤
∫

Ω
‖ f(ω) ‖p dµ(ω) ≤

(

∫

Ω
‖ f(ω) ‖pp dµ(ω)

)1/p
,

where in the last step we used Jensen’s inequality and Hölder inequality on a probability space. Then by
triangle inequality, we have for p = 1,

‖ Θ⊗ id : L1(Ω, S1(H)) → L1(Ω
M , S1(H)) ‖≤ 2 .

For p = 2, we consider

Θ⊗ id(f) =
1

M

M
∑

i=1

(πi(f)− E(f)) =
1

M

M
∑

i=1

f̂i ,

where f̂i = πi(f) − E(f) is the mean zero part of πi(f). It then follows from independence that f̂i are
mutually orthogonal (even in the operator-valued inner product). Indeed, for i 6= j,

E(f̂∗
i f̂j) = (E(πi(f)− E(f)))∗ (E(πj(f)− E(f)))

=|Eµf − Eµf |2 = 0.

This further implies that f̂i are orthogonal in the Hilbert space L2(Ω
M , S2(H)). Note that for each i,

‖ πi(f)− E(f) ‖L2(ΩM ,S2(H)) =‖ πi(f − Eµf) ‖L2(ΩM ,S2(H))

=‖ f − Eµf ‖L2(Ω,S2(H))

≤‖ f ‖L2(Ω,S2(H)),

where the last inequality follows from the fact that f → Eµf is the projection from L2(Ω, S2(H)) onto
the (operator-valued) constant function. Thus, we have

‖ Θ⊗ id(f) ‖22 =

∥

∥

∥

∥

∥

1

M

M
∑

i=1

f̂i

∥

∥

∥

∥

∥

2

2

=
1

M2

M
∑

i,j=1

〈f̂i, f̂j〉

=
1

M2

M
∑

i=1

∥

∥

∥f̂i

∥

∥

∥

2

≤ 1

M
‖ f ‖2 .
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This means that, for p = 2,

‖ Θ⊗ id : L2(Ω, S2(H)) → L2

(

ΩM , S2(H)
)

‖≤
1√
M

.

The case of general 1 ≤ p ≤ 2 follows from interpolation (see e.g. [27]) with θ = 2(p−1)
p ∈ [0, 1]. �

Since the above estimate does not depends on the dimension of B(H), in the following we write Θ for
Θ⊗ idB(H) if no confusion. Similarly, we omit the notation of idB(H) for the maps πi and E. We are now
ready to prove the one-shot achievability bound.

Proof of Theorem 1. For the ease of notation, we write H ≡ HB, ρx ≡ ρxB and ρB ≡ ∑

x pX(x)ρx
throughout the proof. Let x : Ω → X be a random codeword with respect to the distribution pX ,
where Ω is the event space. We can rewrite the classical-quantum state ρXB as

ρΩB =
∑

x

1Ax ⊗ ρx ∈ L∞(Ω,B(H)) ,

where 1Ax is the characteristic function on the mutually disjoint set Ax, which satisfying Pr(Ax) = pX(x)
and

∑

x∈X Pr(Ax) =
∑

x∈X pX(x) = 1. In particular, we have EΩρΩB = ρB . Take 1 < α < 2 and
1
α + 1

α′ = 1. The Rényi information can be expressed as

I∗α (X :B)ρ = inf
σ

1

α− 1
log

(

∑

x∈X
pX(x)

∥

∥

∥
σ− 1

2α′ ρxσ
− 1

2α′

∥

∥

∥

α

α

)

= inf
σ∈S(H)

α

α− 1
log ‖ σ

− 1
2α′

ΩB ρΩBσ
− 1

2α′

ΩB ‖Lα(Ω,Sα(H))

where σΩB := 1Ω ⊗ σ is interpreted as a constant function on L∞(Ω,B(H)). In other words,

e
α−1
α

I∗α(X :B)ρ = inf
σ∈S(H)

‖ σ
− 1

2α′

ΩB ρΩBσ
− 1

2α′

ΩB ‖Lα(Ω,Sα(H)) .

Now using the construction in the Lemma 2, we have

EC
∥

∥ρCB − ρB
∥

∥

1
= EC

∥

∥

∥

∥

∥

1

M

∑

x∈C
ρx − ρB

∥

∥

∥

∥

∥

1

=‖ Θ(ρΩB) ‖L1(ΩM ,S1(H)) .

Note that for any state σ ∈ S(H),

‖ Θ(ρΩB) ‖L1(Ω×M ,S1(H))

(a)

≤ ‖ σ− 1
2α′ Θ(ρΩB)σ

− 1
2α′ ‖Lα(ΩM ,Sα(H))

(b)
= ‖ Θ(σ

− 1
2α′

ΩB ρΩBσ
− 1

2α′

ΩB ) ‖Lα(ΩM ,Sα(H))

≤ ‖ Θ : Lα(Ω, Sα(H)) → Lα(Ω
M , Sα(H)) ‖ · ‖ σ

− 1
2α′

ΩB ρΩBσ
− 1

2α′

ΩB ‖Lα(ΩM ,Sα(H)) .

Here, (b) used the fact Θ = Θ ⊗ idB(H) is identity on the operator part , and (a) used Hölder inequality
‖ AXB ‖1≤‖ A ‖2α′‖ X ‖α‖ B ‖2α′ with

‖ σ
1

2α′ ‖Lα(ΩM ,Sα(H))=

∫

Ω×M

‖ σ
1

2α′ ‖2α′

2α′ dµM = 1

Then the assertion follows from Lemma 2 and taking infimum over σ ∈ S(H), i.e.

