
ar
X

iv
:2

20
2.

12
22

9v
1 

 [
cs

.I
T

] 
 2

4 
Fe

b 
20

22

The Linear Capacity of Single-Server Individually-Private

Information Retrieval with Side Information

Anoosheh Heidarzadeh and Alex Sprintson

Abstract— This paper considers the problem of single-server
Individually-Private Information Retrieval with side informa-
tion (IPIR). In this problem, there is a remote server that stores
a dataset of K messages, and there is a user that initially knows
M of these messages, and wants to retrieve D other messages
belonging to the dataset. The goal of the user is to retrieve
the D desired messages by downloading the minimum amount
of information from the server while revealing no information
about whether an individual message is one of the D desired
messages. In this work, we focus on linear IPIR schemes, i.e.,
the IPIR schemes in which the user downloads only linear
combinations of the original messages from the server. We
prove a converse bound on the download rate of any linear
IPIR scheme for all K, D, M, and show the achievability of this
bound for all K, D, M satisfying a certain divisibility condition.
Our results characterize the linear capacity of IPIR, which
is defined as the maximum achievable download rate over all
linear IPIR schemes, for a wide range of values of K, D, M.

I. INTRODUCTION

In this work, we consider the problem of single-server

Individually-Private Information Retrieval with side infor-

mation, which we refer to as IPIR for short. In this problem,

there is a set of K messages stored on a remote server,

and there is a user that has M (out of K) messages as

side information, and wants to retrieve D other messages.

The objective is to design a retrieval scheme in which the

user downloads the minimum possible amount of information

from the server while revealing no information about the

identity of every individual message required by the user.

The IPIR problem, which was originally introduced in [1]

and later studied in [2], is related to several work in the

Private Information Retrieval (PIR) literature. In particular,

the IPIR problem is a variant of the problem of multi-

message PIR with side information (MPIR-SI) which is a

generalization of the multi-message PIR problem [3], [4].

In the MPIR-SI problem, a user wishes to privately retrieve

multiple messages, with the help of a prior side information,

from a single (or multiple) remote server(s) storing (identical

copies or coded versions of) a set of messages.

The MPIR-SI problem has been studied under three dif-

ferent information-theoretic privacy guarantees: full privacy,

joint privacy, and individual privacy. In the case of full

privacy, both the identities of the messages required by the

user and the identities of the user’s side information messages

must be kept private from the server(s). In contrast, when

joint or individual privacy is required, only the identities

of the messages required by the user must be protected,
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and it is not required to protect the identities of the user’s

side information messages. In the case of joint privacy,

the server(s) must not learn which subset of messages was

required by the user, whereas in the case of individual

privacy, the server(s) must not learn whether an individual

message was one of the messages required by the user.

The joint privacy guarantee finds application in scenarios

in which the correlation between the identities of the required

messages must be protected (see, e.g., [5], [6]), whereas the

individual privacy guarantee is of practical importance in

scenarios in which there is no need to protect the correlation

between the identities of the required messages (see, e.g., [7],

[8]). Note that the joint and individual privacy requirements

are equivalent in the classical PIR problem and the problem

of PIR with side information where the user wants to

privately retrieve only one message [9]–[26].

Several variants of the MPIR-SI problem were previously

studied in the literature. The single-server setting of MPIR-

SI with full privacy was studied in [27], and the multi-server

setting of this problem was studied in [28]. In addition, the

single-server setting of MPIR-SI with joint privacy, which

we refer to as JPIR for short, was studied in [27], [29], and

the single-server setting of MPIR-SI with individual privacy,

which is the IPIR problem, was considered in [1], [2].

In [1], we proposed an IPIR scheme for all K, D, M, and

showed that this scheme achieves a download rate higher

than that of the JPIR schemes of [27] and [29]. The optimal-

ity of the scheme of [1] was also shown for D = 2, M = 1,

but it was left open in general. Recently, in [2], we showed

that the scheme of [1] is not always optimal, and proposed

an optimal IPIR scheme for D = 2, M = 2 that achieves

a download rate higher than that of the scheme of [1].

Notwithstanding, the fundamental limits of the IPIR problem

have remained unknown for all other values of D, M.

