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Abstract—In this paper, we investigate the generalized degrees-
of-freedom (GDoF) of the asymmetric interference channel with
delayed channel state information at the transmitter (CSIT),
where each transmitter has two antennas, each receiver has one
antenna, and the strength for each interfering link can vary.
The optimal sum-GDoF is characterized by matched converse
and achievability proof. Through our results, we also reveal that
in our antenna setting, the symmetric GDoF lower bound in
[Mohanty et. al, TIT 2019] can be elevated, and the symmetric
GDoF upper bound in [Mohanty et. al, TIT 2019] is tight in fact.

Index Terms—Delayed CSIT, sum-GDoF, interference channel.

I. INTRODUCTION

The degrees-of-freedom (DoF) characterization with de-
layed channel state information at the transmitter (CSIT) has
attracted a plenty of research interests in the past decade.
For example, the DoF region of multiple-input multiple-output
(MIMO) interference channel with delayed CSIT was derived
in [1]. The study of DoF of MIMO broadcast channel with
delayed CSIT can be found in [2]–[5], whose exact value was
still not completely obtained. The linear DoF region of MIMO
X channel with delayed CSIT was characterized in [6].

One limitation of DoF is that the strength of each link is as-
sumed to be equal, whereas the link strength can vary tremen-
dously in wireless. Nevertheless, the generalized degrees-of-
freedom (GDoF) overcomes this drawback by considering the
different strength of each link, which was first proposed in [7].
The GDoF characterization with delayed CSIT can be found
in [8]–[11]. In [8], the GDoF was studied in the two-user
multiple-input single-output (MISO) broadcast channel under
alternating delayed, perfect, and no CSIT, where sum-GDoF
upper and lower bounds were shown to be partially coincided.
In [9], the secure GDoF was investigated in the two-user
MISO broadcast channel with an external eaversdropper and
alternating delayed, perfect, and no CSIT. The GDoF region of
the MIMO Z channel with delayed CSIT was characterized in
[10]. For MIMO interference channel with delayed CSIT and
symmetric interfering link strengths, symmetric GDoF upper
and lower bounds were derived in [11], where the symmetric
GDoF was characterized partially, and the upper and lower
bounds do not change with antenna ratio, i.e., number of

Fig. 1. The considered scenario of asymmetric interference channel, where
each transmitter has 2 antennas and each receiver has 1 antenna.

antenna at each transmitter over number of antennas at each
receiver, if the antenna ratio is equal to or larger than two1.

In this paper, we study the GDoF of the asymmetric
interference channel with delayed CSIT, where the transmitter
has two antennas, the receiver has one antenna, and the
strength for each interfering link can vary. We characterize the
sum-GDoF by presenting matched converse and achievability
proof. Then, via this result, we reveal that in our antenna
setting, the symmetric GDoF lower bound in [11] can be
elevated, and the symmetric GDoF upper bound in [11] is
tight in fact. The idea of elevating the GDoF lower bound
comes from [9], where the authors in [9] fully exploit the
receiver signal space by sending new fresh symbols in each
time slot. Our transmission scheme generalizes the scheme
in [9, Appendix C], which was designed for achieving the
corner points of GDoF region of MISO broadcast channel
with delayed CSIT.

II. SYSTEM MODEL

The considered asymmetric interference channel has two
transmitters, denoted by Tx1 and Tx2, each with two antennas,
and two receivers, denoted by Rx1 and Rx2, each with one
antenna, as depicted in Fig. 1. The transmitter Txi, i = 1, 2,
sends private message Wi to the receiver Rxi. The received
signals at two receivers and time slot t can be written as

y1[t] =
√
ρh11[t]x1[t] +

√
ρα2h12[t]x2[t] + n1[t], (1a)

y2[t] =
√
ρα1h21[t]x1[t] +

√
ρh22[t]x2[t] + n2[t], (1b)