EC
∥

∥ρCB − ρB
∥

∥

1
≤ 2

2
α
−1M

1−α
α · inf

σ∈S(H)
‖ σ

− 1
2α′

ΩB ρΩBσ
− 1

2α′

ΩB ‖Lα(Ω×M ,Sα(H))

= 2
2
α
−1M

1−α
α e

α−1
α

I∗α(X :B)ρ .

That finishes the proof. �
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3.1. Random I.I.D. Codebook. We consider the n-shot extension of quantum soft covering, where the
c-q channel is now n-fold product:

xn 7→ ρx
n

Bn := ρx1
B ⊗ · · · ⊗ ρxn

B , ∀xn ∈ X n.

In this section, we investigate the case that input distribution is i.i.d., i.e. pXn = p⊗n
X . Hence, the joint

c-q state is the n-fold product state ρXnBn = ρ⊗n
XB and our targeted true marginal state is ρ⊗n

B .

With the i.i.d. prior p⊗n
X , we use the codebook Cn with size |Cn| = exp(nR), where each codeword in

Cn is i.i.d. drawn according to p⊗n
X . We term this the random i.i.d. codebook. Now the goal is to use the

codebook-induced state ρC
n

Bn to approximate ρ⊗n
B .

We apply the one-shot achievability established in Theorem 1 to show that the expected value of the
trace distance between the induced state ρC

n

Bn and the true marginal state ρ⊗n
B decays exponentially fast.

Proposition 3 (n-shot achievability using random i.i.d. codebook). For any n ∈ N, let R = 1
n log |Cn|.

Then,

1

2
ECn

∥

∥ρC
n

Bn − ρ⊗n
B

∥

∥

1
≤ e−n supα∈(1,2)

1−α
α (I∗α(X :B)ρ−R).

Moreover, the exponent supα∈(1,2)
1−α
α

(

I∗α (X :B)ρ −R
)

is positive if and only if R > I(X :B)ρ.

Proof. Recall the additivity of sandwiched Rényi information [25, Lemma 4.8]:

I∗α (X
n;Bn)ρ = nI∗α (X :B)ρ . (3.1)

The exponential upper bound is a direct consequence of the one-shot achievability proved in Theorem 1
and (3.1). The positivity follows from the monotone non-decreasing map α 7→ I∗α [28, Proposition 4] and
(2.4). �

3.2. Random Constant Composition Codebook. Our Theorem 1 also applies to achievability using
random constant composition codebook as well. Let ρXB =

∑

x∈X pX(x)|x〉〈x| ⊗ ρxB be a c-q state. Fix
n such that npX(x) ∈ 0 ∪N for all x ∈ X . We define the type class of length-n sequences under pX as

T n
p := {xn ∈ X n : Pxn = pX } ,

where the empirical distribution of sequence xn ∈ X n is

Pxn(x) :=
1

n

n
∑

i=1

1{x=xi}, ∀x ∈ X .

Then, we define a uniform distribution on the type class as:

p̆Xn(xn) :=
1
∣

∣T n
p

∣

∣

1xn∈Tn
p
, xn ∈ X n.

A random constant composition codebook

C̆n := {xn(m)}Mm=1, xn(m) ∼ p̆Xn(xn) (3.2)

consists of M codewords, where each codeword xn(m) is independently drawn according to distribution
p̆Xn . For a c-q channel x 7→ ρxB (induced by the c-q state ρXB), we define the c-q state generated from
p̆Xn as

ρ̆XnBn :=
∑

xn∈Xn

p̆Xn(xn)|xn〉〈xn| ⊗ ρx
n

Bn ,

and its marginal state

ρ̆Bn :=
∑

xn∈Xn

p̆Xn(xn)ρx
n

Bn .

The induced output state via the random constant composition codebook C̆n is then

ρC̆
n

Bn :=
1

|C̆n|
∑

xn∈C̆n

ρx
n

Bn .
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Theorem 4 (n-shot achievability using random constant composition codebook). For any n ∈ N, consider

a c-q state ρXB =
∑

x∈X pX(x)|x〉〈x| ⊗ ρxB, where npX(x) ∈ 0 ∪N for all x ∈ X , and let R := 1
n log |C̆n|

for a random constant composition codebook given in (3.2). The trace distance between the induced state

ρC̆
n

Bn and the true marginal state ρ̆Bn is upper bounded by

1

2
EC̆n

∥

∥

∥
ρC̆

n

Bn − ρ̆Bn

∥

∥

∥

1
≤ e−n supα∈(1,2)

1−α
α (Ĭ∗α(X :B)ρ−R).

Here, the order-α sandwiched Augustin information Ĭ∗α(X :B)ρ is defined in (2.2). Moreover, the exponent

supα∈(1,2)
1−α
α (Ĭ∗α(X :B)ρ −R) is positive if and only if R > I(X :B)ρ.

Remark 3.1. Jensen’s inequality together with the concavity of logarithmic function show that

1−α
α I∗α(X :B)ρ ≤ 1−α

α I∗α(X :B)ρ, ∀α > 1.