In this work, we focus on linear IPIR schemes, i.e., the

user downloads only linear combinations of the original

messages from the server. We prove a converse bound on the

download rate of any linear IPIR scheme for all K, D, M, and

show the achievability of this bound for all K, D, M satisfy-

ing a certain divisibility condition. Our results characterize

the optimal download rate of linear IPIR and show the sub-

optimality of the IPIR scheme of [1], for a wide range of

values of K, D, M. Our converse proof technique relies on

a mix of combinatorial, algebraic, and information-theoretic

arguments that are tailored to the single-server setting, linear

retrieval schemes, and the individual privacy guarantee. In

addition, our achievability scheme is based on randomized

partitioning and maximum distance separable (MDS) codes.
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II. PROBLEM SETUP

Throughout, we denote random variables and their realiza-

tions by bold-face symbols and regular symbols, respectively.

For any integer i ≥ 1, we denote {1, . . . , i} by [i]. Also, we

denote the binomial coefficient (n
k) by Cn,k.

Let Fq be a finite field of order q, and let Fn
q be the n-

dimensional vector space over Fq. Let K, D, M be arbitrary

integers such that D ≥ 2, M ≥ 1, and K ≥ D + M.

Consider a server that stores K messages X1, . . . , XK,

where Xi = [Xi,1, . . . , Xi,n] ∈ F

n
q for i ∈ [K]. Note

that Xi, j ∈ Fq for all i ∈ [K] and all j ∈ [n]. We

refer to Xi,1, . . . , Xi,n as the symbols of the message Xi.

For simplifying the notation, we denote by XI the set of

messages {Xi : i ∈ I} for every I ⊆ [K].
Let W be the set of all D-subsets of [K], and let S be

the set of all M-subsets of [K]. Consider a user who initially

knows the M messages XS for a given S ∈ S, and wishes

to retrieve the D messages XW for a given W ∈ W. To

avoid degenerate cases, we assume that W ∩ S = ∅. We

refer to XW as the demand, XS as the side information, W
as the index set of the demand, S as the index set of the side

information, D as the size of the demand, and M as the size

of the side information.

In this work, we make the following assumptions:

1) X1 , . . . , XK are independent and uniformly distributed

over Fn
q . Thus, H(XI ) = |I|B for all I ⊆ [K], where

B := n log2 q is the entropy of a message (in bits).

2) (W, S) and X1 , . . . , XK are independent.

3) The distribution of S is uniform over all S ∈ S,

and the conditional distribution of W given S = S
is uniform over all W ∈ W such that W ∩ S = ∅.

Thus, P(W = W, S = S) = 1/CK,M × 1/CK−M,D

for all (W, S) ∈ W × S such that W ∩ S = ∅.

Moreover, P(i ∈ W) = ∑W∈W:i∈W P(W = W) =
∑W∈W:i∈W ∑S∈S:W∩S=∅P(W = W, S = S) =
CK−1,D−1 × CK−D,M × 1/CK,M × 1/CK−M,D =
D/K for all i ∈ [K].

4) The demand’s size D, the side information’s size M,

and the distribution of (W, S) are initially known by

the server, whereas the realization (W, S) is initially

unknown to the server.

Given (W, S), the user generates a query Q[W,S], and

sends it to the server. The query Q[W,S] is a deter-

ministic or stochastic function of (W, S), independent

of X1 , . . . , XK. Given the query, every message index

must be equally likely to belong to the demand’s in-

dex set. That is, for every i ∈ [K], we must have

P(i ∈ W|Q[W,S] = Q[W,S]) = P(i ∈ W) = D/K. We refer

to this condition as the individual privacy condition.

Upon receiving Q[W,S], the server generates an answer

A[W,S], and sends it back to the user. The answer A[W,S] is

a deterministic function of Q[W,S] and X1 , . . . , XK. That is,

H(A[W,S]|Q[W,S], X1, . . . , XK) = 0. The user must be able

to recover the demand XW given the answer A[W,S], the

query Q[W,S], the side information XS, and the realization

(W, S). That is, H(XW|A[W,S], Q[W,S], XS) = 0. We refer

to this condition as the recoverability condition.

The problem is to design a protocol for generating a query

Q[W,S] and the corresponding answer A[W,S] for any given

(W, S) such that both the individual privacy and recover-

ability conditions are satisfied. We refer to this problem as

single-server Individually-Private Information Retrieval with

side information, or IPIR for short.