1A representative antenna setting for this antenna configuration case is that
the transmitter has 2 antennas and the receiver has 1 antenna.
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where xi[t] ∈ C2×1 denotes the transmitted signal from
transmitter Txi at time slot t, yj [t] ∈ C1, j = 1, 2, denotes
the received signal at receiver Rxj and time slot t, hji ∈ C1×2

denotes the channel matrix from transmitter Txi to receiver
Rxj , nj ∼ CN (0, σ2) denotes the additive White Gaussian
noise (AWGN) at receiver Rxj , the channel gains of desired
links and interfering links are denoted by

√
ρ and

√
ραi with

0 < ρ and 0 ≤ αi, respectively. Without loss of generality, we
assume that α2 ≤ α1. The transmit signals follow an average
power constraint, given by 1

n

∑n
t=1 tr

(
E{xi[t]xi[t]H}

)
≤ 1.

All entries of channel matrices are independent and identical
distributed (i.i.d.) across space and time slot. The signal-to-
noise ratio (SNR) at each receiver is ρ, and interference-to-
noise ratio (INR) at receivers Rx1 and Rx2 are ρα2 and ρα1 ,
respectively. We define the following assembly of channel
matrices: H[t] , {hji[t]}i,j=1,2, and Hτ , {H[t]}τt=1.

Due to feedback delay, the transmitter has delayed channel
state information. Specifically, at time slot t, the transmitters
know Hτ , namely all the channel matrices up to time slot
t−1. Two receivers have instantaneous knowledge of channel
matrices. The encoding function at transmitter Txi and time
slot t is denoted by ei,t(Wi,Ht−1). The decoding function at
receiver Rxj after n time slots is denoted by cj,n(Wi,Hn).

The rate tuple is written as (R1(ρ, α1, α2), R2(ρ, α1, α2)),
where rate Ri =

log |Wi|
n is the cardinality of message setWi.

The rate is achievable, if there are a sequence of codebook
pairs {C1,t, C1,t}nt=1 and decoding functions {c1,n, c2,n} such
that the error probability P

(n)
e goes to zero when n goes

to infinity. The sum-capacity is defined as the supremum of
sum of achievable rates, i.e., Csum = sup

∑2
i=1Ri(ρ, α1, α2).

Then, the sum-GDoF is defined as the pre-log factor of sum-
capacity, i.e.,

∑2
i=1 di = limρ→∞

Csum
log ρ .

III. MAIN RESULTS AND DISCUSSION

Theorem 1: For the considered asymmetric interference
channel with delayed CSIT, defined in Section-II, the sum-
GDoF is given as follows:

2∑
i=1

di =


2− α1 + α2

3
, α1, α2 ≤ 1,

min

{
4 + α1 − α2

3
, 2

}
,

1 < α1 &α2 ≤ 1

&2 ≤ α1 + 2α2

,

min

{
2 + α1 + α2

3
, 2

}
, 1 < α1, α2.

(2)

Proof: Please refer to Section-IV for the converse proof
and Section-V for the achievability proof.

Remark 1: This sum-GDoF in (2) degenerates to optimal
sum-DoF in [1], by setting α1 = α2 = 1, whose value is the
celebrated 4/3. Furthermore, in our antenna setting, it can be
verified that the symmetric GDoF upper bound in [11] is tight.

IV. CONVERSE PROOF OF THEOREM 1

The key steps of this proof follows the that in [11]. To
begin with, we define the following virtual received signals,

which are obtained from removing the impact of x1[t] in the
received signals at each receiver:

y1[t] =
√
ρα2h12[t]x2[t] + n1[t], (3a)

y2[t] =
√
ρh22[t]x2[t] + n2[t]. (3b)

Before the next step, we define the following assembly of
channel matrices: Yτi , {yi[t]}τt=1, Yτi , {yi[t]}τt=1, and
X τi , {xi[t]}τt=1, i = 1, 2. Since the error probability P