Hence, the expected value of the trace distance decays faster when using random constant composition
codebook compared to that of using random i.i.d. codebook.

Proof. The idea is similar to Theorem 1. We write H ≡ HB throughout the proof. For xn = x1 · · · xn ∈
X n, we write the output state as ρxn := ρx1 ⊗ · · · ⊗ ρxn ∈ B(H)⊗n. Let xn : Ω → X n be a random
codeword with respect to the uniform distribution on type class p̆Xn . We introduce the classical-quantum
state as

ρ̆ΩBn =
∑

xn∈Tn
p

1Axn
⊗ ρxn ∈ L∞

(

Ω,B(H)⊗n) ,

where 1Axn
is the characteristic function on the mutually disjoint set Axn such that Pr(Axn) = 1

|Tn
p | . It is

clear that EΩ [ρ̆ΩBn ] = ρ̆Bn . Take 1 < α < 2 and 1
α + 1

α′ = 1. Let nx := npX(x) for some integer nx ∈ N

for all x ∈ X . The Augustine information Ĭ∗α (X :B)ρ can be expressed as

inf
σ∈S(H)

α

α− 1

∑

x∈X

nx

n
log
∥

∥

∥
σ− 1

2α′ ρxσ
− 1

2α′

∥

∥

∥

α

= inf
σ∈S(H)

1

n
· α

α− 1
log
∥

∥

∥(σ⊗n)−
1

2α′ ρxn(σ⊗n)−
1

2α′

∥

∥

∥

nx

α

for any xn ∈ T n
p . Then we further have

Ĭ∗α (X :B)ρ = inf
σ∈S(H)

1

n
· α

α− 1
log ‖ σ

− 1
2α′

ΩBn ρ̆ΩBnσ
− 1

2α′

ΩBn ‖Lα(Ω,Sα(H⊗n)) .

where σΩBn = 1Ω ⊗ σ⊗n
B is interpreted as a constant function with value σ⊗n

B ∈ B(H)⊗n ∼= B(H⊗n). In
other words,

en·
α−1
α

Ĭ∗α(X :B)ρ = inf
σ∈S(H)

‖ σ
− 1

2α′

ΩBn
ρ̆ΩBnσ

− 1
2α′

ΩBn
‖Lα(Ω,Sα(H⊗n)) .

Denote by M := |C̆n|. Now using the construction given in the Lemma 2, we have

EC̆n

∥

∥

∥
ρC̆

n

Bn − ρ̆Bn

∥

∥

∥

1
=‖ Θ(ρΩBn) ‖L1(ΩM ,S1(H⊗n)) .

Note that for any σ ∈ S(H),

‖ Θ(ρΩBn) ‖L1(ΩM ,S1(H⊗n))

(a)

≤ ‖ σ
− 1

2α′

ΩBn ρ̆ΩBnσ
− 1

2α′

ΩBn ‖Lα(ΩM ,Sα(H⊗n))

(b)
= ‖ Θ(σ

− 1
2α′

ΩBn ρ̆ΩBnσ
− 1

2α′

ΩBn ) ‖Lα(ΩM ,Sα(H⊗n))

≤ ‖ Θ : Lα(Ω, Sα(H⊗n)) → Lα(Ω
M , Sα(H⊗n)) ‖ · ‖ σ

− 1
2α′

ΩBn ρ̆ΩBnσ
− 1

2α′

ΩBn ‖Lα(Ω,Sα(H⊗n)) .
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Here, (b) follows from the fact Θ = Θ ⊗ idB(H) is identity on the operator part, and (a) uses Hölder
inequality with

‖ σ
1

2α′

Bn ‖L2α(ΩM ,S2α(H⊗n)) =
(

∫

ΩM

‖ (σ
1

2α′ )⊗n ‖2α′

S2α′ (H⊗n) dµ
M
) 1

2α′

= 1 .

Then the assertion follows from Lemma 2 and taking infimum over σ ∈ S(H), i.e.

EC̆n

∥

∥

∥ρC̆
n

Bn − ρ̆Bn

∥

∥

∥

1
≤ 2

2
α
−1M

1−α
α inf

σ∈S(H)
‖ σ

− 1
2α′

ΩBn
ρ̆ΩBnσ

− 1
2α′

ΩBn
‖Lα(Ω,Sα(H⊗n))

= 2
2
α
−1M

1−α
α en·

α−1
α

Ĭ∗α(X :B)ρ

≤ 2 e−n· 1−α
α

(Ĭ∗α(X :B)ρ−R),

where R = 1
n log |Cn|. The assertion of exponential decay follows from taking infimum of the right-

hand side for α ∈ (1, 2). The positivity again follows from the monotone non-decreasing of the map

α 7→ Ĭ∗α [28, Proposition 5] and (2.4). �

4. Strong Converse

In the previous Section 3, we have presented that as long as the rate of the random codebook size is above
the quantum mutual information I(X :B)ρ, the trace distances using both the random i.i.d. codebook
and the random constant composition codebook exponentially decay. In this section, we show that, on
the other hand, when the rate of the random codebook size is below the quantum mutual information
I(X :B)ρ, the trace distances using both the two random codebooks converge to 1 exponentially fast,
reflecting the exponential strong converse .

Using the notation as in Section 3, we first prove the following one-shot strong converse bound.