In this work, we focus on (scalar-) linear protocols, i.e.,

any protocol in which the server’s answer A[W,S] consists

only of linear combinations of the messages X1 , . . . , XK

(with combination coefficients from Fq). Note that for any

linear protocol, the user’s query Q[W,S] can be fully spec-

ified by the corresponding combination coefficient vectors.

Without loss of generality, we assume that these combination

coefficient vectors are linearly independent (over Fq).

We define the rate of a linear IPIR protocol as the ratio

of the amount of information required by the user to the

amount of information downloaded from the server, i.e.,

H(XW)/H(A[W,S]), and define the linear capacity of IPIR

as the supremum of rates over all linear IPIR protocols.

By the assumptions (1) and (2), it can be shown that

(i) H(XW) = DB, and (ii) H(A[W,S]) = H(L[W,S]) +
E[L[W,S]]B, where L[W,S] represents the number of linear

combinations that constitute the answer A[W,S]. In particular,

if L[W,S] is a constant random variable taking only the value

L for some integer L ≥ 1 (i.e., all realizations of A[W,S]

consist of L linear combinations), then H(A[W,S]) = LB,

and the rate of the protocol is D/L. It should be noted that

(i) and (ii) do not rely on the assumptions (3) and (4).

In this work, our goal is to characterize the linear capacity

of IPIR in terms of the parameters K, D, M.

III. MAIN RESULTS

This section summarizes our main results. Theorem 1

provides an upper bound on the linear capacity of IPIR for all

K, D, M, and Theorem 2 provides a matching lower bound

on the linear capacity of IPIR for all K, D, M such that M is

an integer multiple of D. The proof of converse and achiev-

ability are presented in Sections IV and V, respectively.

Theorem 1. For IPIR with K messages, demand’s size D,

and side information’s size M, the linear capacity is upper

bounded by (D + M)/K.

We present a novel technique to prove the converse when

the number of symbols of a message (n) grows unbounded. It

should be noted that the converse bound holds for any n ≥ 1.

This is because the linear capacity for any finite n cannot

exceed the linear capacity as n tends to infinity. (Any linear

protocol for n = n0 can serve as a linear protocol—achieving

the same rate—for n = kn0 for any arbitrary integer k ≥ 1.)

Our proof technique is based on a mix of combinatorial,

algebraic, and information-theoretic arguments which rely

on the individual-privacy and recoverability conditions. The

main idea of the proof is to show that given the answer and

the query of any linear IPIR protocol, there exists a collec-

tion of coded symbols (each coded symbol being a linear

combination of the symbols of a message with combination

coefficients from Fq) of size at most (M/(D + M))Kn
from which all Kn message symbols can be recovered.



To prove this, we use a standard random linear network

coding argument and constructively identify the number

of required coded symbols for each message. This result

implies that the amount of information downloaded from

the server in any linear IPIR protocol is lower bounded by

KB − (M/(D + M))KB = (D/(D + M))KB bits, where

B = n log2 q is the amount of information in a message (in

bits). Since the amount of information required by the user

is DB bits, then the rate of any linear IPIR protocol is upper

bounded by DB/((D/(D+ M))KB) = (D + M)/K.

Theorem 2. For IPIR with K messages, demand’s size D,

and side information’s size M, the linear capacity is lower

bounded by (D + M)/K when (D + M) | K, or more

generally, when ((D + M)/gcd(D, M)) | K.

To prove the achievability result, we propose a capacity-

achieving linear IPIR protocol, which we call Group-and-

Code, for all K, D, M such that D/R + M/R is an integer

divisor of K, where R := gcd(D, M). This protocol is

applicable for any n ≥ 1 and any q ≥ 2 such that there exists

a [D/R+ M/R, D/R] MDS code over Fq (e.g., any q ≥ 2
or any q ≥ D/R + M/R when D/R = 1 or D/R > 1,

respectively.) The key idea of the proposed protocol is

to carefully divide the messages into K/(D/R + M/R)
disjoint groups of size D/R + M/R, and query D/R MDS-

coded combinations of the messages in each group.

Remark 1. The results of Theorems 1 and 2 show that

the linear capacity of IPIR is given by (D + M)/K
for all K, D, M such that D/R + M/R divides K.