(n)
e

goes to zero as n goes to infinity, we denote nεn , 1 +

nRiP
(n)
e so that limn→∞ εn = 0. According to [11], the rate

of receiver 1 can be bounded as

n(R1 − εn) ≤
n∑
t=1

h(y1[t]|H[t])−
n∑
t=1

h(y1[t]|U [t],H[t]), (4)

where U [t] , {Yt−11 ,Yt−12 ,Ht−1}. Next, according to [11],
the rate of receiver 2 can be bounded as

n(R2 − εn) ≤
n∑
t=1

h(y1[t], y2[t]|U [t],H[t]). (5)

Henceforth, we define S[t] , [
√
ρα2h12[t],

√
ρh22[t]]

T ,
K[t] , E{x2[t]x2[t]H |U [t]}, L[t] , E{x1[t]x1[t]H |Ht−1},
V[t] , {U [t],H[t]}, where the transmit covariance matrix
K[t] is independent of h12[t], h22[t], and S[t]. Applying the
extremal inequality in [12] for the physically degraded channel
X τ2 → (Yn1 ,Y

n

2 )→ Y
n

1 , we have the following inequality:

h(y1[t], y2[t]|V[t])
2

− h(y1[t]|V[t])

≤ max
K[t] � 0

tr{K[t]} ≤ 1

E
{
log
∣∣I2 + S[t]K[t]S[t]H

∣∣ /2
− log

∣∣1 + ρα2h12[t]K[t]h12[t]
H
∣∣} . (6)

To proceed, we can approximate the first term of (6) as

log
∣∣I2 + S[t]K[t]S[t]H

∣∣
(a)
= log

∣∣∣∣∣I2 +
[√

ρα2 h̃12[t]√
ρh̃22[t]

] [√
ρα2 h̃12[t]√
ρh̃22[t]

]H ∣∣∣∣∣
(b)
= log

∣∣∣I2−kt + ρα2 h̃12[t]
H h̃12[t] + ρh̃22[t]

H h̃22[t]
∣∣∣

(c)
= f(2− kt, (α2, 1), (1, 1)) log ρ+O(1)

=


(min{2− kt, 1}+
min{[1− kt]+, 1}α2) log ρ+O(1), α2 ≤ 1,

(min{2− kt, 1}α2+

min{[1− kt]+, 1}) log ρ+O(1), 1 < α2,

(7)

where (a) is from SVD of K[t], i.e., K[t] = U[t]Σ[t]U[t]H

with unitary matrix U[t] ∈ C2×(2−kt) and diagonal matrix
Σ[t] ∈ C(2−kt)×(2−kt), and h̃j2[t] , hj2[t]U[t]Σ[t]1/2, where
kt ∈ {0, 1, 2} denotes the number of zero singular values; (b)
is from |I+AB| = |I+BA|; (c) is from [11, Lemma 1]. The
second term of (6) can be approximated as

log
∣∣1 + ρα2h12[t]K[t]h12[t]

H
∣∣

(a)
= min{2− kt, 1}α2 log ρ+O(1), (8)



where (a) is from SVD of K[t] and [11, Lemma 1]. Next, we
can approximate the first term of (4) as

h(y1[t]|H[t])
(a)

≤ log
∣∣1 + ρh11[t]L[t]h11[t]

H + ρα2h12[t]K[t]h12[t]
H
∣∣

(b)

≤ log
∣∣∣1 + ρh11[t]h11[t]

H + ρα2 h̃12[t]h̃12[t]
H
∣∣∣

(c)
= f(1, (1, 2), (α2, 2− kt)) log ρ+O(1),

=


log ρ+O(1), α2 ≤ 1,

(min{2− kt, 1}α2+

min{[1− (2− kt)]+, 2}) log ρ+O(1), 1 < α2,

(9)

where (a) is from Gaussian input maximizing the entropy with
covariance constraints; (b) is from L[t] � I2 for tr{L[t]} ≤ 1
and the SVD of K[t]; and (c) is from [11, Lemma 1].