Theorem 5 (A one-shot strong converse). The trace distance between the induced state ρCB and the true
state ρB is lower bounded by,

1

2
EC
∥

∥ρCB − ρB
∥

∥

1
≥ 1− 4 e

α−1
α

(

I↓
2−1/α

(X :B)ρ−logM
)

, ∀α ∈ (1/2, 1).

Here, I↓2−1/α(X :B)ρ is defined in (2.3).

In Sections 4.1 and 4.2 later, we will apply the one-shot strong converse, Theorem 5, to the random
i.i.d. codebook and the random constant composition codebook.

Proof. Using the Holevo–Helstrom theorem [29,30], i.e.

1

2
‖ρ− σ‖1 = sup

0≤Π≤1

Tr [(ρ− σ)Π] ,

we have

1

2

∥

∥ρCB − ρB
∥

∥

1
= sup

0≤ΠB≤1B

Tr
[(

ρCB − ρB
)

ΠB

]

≥ Tr
[

ρCB
(

ρCB + ρB
)−1/2

ρCB
(

ρCB + ρB
)−1/2

]

− Tr
[

ρB
(

ρCB + ρB
)−1/2

ρCB
(

ρCB + ρB
)−1/2

]

.
(4.1)

We will then lower bound the two terms in (4.1) subsequently.
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Recalling ρCB = 1
M

∑

x∈C ρ
x
B , we rewrite the first term in (4.1) as follows:

Tr
[

ρCB
(

ρCB + ρB
)−1/2

ρCB
(

ρCB + ρB
)−1/2

]

=
1

M

∑

x∈C
Tr
[

ρxB
(

ρCB + ρB
)−1/2

ρCB
(

ρCB + ρB
)−1/2

]

=
1

M

∑

x∈C
Tr



ρxB

(

∑

x̄∈C
ρx̄B +MρB

)−1/2


ρxB +
∑

x̄∈C,x̄6=x

ρx̄B





(

∑

x̄∈C
ρx̄B +MρB

)−1/2




≥ 1

M

∑

x∈C
Tr



ρxB

(

∑

x̄∈C
ρx̄B +MρB

)−1/2

ρxB

(

∑

x̄∈C
ρx̄B +MρB

)−1/2




≥ 1

M

∑

x∈C



1−Tr



(ρxB)
1−s





∑

x̄∈C,x̄6=x

ρx̄B +MρB





s





 , ∀s ∈ (0, 1),

where we have applied Lemma 6 given below with K = ρxB and L =
∑

x̄∈C,x̄6=x ρ
x̄
B + MρB to the last

inequality.
Recalling the fact that each codeword (e.g. x, x̄ ∈ C) is drawn independently, and using the operator

concavity of ( · )s for s ∈ (0, 1), we average the above inequality over the random codebook C to arrive at

EC Tr
[

ρCB
(

ρCB + ρB
)−1/2

ρCB
(

ρCB + ρB
)−1/2

]

≥ 1

M

∑

x∈C



1−Ex∼pX Tr



(ρxB)
1−s

Ex̄∼pX





∑

x̄∈C,x̄6=x

ρx̄B +MρB





s







≥ 1

M

∑

x∈C



1−Ex∼pX Tr



(ρxB)
1−s





∑

x̄∈C,x̄6=x

Ex̄∼pXρ
x′

B +MρB





s







=
1

M

∑

x∈C



1−Ex∼pX Tr



(ρxB)
1−s





∑

x′∈C,x̄ 6=x

(M − 1)ρB +MρB





s







≥ 1− (2M)sEx∼pX Tr
[

(ρxB)
1−sρsB

]

, ∀s ∈ (0, 1). (4.2)

Next, we lower bound the second term in (4.1). Using the cyclic property of trace, we have

− Tr
[

ρB
(

ρCB + ρB
)−1/2

ρCB
(

ρCB + ρB
)−1/2

]

= − 1

M

∑

x∈C
Tr
[

ρxB
(

ρCB + ρB
)−1/2

ρB
(

ρCB + ρB
)−1/2

]

= − 1

M

∑

x∈C
Tr



ρxB

(

∑

x̄∈C
ρx̄B +MρB

)−1/2

MρB

(

∑

x̄∈C
ρx̄B +MρB

)−1/2




≥ − 1

M

∑

x∈C
Tr



ρxB

(

∑

x̄∈C
ρx̄B +MρB

)−1/2




∑

x̄∈C,x̄6=x

ρx̄B +MρB





(

∑

x∈C
ρxB +MρB

)−1/2




≥ − 1

M

∑

x∈C
Tr



(ρxB)
1−s





∑

x̄∈C,x̄6=x

ρx̄B +MρB





s

 , ∀s ∈ (0, 1),

where we invoked Lemma 6 again with K = ρxB and L =
∑

x̄∈C,x̄6=x ρ
x̄
B +MρB to the last inequality.
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Similar, we take averaging over the random codebook C and follow previous reasoning to have

−EC Tr
[

ρB
(

ρCB + ρB
)−1/2

ρCB
(

ρCB + ρB
)−1/2

]

≥ −(2M)sEx∼pX Tr
[

(ρxB)
1−sρsB

]

, ∀s ∈ (0, 1). (4.3)

Combining (4.1), (4.2), and (4.3) proves our claim with substitution α = 1
1+s . �

Lemma 6 (A trace inequality [31, Lemma 3]). For any positive semi-definite K and L, the following
holds,

Tr
[

K(K + L)−
1/2L(K + L)−

1/2
]

≤ Tr
[

K1−sLs
]

, ∀s ∈ (0, 1).