The highest rate previously shown to be achievable

for IPIR [1] was D/(K − M⌊K/(D + M)⌋) for all

K, D, M such that (K − D)/(D + M) ≤ ⌊K/(D + M)⌋,

and 1/⌈K/(D + M)⌉ for all K, D, M such that

(K − D)/(D + M) > ⌊K/(D + M)⌋. This achievable

rate reduces to (D + M)/K when (D + M) | K, yet it

is strictly lower than (D + M)/K when (D + M) ∤ K. In

contrast, the proposed scheme in this work achieves the

rate (D + M)/K for a wider range of values of K, D, M,

particularly when (D+ M) ∤ K but (D/R+ M/R) | K. Not

only does this show the sub-optimality of the IPIR scheme

of [1] in general, but it also shows the significance of the

results in this work. We conjecture that the linear capacity

of IPIR is given by D/⌈DK/(D + M)⌉ for all K, D, M,

which reduces to (D + M)/K when (D/R + M/R) | K.

Remark 2. The (general) capacity of IPIR, which is de-

fined as the maximum achievable rate over all linear and

non-linear IPIR protocols, was previously characterized for

the two cases of D = 2, M = 1 and D = 2, M = 2 in [1]

and [2], respectively. In particular, the capacity was shown

to be 2/⌈2K/3⌉ and 2/⌈K/2⌉ for D = 2, M = 1 and

D = 2, M = 2, respectively. In addition, it was shown that

in both of these cases the capacity can be achieved by a linear

protocol. This shows that the linear capacity of IPIR and the

general capacity of IPIR for these cases are the same. We

conjecture that the general capacity of IPIR does not exceed

the linear capacity of IPIR for any K, D, M, and it is given

by D/⌈DK/(D + M)⌉ for all K, D, M.

Remark 3. The linear capacity of IPIR, which is given by

(D + M)/K for all K, D, M such that (D/R + M/R) | K,

may approach zero as K tends to infinity, e.g., when D
and M are constant with respect to K. However, the linear

capacity of IPIR does not always approach zero as K grows

unbounded. For instance, when D = αK and M = βK
for arbitrary constants 0 < α,β < 1 such that α +β ≤ 1
(i.e., D and M grow linearly in K), as K grows unbounded,

the linear capacity of IPIR approaches the nonzero constant

α +β, which can be as large as 1.

IV. PROOF OF THEOREM 1

For simplifying the notation, we denote Q[W,S] and

A[W,S] by Q and A, respectively. We need to show that

H(A) ≥ (D/(D + M))KB, where B = n log2 q is the en-

tropy of a message (in bits). Recall that each message

Xi consists of n independent and uniformly distributed

symbols {Xi, j} j∈[n] over Fq. Let N := qn − 1, and

let c1, . . . , cN be the set of all nonzero vectors in F

n
q .

For each m ∈ [N], let cm = [cm,1, . . . , cm,n]. Note that

cm, j ∈ Fq for all m ∈ [N] and for all j ∈ [n]. We refer to

Yi,m := ∑ j∈[n] cm, jXi, j as a coded symbol of the message

Xi. To prove that H(A) ≥ (D/(D + M))KB, it suffices

to show that for any linear IPIR protocol, given the query

and the answer, there exist R ≤ (M/(D + M))Kn coded

symbols {Yi,m}T := {Yi,m : (i, m) ∈ T } for some R-subset

T of [K]× [N] (depending on the realization of the query

and the answer) given which all Kn message symbols

{Xi, j} := {Xi, j : i ∈ [K], j ∈ [n]} can be recovered, i.e.,

H({Xi, j}|A, Q, {Yi,m}T ) = 0. This is because

H(A) ≥ H(A|Q, {Yi,m}T )
(a)
= H(A|Q, {Yi,m}T ) + H({Xi, j}|A, Q, {Yi,m}T )
(b)
= H({Xi, j}|Q, {Yi,m}T ) + H(A|Q, {Xi, j})
(c)
= H({Xi, j}|Q, {Yi,m}T )
(d)
= H({Xi, j}|{Yi,m}T )
(e)

≥ H({Xi, j})− H({Yi,m}T )
(f)

≥ (Kn − R)B/n
(g)