As such, the upper bound of weighted sum of achievable
rates from (4) and (5) is given in (10), shown on the top of
next page, where (a) is from (4), (5) and (9); (b) is from
(7) and (8); (c) is from maximizer is kt = 0 by exhausting
kt ∈ {0, 1, 2}. Then, we rewrite (10) into GDoF expression,

d1(α1, α2) +
d2(α1, α2)

2
≤


3− α2

2
, α2 ≤ 1,

1 + α2

2
, 1 < α2,

(11)

Due to the symmetry, we have another GDoF inequality, i.e.,

d2(α1, α2) +
d1(α1, α2)

2
≤


3− α1

2
, α1 ≤ 1,

1 + α1

2
, 1 < α1,

(12)

Moreover, considering single-user GDoF bound for MIMO
point-to-point channel, we have

di(α1, α2) ≤ 1, i = 1, 2. (13)

Combing (11) with (12) and (13), we derive the sum-GDoF
upper bound in Theorem 1 (see (2)). This ends the proof.

V. ACHIEVABILITY PROOF OF THEOREM 1

A. Proposed Transmission Scheme for 1 < α1, α2 and 1 <
α1 &α2 ≤ 1&2 ≤ α1 + 2α2 Cases

The proposed transmission scheme is with block-Markov
structure, and has B blocks with s time slot each block.
Without loss of generality, we assume s = 1.

In the bth(1 ≤ b < B) block, the transmitter Txi encodes
the message wi[b] desired by receiver Rxi using the vector
ui(wi[b]) ∈ C2×1, such that ui ∼ CN (0, ρ−AiI2) with 0 ≤
Ai ≤ α1. The common message li[b−1] is encoded using the
vector xic(li[b−1]) ∈ C2×1, which is transmitted at transmitter
Txi with power O(ρ0). The transmit signal at block b and
transmitter Txi can be written as follows:

xi[b] = ui(wi[b])︸ ︷︷ ︸
O(ρ−Ai )

+ xic(li[b− 1])︸ ︷︷ ︸
O(ρ0)

, (14)

where i = 1, 2. The received signal at block b and receiver
Rxi is given as follows:

yi[b] =
√
ρhii[b]xic(li[b− 1])︸ ︷︷ ︸

O(ρ1)

+
√
ραjhij [b]xjc(lj [b− 1])︸ ︷︷ ︸

O(ραj )

+
√
ρhii[b]ui(wi[b])︸ ︷︷ ︸
O(ρ1−Ai )

+
√
ραjhij [b]uj(wj [b])︸ ︷︷ ︸
ηi[b]∼O(ραj−Aj )

+ni[b], (15)

where i 6= j, and ηi[b] denotes the interference at receiver
Rxi, which can be reconstructed at block b + 1. From the
rate distortion theorem [13], this interference ηi[b] can be
quantized using a source codebook with size O(ραj−Aj ), such
that the average distortion does not exceed the noise power
level and can be ignored in GDoF analysis. The quantization
index of interference ηi[b] is denoted by lj [b], which is
transmitted as xjc(lj [b]) from transmitter Txj in block b+ 1.

In the Bth block, the transmitter Txi sends common mes-
sages only, namely

xi[B] = xic(li[B − 1])︸ ︷︷ ︸
O(ρ0)

, (16)

where i = 1, 2. The received signal at block B and receiver
Rxi is given as follows:

yi[B] =
√
ρhii[B]xic(li[B − 1])︸ ︷︷ ︸

O(ρ1)

+

√
ραjhij [B]xjc(lj [B − 1])︸ ︷︷ ︸

O(ραj )

+ni[B], (17)

where i = 1, 2. The decoding procedure is backward and
begins with block B, where the common messages are firstly
decoded. After that, at the (B − 1)th block, the interference
from transmitter Txj can be canceled and extra information
about ui(wi[B−1]) can be provided. Generally, the equivalent
channel for decoding can be written as follows:[

yi[b]− ηi[b]
ηj [b]

]
︸ ︷︷ ︸

Y ′i

=

[√
ρhii[b]

0

]
︸ ︷︷ ︸

Sic

xic(li[b− 1])︸ ︷︷ ︸
dηj

+

[√
ραjhij [b]

0

]
︸ ︷︷ ︸

Sjc

xjc(lj [b− 1])︸ ︷︷ ︸
dηi

+

[ √
ρhii[b]√
ραihji[b]