4.1. Random I.I.D. Codebook. In the following, we consider the n-shot scenario of quantum soft
covering with i.i.d. prior p⊗n

X as stated in Section 3.1. We then apply the one-shot strong converse,
Theorem 5 with the random i.i.d. codebook. We show that the quantum mutual information I(X :B)ρ
is the strong converse rate of the quantum soft covering, meaning that the trace distance exponentially
converges to 1 when the rate of the random codebook size is below I(X :B)ρ.

Proposition 7 (Exponential strong converse using random i.i.d. codebook). Let ρXB =
∑

x∈X pX(x)|x〉〈x|⊗
ρxB be a classical-quantum state, and let R > 0. For any n ∈ N, let Cn := {xn(1), . . . , xn(M)} be a random

i.i.d. codebook with rate R = 1
n log |Cn|, where each xn(m) is independently drawn from p⊗n

X . Then, for
any n ∈ N,

1

2
ECn

∥

∥ρC
n

Bn − ρ⊗n
B

∥

∥

1
≥ 1− 4 e

−n sup
α∈(1/2,1)

1−α
α

(

I↓
2− 1

α
(X :B)ρ−R

)

.

Moreover, the exponent supα∈(1/2,1)
1−α
α (I↓2−1/α(X :B)ρ −R) is positive if and only if R < I(X :B)ρ.

Proof. The estimate follows from Theorem 5 and the additivity I↓
2−1/α

(Xn;Bn)ρ⊗n = nI↓
2−1/α

(X :B)ρ.

The positivity follows from the monotonicity of α 7→ Dα [25, Lemma 3.12] and (2.4). �

4.2. Random Constant Composition Codebook.

Proposition 8 (Exponential strong converse using random constant composition codebook). For any
n ∈ N, consider a classical-quantum state ρXB =

∑

x∈X pX(x)|x〉〈x| ⊗ ρxB, where npX(x) ∈ 0 ∪ N for

all x ∈ X , and let R := 1
n log |C̆n|, where C̆n for a random constant composition codebook given in (3.2).

Then, there exists kp > 0 only depending on pX such that

1

2
EC̆n

∥

∥

∥
ρC̆

n

Bn − ρ̆Bn

∥

∥

∥

1
≥ 1− nkp e

−n supα∈(1/2,1)
1−α
α

(

Ĭ↓
2−1/α

(X :B)ρ−R
)

.

Moreover, the exponent supα∈(1/2,1)
1−α
α (Ĭ↓2−1/α(X :B)ρ −R) is positive if and only if R < I(X :B)ρ.

Remark 4.1. Jensen’s inequality together with the concavity of logarithmic function show that

1−α
α I↓α(X :B)ρ ≤ 1−α

α Ĭ↓α(X :B)ρ, ∀α ∈ (0, 1).

Hence, Propositions 7 and 8 show that the expected value of the trace distance using random composition
codebook converges to 1 faster than that of using random i.i.d. codebook, albeit with a vanishing higher-
order term.

Proof. Applying the one-shot strong converse established in Theorem 5 with prior distribution p̆Xn and
the random constant composition codebook C̆n, we obtain

1

2
EC̆n

∥

∥

∥
ρC̆

n

Bn − ρ̆Bn

∥

∥

∥

1
≥ 1− 4M s

Exn∼p̆Xn Tr
[

(

ρx
n

Bn

)1−s
(ρ̆Bn)s

]

, ∀s ∈ (0, 1), n ∈ N. (4.4)

Note that

ρ̆Bn =
∑

xn∈Xn

1xn∈Tn
p
p⊗n
X (xn)ρx

n

Bn

p⊗n
X

(

T n
p

) ≤
∑

xn∈Xn

p⊗n
X (xn)ρx

n

Bn

p⊗n
X

(

T n
p

) =
ρ⊗n
B

p⊗n
X

(

T n
P

) . (4.5)
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Since ( · )s is operator monotone for s ∈ (0, 1), we combine (4.4) and (4.5) to get

1

2
EC̆n

∥

∥

∥
ρC̆

n

Bn − ρ̆Bn

∥

∥

∥

1
≥ 1− 4M s

Exn∼p̆Xn Tr
[

(

ρx
n

Bn

)1−s (
ρ⊗n
B

)s
]

(

p⊗n
X

(

T n
p

))−s

= 1− 4M
1−α
α e

nα−1
α

Ĭ↓
2−1/α

(X :B)ρ (p⊗n
X

(

T n
p

))
α−1
α , ∀α ∈ (1/2, 1),

where we have used substitution α = 1
1+s .