≥ (D/(D + M))KB,

where (a) holds because H({Xi, j}|A, Q, {Yi,m}T ) = 0
by assumption; (b) follows from the chain rule of

entropy; (c) holds because H(A|Q, {Xi, j}) = 0; (d)

follows because Q and {Xi, j} are independent (by

assumption); (e) holds because H({Xi, j}|{Yi,m}T ) =
H({Xi, j}) + H({Yi,m}T |{Xi, j}) − H({Yi,m}T ),
and H({Yi,m}T |{Xi, j}) = 0 because Yi,m is a

linear combination of {Xi, j : j ∈ [n]}; (f) holds

because H({Xi, j}) = KB, noting that {Xi, j} are

independent and uniformly distributed over Fq, and

H({Yi,m}T ) ≤ |T |H(Yi,m) = RB/n, noting that Yi,m is a

linear combination of {Xi, j : j ∈ [n]}, and hence uniformly

distributed over Fq, i.e., H(Yi,m) = log2 q = B/n; and (g)

follows because R ≤ (M/(D + M))Kn by assumption.



Consider an arbitrary linear IPIR protocol. Fix arbitrary

W ∈W and S ∈ S such that W ∩ S = ∅. Let Q[W,S] and

A[W,S] be a query and its corresponding answer generated

by the protocol, respectively. For ease of notation, we denote

Q[W,S] and A[W,S] by Q and A, respectively.

For any (W∗, S∗) ∈W× S such that W∗ ∩ S∗ = ∅,

we say that the tuple (W∗, S∗) is feasible (given Q
and A) if XW∗ can be recovered given XS∗ . Let

(W1, S1), . . . , (WT , ST) be the set of all feasible tuples

given Q and A. By the linearity of the protocol, it follows

that for any l ∈ [T], any k ∈ Wl , and any j ∈ [n], the

message symbol Xk, j (i.e., the jth symbol of the message Xk)

can be recovered given the M message symbols {Xi, j}i∈Sl
.

This further implies that for any k ∈ Wl and any m ∈ [N],
the coded symbol ∑ j∈[n] cm, jXk, j can be recovered given the

M coded symbols {∑ j∈[n] cm, jXi, j}i∈Sl
.

Recall that we need to show that there exist

R ≤ (M/(D + M))Kn coded symbols given which

all Kn message symbols can be recovered. As discussed in

Section III, it suffices to prove this claim for sufficiently

large n. In the following we present a proof by construction.

For each l ∈ [T], let pl be the conditional

probability that W = Wl and S = Sl given that

Q = Q. That is, pl := P(W = Wl , S = Sl |Q = Q).
Note that ∑l∈[T] pl = 1. For any i ∈ [K], we define

Fi := {l ∈ [T] : i ∈ Wl} and Ei := {l ∈ [T] : i ∈ Sl}.

Let αi := ∑l∈Fi
pl and βi := ∑l∈Ei

pl for all i ∈ [K].

Note that αi
(a)

= P(i ∈ W|Q = Q)
(b)

= P(i ∈ W) = D/K,

where (a) follows from the law of total probability;

and (b) follows from the individual privacy condition.

To simplify the notation, we define α := D/K. Note

also that βi = P(i ∈ S|Q = Q) (by the law of total

probability). Moreover, ∑i∈[K]βi = M. This is because

∑i∈[K]βi = ∑i∈[K] ∑l∈Ei
pl = ∑l∈[T] Mpl = M.

Let I0 = ∅, and let I1, . . . , IP be a partition of [K] such

that for each k ∈ [P], βi = β j for all i, j ∈ Ik, and for every

k, h ∈ [P], βi 6= β j for all i ∈ Ik and for all j ∈ Ih. For each

k ∈ [P], let γk be such that βi = γk for all i ∈ Ik. Without

loss of generality, assume that γ1 > γ2 > · · · > γP. Let

r0 := 0, and let rk := n/(α+γk)− ∑
k−1
h=0 rh for all k ∈ [P].

For sufficiently large n, we show that (i) there

exist Nk,l ⊂ [N], |Nk,l|= rk pl for all k ∈ [P] and

for all l ∈ [T], such that all Kn message symbols

{Xi, j : i ∈ [K], j ∈ [n]} can be recovered given the

coded symbols {Yi,m : i ∈ [K] \ ∪k−1
h=0Ih , m ∈ Nk,Ei

}k∈[P],

and (ii) |{Yi,m : i ∈ [K] \ ∪k−1
h=0Ih , m ∈ Nk,Ei

}k∈[P]| ≤
(M/(D + M))Kn, where Nk,Fi

:= {Nk,l}l∈Fi
and

Nk,Ei
:= {Nk,l}l∈Ei

. From now on, whenever we use the

notation Nk,l for any k ∈ [P] and l ∈ [T], it is assumed that

Nk,l is a subset of [N] of size rk pl, noting that rk pl is an

integer, for sufficiently large n.