]
︸ ︷︷ ︸

Si

ui(wi[b])︸ ︷︷ ︸
di[b]

+

[
ni[b]
0

]
, (18)

where i, j = 1, 2 and i 6= j. Note that (18) is equivalent
to the three-user multiple-access channel (MAC). Applying
capacity region of three-user MAC, we have the following
general condition for achievable GDoF tuple to our problem:

Proposition 1: For the GDoF tuple (dη1 , dη2 , d1[b], d2[b]),
which denote the GDoF carried in x2c(l2[b − 1]), x1c(l1[b −



n

(
R1 +

R2

2
− εn

)
(a)

≤
n∑
t=1

f(N, (1,M), (α2,M − kt)) log ρ+
1

2

n∑
t=1

h(y1[t], y2[t]|V[t])−
n∑
t=1

h(y1[t]|V[t]) + nO(1)

(b)

≤

{∑n
t=1((1 + min{2− kt, 1}/2 + min{[1− kt]+, 1}α2/2−min{2− kt, 1}α2) log ρ+O(1)), α ≤ 1,∑n
t=1((min{[1− (2− kt)]+, 2}+min{2− kt, 1}α2/2 + min{[1− kt]+, 1}/2) log ρ+O(1)), 1 < α2.

(c)

≤


3− α2

2
n log ρ+O(1), α2 ≤ 1,

1 + α2

2
n log ρ+O(1), 1 < α2,

(10)

1]), u1(w1[b]), and u2(w2[b]), respectively, we have (19)-(29),
where f(·) and g(·) are defined in [11, Lemmas 1 & 2].

dη1 ≤ min{α2, 1}, (19)
dη2 ≤ min{α1, 1}, (20)
d1[b] ≤ f(2, (1−A1, 1), (α1 −A1, 1)), (21)
d2[b] ≤ f(2, (1−A2, 1), (α2 −A2, 1)), (22)
dη1 + dη2 ≤ f(1, (1, 2), (α2, 2)), (23)
dη1 + d1[b] ≤ α1 −A1

+g(1, (α2, 2), (1− α1, 1), (1−A1, 1)), (24)
dη2 + d2[b] ≤ α2 −A2

+g(1, (α1, 2), (1− α2, 1), (1−A2, 1)), (25)
dη2 + d1[b] ≤ α1 −A1 + 1, (26)
dη1 + d2[b] ≤ α2 −A2 + 1, (27)
dη1 + dη2 + d1[b]

≤ α1 −A1 + f(1, (1, 2), (α2, 2)), (28)
dη1 + dη2 + d2[b]

≤ α2 −A2 + f(1, (1, 2), (α1, 2)), (29)

Proof: The proof is similar to that in [11]. Thus, it is
omitted for simplicity.

For the block-Markov transmission, the achievable GDoF
of receiver i is calculated as di = limb→∞

1
B

∑B
b=1 di[b] =

di[B]. Moreover, dηi is allocated as αj − Aj , since the
common message from transmitter Txi need to be decoded
at receiver Rxj . In the following, we analyze the achievable
sum-GDoF case by case, by means of Proposition 1.

1) 1 < α1, α2 Case: According to Proposition 1, we
present the achievable GDoF condition in this case as follows:

α1 −A1 ≤ 1, α2 −A2 ≤ 1, (30)
d1 ≤ α1 + 1− 2A1, (31)
d2 ≤ α2 + 1− 2A2, (32)
α1 + α2 ≤ A1 +A2 + 1, (33)
d1 ≤ α1 −A1 +A2, (34)
d2 ≤ α2 −A2 +A1, (35)
d1 ≤ 1, (36)
d2 ≤ 1, (37)
d1 ≤ A2, (38)
d2 ≤ A1. (39)

Therefore, we are able to formulate the following sum-GDoF
lower bound maximization problem:

max
A1,A2

min{A1 +A2, α1 + α2 + 2− 2(A1 +A2), 2}, (40)

where the maximizer is A∗1+A
∗
2 = min{(2+α1+α2)/3, 2}.