By [32, p. 26], the probability of the set of all sequences with composition P under P⊗n is

p⊗n
X

(

T n
p

)

= e
−ξ

|supp(pX )|

12 log 2 (2πn)−
|supp(pX )|−1

2

√

√

√

√

∏

x:pX(x)>0

1

pX(x)

for some ξ ∈ [0, 1].
Taking

Kp :=
|supp(pX)|
12 log 2

+
|supp(pX)| − 1

2
· log(2π) + 1

2

∑

x∈supp(pX)

log pX(x) + log 4,

thus proves our claim of exponential decay.
Again, the positivity follows from the non-decreasing map α 7→ Dα [25, Lemma 3.12] and (2.4). �

5. Moderate Deviation Analysis

In previous sections, we study the large deviation analysis for quantum soft covering. We characterize
the exponential error behaviors when the random codebook size is fixed. In this section, we extends our
results to the moderate deviation regime [33, 34]. That is, we derive the asymptotic error behaviors (in
terms of trace distance) when the rate Rn of codebook size (as a function of blocklength n) approaches
I(X :B)ρ at certain speed. The central question we want to ask here is that ifRn approaches I(X :B)ρ only
moderately quickly, can the trace distance still vanish? As will be shown in the following Propositions 9 and
10, the answers are affirmative for both the random i.i.d. codebook and the random constant composition
codebook when Rn approaches I(X :B)ρ no faster than O(1/

√
n).

We call (an)n∈N a moderate deviation sequence if it satisfies

lim
n→∞

an = 0, lim
n→∞

na2n = ∞. (5.1)

Proposition 9 (Moderate deviations using random i.i.d. codebook). Let ρXB be a classical-quantum state
satisfying V (X :B)ρ > 0. We have the following result for any moderate deviation sequence (an)n∈N:















lim inf
n→∞

− 1

na2n
log

(

1

2
ECn

∥

∥ρC
n

Bn − ρ⊗n
B

∥

∥

1

)

≥ 1

2V (X :B)ρ
, if |Cn| = en(I(X :B)ρ+an)

lim inf
n→∞

− 1

na2n
log

(

1− 1

2
ECn

∥

∥ρC
n

Bn − ρ⊗n
B

∥

∥

1

)

≥ 1

2V (X :B)ρ
, if |Cn| = en(I(X :B)ρ−an)

.

Proposition 10 (Moderate deviations using constant composition random codebooks). For any n ∈ N,
consider a c-q state ρXB =

∑

x∈X pX(x)|x〉〈x| ⊗ ρxB, where npX(x) ∈ 0 ∪N for all x ∈ X , and consider

a random constant composition codebook given in (3.2). Suppose V̆ (X :B)ρ > 0. We have the following
result for any moderate deviation sequence (an)n∈N defined in (5.1):

lim inf
n→∞

− 1

na2n
log

(

1

2
EC̆n

∥

∥

∥
ρC̆

n

Bn − ρ̆Bn

∥

∥

∥

1

)

≥ 1

2V̆ (X :B)ρ
, if |C̆n| = en(I(X :B)ρ+an) .

Remark 5.1. We note that for rate below I(X :B)ρ, the following statement

lim inf
n→∞

− 1

na2n
log

(

1− 1

2
EC̆n

∥

∥

∥
ρC̆

n

Bn − ρ̆Bn

∥

∥

∥

1

)

≥ 1

2V̆ (X :B)ρ
, if |C̆n| = en(I(X :B)ρ−an) (5.2)

holds for a kind of moderate deviation sequence an = Θ(n−t) for any t ∈ (0, 1/2) which is a special case
of (5.1). Nonetheless, (5.2) studies the situation where the trace converges to 1, which is of less practical
importance than the characterization of vanishing error scenario given in Proposition 10.
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Before proving our claims, we shall employ the following first-order derivatives of those entropic infor-
mation quantities appearing in the exponent functions.

Lemma 11 ( [35, Proposition 11], [33]). For every classical-quantum state ρXB, the map α 7→ I∗α(X :B)ρ
are continuously differentiable on α ∈ [1, 2], and maps α 7→ I↓2−1/α(X :B)ρ and α 7→ Ĭ↓2−1/α(X :B)ρ are

analytical on α ∈ [1/2, 1]. Moreover,

d

dα
I∗α(X :B)ρ

∣

∣

∣

∣

α=1

=
d

dα
I↓2−1/α(X :B)ρ

∣

∣

∣

∣

α=1

=
V (X :B)ρ

2
,

d

dα
Ĭ↓2−1/α(X :B)ρ

∣

∣

∣

∣

α=1

=
V̆ (X :B)ρ

2
.

Lemma 12. For every classical-quantum state ρXB, the map α 7→ Ĭ∗α(X :B)ρ is continuously differentiable
on α ∈ [1, 2]. Moreover,

d

dα
Ĭ∗α(X :B)ρ

∣

∣

∣

∣

α=1

=
V̆ (X :B)ρ

2
.

Proof of Lemma 12. We adopt the short notation p ≡ pX σ = σB and ρx = ρxB . Let σ⋆
α,p be the order-α

Augustin mean that attains the infimum in the definition of the order-α Augustin information, i.e.

Ĭ∗α(X :B)ρ = Ex∼pD
∗
α

(

ρx‖σ⋆
α,p

)

.

From definition of the sandwiched Augustin information Ĭ∗α given in (2.2), we know that the map

(α, σB) 7→ Ex∼pD
∗
α (ρx‖σB)

is twice Fréchet differentiable and the Augustin mean σ⋆
α,p exists [28]. It was shown in [36, Lemma 23]

that for any state ρ and α > 1, the function

σ 7→
∥

∥

∥σ
1−α
2α ρσ

1−α
2α

∥

∥

∥

α

α

has strictly positive definite Hessian. Since t 7→ log t is a strictly increasing function, the function

(α, σB) 7→ Ex∼pD
∗
α (ρx‖σB) =

1

α− 1

∑

x∈X
p(x) log

∥

∥

∥

∥

σ
1−α
2α

B ρxσ
1−α
2α

B

∥

∥

∥

∥

α

α

.

has strictly positive Hessian with respect to σB for all α ∈ (1,∞). This is also true for α = 1. Note that
for the infimum it sufficient to consider σ with supp(σ) = supp(ρB). At α = 1

σ 7→ Ex∼pD (ρx‖σ) =
∑

x

p(x)Tr [ρx log ρx − ρx log σ] .