This leads to the sum-GDoF lower bound min{(2 + α1 +
α2)/3, 2} achievable.

2) 1 < α1 &α2 < 1&2 ≤ α1 + 2α2 Case: According to
Proposition 1, we present the achievable GDoF condition in
this case as follows:

0 ≤ A2, α1 −A1 ≤ 1, (41)
d1 ≤ α1 + 1− 2A1, (42)
d2 ≤ α2 + 1− 2A2, (43)
α1 + α2 ≤ 1 +A1 +A2, (44)

d1 ≤

{
α1 −A1 +A2, 1−A1 ≤ α2,

α1 − α2 +A2 + 1− 2A1, 1−A1 > α2,
(45)

d2 ≤ α2 −A2 +A1, (46)
d1 ≤ 1, (47)
d2 ≤ 1, (48)
d1 ≤ A2 − α2 + 1, (49)
d2 ≤ A1. (50)

Therefore, due to 2 ≤ α1+2α2, we are able to formulate the
following sum-GDoF lower bound maximization problem:

max
A1,A2

min{A1+A2−α2+1, α1+α2+2−2(A1+A2)}, (51)

where the maximizer is A∗1 + A∗2 = (α1 + 2α2 + 1)/3.
This leads to the sum-GDoF lower bound (4 + α1 − α2)/3
achievable.

B. Proposed Transmission Scheme for α1, α2 ≤ 1 Case

In the 1st time slot, the transmitter Tx1 sends three symbols
for receiver Rx1 and transmitter Tx2 sends one symbol for
receiver Rx2. Let us denote the symbols desired by receiver
Rx1 transmitted in time slot 1 by a1, a2, a3, and denote the
symbol desired by receiver Rx2 transmitted in time slot 1 by
b1. The transmit signal at transmitter Tx1 is designed as

x1[1] =
[
a1
a2

]
+

[
a3ρ
−α1/2

φ

]
. (52)



The transmit signal at transmitter Tx2 is designed as

x2[1] =
[
b1ρ
−α1/2

φ

]
. (53)

As such, the received signals at each receiver are expressed
as

y1[1] =
√
ρh11[1]

[
a1
a2

]
︸ ︷︷ ︸

O(ρ1−(1−α1))=O(ρα1 )

+
√
ρh11[1]

[
a3ρ
−α1/2

φ

]
︸ ︷︷ ︸

O(ρ1−α1 )

+
√
ρα2h12[1]

[
b1ρ
−α1/2

φ

]
︸ ︷︷ ︸

O(ρ0)

, (54a)

y2[1] =
√
ρα1h21[1]

[
a1
a2

]
︸ ︷︷ ︸

O(ρα1 )

+
√
ρα1h21[1]

[
a3ρ
−α1/2

φ

]
︸ ︷︷ ︸

O(ρ0)

+
√
ρh22[1]

[
b1ρ
−α1/2

φ

]
︸ ︷︷ ︸

O(ρ1−α1 )

. (54b)

It can be seen that a part of interference fall into noise level.
Moreover, each receiver can retrieve the profile of O(ρα1) part
and decode the information of O(ρ1−α1) part immediately.

In the 2nd time slot, the transmitter Tx2 sends three symbols
for receiver Rx2 and transmitter Tx1 sends three symbols for
receiver Rx1. Let us denote the symbols desired by receiver
Rx2 transmitted in time slot 2 by b2, b3, b4, and denote the
symbol desired by receiver Rx1 transmitted in time slot 2 by
a4. The transmit signal at transmitter Tx1 is designed as

x1[2] =
[
a4ρ
−α2/2

φ

]
. (55)

The transmit signal at transmitter Tx2 is designed as

x2[2] =

[
b2
b3

]
+

[
b4ρ
−α2/2

φ

]
. (56)

As such, the received signals at each receiver are expressed
as

y1[2] =
√
ρh11[2]

[
a4ρ
−α2/2

φ

]
︸ ︷︷ ︸

O(ρ1−α2 )

+
√
ρα2h12[2]

[
b2
b3

]
︸ ︷︷ ︸

O(ρα2 )

+
√
ρα2h12[2]

[
b4ρ
−α2/2

φ

]
︸ ︷︷ ︸

O(ρ0)

, (57a)

y2[2] =
√
ρα2h21[2]

[
a4ρ
−α2/2

φ

]
︸ ︷︷ ︸

O(ρ0)

+
√
ρh22[2]

[
b2
b3

]
︸ ︷︷ ︸

O(ρ1−(1−α2))=O(ρα2 )

+
√
ρh22[2]

[
b4ρ
−α2/2

φ

]
︸ ︷︷ ︸

O(ρ1−α2 )

. (57b)

It can be seen that a part of interference fall into noise level.
Moreover, each receiver can retrieve the profile of O(ρα2) part
and decode the information of O(ρ1−α2) part immediately.

In the 3rd time slot, each transmitter has delayed CSI of
past two time slots. Thus, the transmitter Tx1 re-constructs the
interfering signals and treat it as a common symbol, i.e., c1 ,√
ρα1h21[1][a1; a2], where c1 is a valid codeword if a1, a2

are selected from lattice. The transmitter Tx2 re-constructs the
interfering signals and treat it as a common symbol, i.e., c2 ,√
ρα2h12[2][b2; b3], where c2 is a valid codeword if b2, b3 are

selected from lattice. The transmit signals at each transmitter
are designed as

x1[3] =
[
c1
φ

]
+

[
a5ρ
−α1/2

φ

]
, (58a)

x2[3] =
[
c2
φ

]
+

[
b5ρ
−α2/2

φ

]
, (58b)

where a5, b5 are symbols desired by receivers Rx1 and Rx2,
respectively. As such, the received signals at each receiver are
expressed as

y1[3] =
√
ρh11[3]

[
c1
φ

]
︸ ︷︷ ︸

O(ρ1−(1−α1))=O(ρα1 )

+
√
ρh11[3]

[
a5ρ
−α1/2

φ

]
︸ ︷︷ ︸

O(ρ1−α1 )

+
√
ρα2h12[3]

[
c2
φ

]
+
√
ρα2h12[3]

[
b5ρ
−α2/2

φ

]
︸ ︷︷ ︸

O(ρ0)

, (59a)

y2[3] =
√
ρh22[3]

[
c2
φ

]
︸ ︷︷ ︸

O(ρ1−(1−α2))=O(ρα2 )

+
√
ρh22[3]

[
b5ρ
−α2/2

φ

]
︸ ︷︷ ︸

O(ρ1−α2 )

+
√
ρα1h21[3]

[
c1
φ

]
+
√
ρα1h21[3]

[
a5ρ
−α1/2

φ

]
︸ ︷︷ ︸

O(ρ0)

, (59b)

where the impact of
√
ρα2h12[3][c2;φ] can be subtracted from

y1[3] and the
√
ρα1h21[3][c1;φ] can be subtracted from y2[3].

It can be seen that a part of interference fall into noise level.
Moreover, receiver Rxj can retrieve the profile of O(ραj ) part
and decode the information of O(ρ1−αj ) part immediately.

The achievable sum-GDoF is calculated as follows: Re-
ceiver Rx1 acquires 1−α1, 1−α2, and (1−α1) log ρ+O(1)
immediately in time slot 1, 2 and 3, respectively. Additionally,
receiver Rx1 has 2α1 log ρ + O(1) via delayed CSIT. Thus,
d1 ≥ 1 − α2/3 is achievable. Likewise, d2 ≥ 1 − α1/3 is
achievable. To sum up, d1+d2 ≥ 2−(α1+α2)/3 is achievable.

VI. CONCLUSION

The sum-GDoF was characterized in the asymmetry inter-
ference channel with delayed CSIT, where each transmitter
has 2 antennas and each receiver has 1 antenna. In the future,
it is interesting to design a better transmission scheme in
1 < α1 &α2 < 1&α1 + 2α2 < 2 Case.
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