Given a traceless Hermitian matrix h, we denote σt = σ + th. The Hessian is

d2
(

Ex∼pD(ρx‖σt)
)

dt2
=
∑

x

p(x)

∫ ∞

0
Tr
[

ρx(σt + s)−1h(σt + s)−1h(σt + s)−1
]

ds

=

∫ ∞

0
Tr
[

ρB(σt + s)−1h(σt + s)−1h(σt + s)−1
]

ds .

Suppose ρB ≥ µsupp(ρB) and σ ≤ λsupp(ρB) for some µ, λ > 0. Then at t = 0,

d2
∑

x p(x)D(ρx‖σt)
dt2

∣

∣

∣

∣

t=0

=

∫ ∞

0
Tr
[

ρB(σ + s)−1h(σ + s)−1h(σ + s)−1
]

ds

≥ µ

∫ ∞

0
Tr
[

(σ + s)−2h(σ + s)−1h
]

ds

≥ µ

∫ ∞

0
Tr
[

(λ+ s)−2h(σ + s)−1h
]

ds

≥ µ

∫ ∞

0
Tr
[

(λ+ s)−3h2
]

)ds

=
µ

2λ2
‖ h ‖22,

13



which implies strictly positive Hessian. By [36, Lemma 24], we have the continuous differentiability of

the map α 7→ Ĭ∗α(X :B)ρ on [1, 2] and that

d

dα
Ĭ∗α(X :B)ρ =

∂

∂α
Ex∼pD

∗
α (ρx‖σ)

∣

∣

∣

∣

σ=σ⋆
α,p

.

Using the fact [37] that d
dαDα(ρ||σ)

∣

∣

α=1
= 1

2V (ρ||σ) for fixed ρ and σ completes our proof. �

Now, we are ready to prove our claims of moderate deviation analysis.

Proofs of Propositions 9 and 10. We prove Proposition 10. The proof of Proposition 9 follows from similar
reasoning. For the first claim of Proposition 10, by Theorem 4,

1

2
EC̆n

∥

∥

∥ρC̆
n

Bn − ρ̆Bn

∥

∥

∥

1
≤ e−n supα∈(1,2)

1−α
α (Ĭ∗α(X :B)ρ−Rn).

where Rn = 1
n log |C̆n| is the rate of the random constant composition codebook size. Using Lemma 12,

we apply Taylor’s series expansion of 7→ Ĭ∗α(X :B)ρ at α = 1:

Ĭ∗α(X :B)ρ = I(X :B)ρ +
α− 1

2
V̆ (X :B)ρ + R(α− 1),

where R(α − 1) is a continuous function satisfying R(α−1)
α−1 → 0 as α → 1. Let αn = 1 + an

V̆ (X :B)ρ
. Using

the above expansion and Rn = I(X :B)ρ + an, we have 1 < αn ≤ 2 for all sufficiently large n ∈ N, and

sup
1<α≤2

{

1− α

α
(Ĭ∗α(X :B)ρ −Rn)

}

≥ 1− αn

αn
(Ĭ∗αn

(X :B)ρ −Rn)

=
1

1 + an
V̆ (X :B)ρ

(

a2n
2V (X :B)ρ

− a2n

V̆ (X :B)2ρ

R(αn − 1)

αn − 1

)

=
a2n

2V̆ (X :B)ρ

1

1 + an
V̆ (X :B)ρ

(

1− 2

V̆ (X :B)ρ

R(αn − 1)

αn − 1

)

.

Hence,

− 1

na2n
log

(

1

2
EC̆n

∥

∥

∥
ρC̆

n

Bn − ρ̆Bn

∥

∥

∥

1

)

≥ − log 2

na2n
+

1

2V̆ (X :B)ρ

1

1 + an
V̆ (X :V )ρ

(

1− 2

V̆ (X :B)ρ

R(αn − 1)

αn − 1

)

.

Taking n → ∞ and using the definition of an,

lim inf
n→∞

− 1

na2n
log

(

1

2
EC̆n

∥

∥

∥ρC̆
n

Bn − ρ̆Bn

∥

∥

∥

1

)

≥ 1

2V̆ (X :B)ρ
,

which proves the first claim in Proposition 10. The second claims in Proposition 10 and Remark 5.1
follows similarly by recalling Theorems 1 & 5, Proposition 8, and Lemma 11 (see also the derivations
given in [31,33,38]). �

6. Conclusions

In this work, we establish achievability and strong converse for quantum soft covering using the random
i.i.d. codebook and the random constant composition codebook with the codebook size being fixed. In
both settings, we obtain exponential convergence of the trace distance to 0 or respectively to 1, which
measure the closeness between the codebook-induced state and the true marginal state. As a consequence,
our results in achievability and strong converse combined implies that the optimal rate of quantum
soft covering is the quantum mutual information I(X :B)ρ. We remark that our results hold for every
blocklength n ∈ N, providing a large deviation analysis when the operating rate is fixed [28, 31, 39–45].
Our results also extend to the moderate deivation regime when the rates approaches I(X :B)ρ moderately
quickly [33,34]. Lastly, it is interesting to note that the sandwiched Rényi information I∗α(X :B)ρ used
in the exponent appears in classical-quantum channel coding as well [23,31,45–47], while the sandwiched

14



Augustin information Ĭ∗α(X :B)ρ has appeared in other contexts using constant composition codes [28,
40,48,49].
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Appendix: Complex Interpolation and Noncommutative Lp Spaces

In this section, we briefly review the definition of the complex interpolation. We refer to [27] for a
detailed account of interpolation spaces. Let X0 and X1 be two Banach spaces. Assume that there exists
a Hausdorff topological vector space X such that X0,X1 ⊂ X as subspaces. Let S = {z |0 ≤ Re(z) ≤ 1}
be the unit vertical strip on the complex plane, and S0 = {z |0 < Re(z) < 1} be its open interior. Let
F(X0,X1) be the space of all functions f : S → X0 +X1, which are bounded and continuous on S and
analytic on S0, and moreover

{f(it) | t ∈ R} ⊂ X0 , {f(1 + it) | t ∈ R} ⊂ X1 .

F(X0,X1) is again a Banach space equipped with the norm

‖ f ‖F := max

{

sup
t∈R

‖ f(it) ‖X0 , sup
t∈R

‖ f(1 + it) ‖X1

}

.

The complex interpolation space (X0,X1)θ, for 0 ≤ θ ≤ 1, is the quotient space of F(X0,X1) as follows,

(X0,X1)θ = { x ∈ X0 +X1 | x = f(θ) for some f ∈ F(X0,X1) } .

where quotient norm is

‖ x ‖θ= inf{ ‖ f ‖F | f(θ) = x } .

It is clear from the definition that X0 = (X0,X1)0,X1 = (X0,X1)1. For all 0 < θ < 1, (X0,X1)θ are
called interpolation space of (X0,X1).

The most basic example is that the p-integrable function spaces Lp(Ω, µ) of a positive measure space
(Ω, µ). Lp(Ω, µ) for 1 ≤ p ≤ ∞ forms a family of interpolation spaces, i.e.

Lp(Ω, µ) ∼= [Lp0(Ω, µ), Lp1(Ω, µ)]θ (6.1)

holds isometrically for all 1 ≤ p0, p1, p ≤ ∞, 0 ≤ θ ≤ 1 such that 1
p = 1−θ

p0
+ θ

p1
. For a von Neumann algebra

(M,Tr) equipped with normal faithful semifinite trace Tr, the noncommutative Lp-norm is defined as

‖ x ‖p= Tr(|x|p)
1
p and Lp(M,Tr) (or shortly Lp(M)) is the completion of {x ∈ M | ‖ x ‖p< ∞}. The

noncommutative analog of (6.1) is that

Lp(M,Tr) ∼= [Lp0(M,Tr), Lp1(M,Tr)]θ. (6.2)

In particular, the Schatten-p class on a Hilbert space H are the Lp spaces of (B(H),Tr) which satisfies

Sp(H) ∼= [Sp0(H), Sp1(H)]θ .

Here S∞(H) is identified with B(H). The complex interpolation relation has been already used in many
works in quantum information theory, e.g. [23, 50]. In this work, we will use the complex interpolation
for a mixture of (6.1) and (6.2). For an operator-valued function f : Ω → B(H), its Lp norm is given by

‖ f ‖Lp(Ω,Sp(H)):=

(
∫

Ω
‖ f(ω) ‖pSp

dω

)1/p

.
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Lp(Ω, Sp(H)) is exactly the Lp-space of semi-classical system L∞(Ω,B(H)), which is a von Neumann
algebra equipped with the trace τ(f) =

∫

ΩTr(f(ω))dω). Thus Lp(Ω, Sp(H)) satisfies complex interpolation
by (6.2) (L∞(Ω,B(H)). In particular, L2(Ω, S2(H)) is a Hilbert space with inner product.

〈f, g〉 =
∫

Ω
Tr(f(ω)∗g(ω))dµ(ω).

One widely used property of interpolation space is the following Riesz–Thorin interpolation theorem.

Theorem 13 (Riesz–Thorin interpolation theorem). Let (X0,X1) and (Y0, Y1) be two compatible couples
of Banach spaces and let (X0,X1)θ and (Y0, Y1)θ be the corresponding interpolation space of exponent θ.
Suppose T : X0 +X1 → Y0 + Y1, is a linear operator bounded from Xj to Yj , j = 0, 1. Then T is bounded
from (X0,X1)θ to (Y0, Y1)θ, and moreover

‖T : (X0,X1)θ → (Y0, Y1)θ‖ ≤ ‖T : X0 → Y0‖1−θ‖T : X1 → Y1‖θ.
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generalization and some properties,” Journal of Mathematical Physics , vol. 54, no. 12, p. 122203, 2013.

[23] M. M. Wilde, A. Winter, and D. Yang, “Strong converse for the classical capacity of entanglement-breaking
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Rényi relative entropies,” Communications in Mathematical Physics , vol. 334, no. 3, pp. 1617–1648, Dec 2014.

[26] J.-K. You, H.-C. Cheng, and Y.-H. Li, “Minimizing quantum Rényi divergences via mirror descent with Polyak
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