We say that a collection {N1,l}l∈[T] is good if all message

symbols {Xi, j : i ∈ I1 , j ∈ [n]} can be recovered given the

coded symbols {Yi,m : i ∈ [K], m ∈ N1,Ei
}. Also, we say

that a collection {Nk,l}l∈[T] for any k ∈ [P] \ {1} is good if

given k− 1 good collections {Nh,l}h∈[k−1],l∈[T], all message

symbols {Xi, j : i ∈ Ik, j ∈ [n]} can be recovered given the

coded symbols {Yi,m : i ∈ [K] \ ∪h−1
g=0Ig, m ∈ Nh,Ei

}h∈[k].

First, we consider the case of k = 1, and prove the

existence of a good collection {N1,l}l∈[T]. For any ar-

bitrary collection {N1,l}l∈[T], it is easy to see that the

coded symbols {Yi,m : i ∈ [K], m ∈ N1,Fi
} can be recovered

given the coded symbols {Yi,m : i ∈ [K], m ∈ N1,Ei
}. By

a standard random linear network coding argument [30],

it can be shown that for sufficiently large n (depend-

ing on K and q), for randomly chosen {N1,l}l∈[T],

the coded symbols {Yi,m : i ∈ [K], m ∈ N1,Fi
∪N1,Ei

} are

linearly independent combinations of the message sym-

bols {Xi, j} with a nonzero probability. This implies

that there exists a collection {N1,l}l∈[T] such that the

coded symbols {Yi,m : i ∈ [K], m ∈ N1,Fi
∪N1,Ei

} are lin-

early independent combinations of the message sym-

bols {Xi, j}. Fix such a collection {N1,l}l∈[T]. Note that

|{Yi,m : m ∈ N1,Fi
∪N1,Ei

}| = |N1,Fi
∪N1,Ei

| = n
for all i ∈ I1. This is because for each i ∈ I1, we

have (i) |N1,Fi
|= ∑l∈Fi

|N1,l|= ∑l∈Fi
r1 pl = r1α; (ii)

|N1,Ei
|= ∑l∈Ei

|N1,l|= ∑l∈Ei
r1 pl = r1γ1; (iii) N1,Fi

and N1,Ei
are disjoint since {Yi,m : m ∈ N1,Fi

∪N1,Ei
}

are linearly independent combinations of {Xi, j : j ∈ [n]};

and (iv) r1α + r1γ1 = n by the definition of r1. Note

that {Yi,m : m ∈ N1,Fi
∪N1,Ei

} are n linearly independent

combinations of the message symbols {Xi, j : j ∈ [n]} for

each i ∈ I1, and {Yi,m : m ∈ N1,Fi
} can be recovered given

{Yi,m : m ∈ N1,Ei
} for any i ∈ I1. This implies that all mes-

sage symbols {Xi, j : i ∈ I1, j ∈ [n]} can be recovered given

{Yi,m : i ∈ [K], m ∈ N1,Ei
}. Thus, {N1,l}l∈[T] is a good

collection. Note also that |{Yi,m : i ∈ [K], m ∈ N1,Ei
}| =

∑i∈[K]|N1,Ei
| = ∑i∈[K] ∑l∈Ei

r1 pl = ∑i∈[K] r1βi.

Next, we show that for any k ∈ [P] \ {1}, given

any k − 1 good collections {Nh,l}h∈[k−1],l∈[T], there

exists a good collection {Nk,l}l∈[T]. Consider the case

of k = 2. Fix a good collection {N1,l}l∈[T]. For any

arbitrary collection {N2,l}l∈[T], the coded symbols

{Yi,m : i ∈ [K], m ∈ N2,Fi
} can be recovered given

the coded symbols {Yi,m : i ∈ [K], m ∈ N2,Ei
}. Recall

that {Xi, j : i ∈ I1, j ∈ [n]} can be recovered given

{Yi,m : i ∈ [K], m ∈ N1,Ei
}. This implies that the coded

symbols {Yi,m : i ∈ I1, m ∈ N2,Ei
} can be recovered

given the coded symbols {Yi,m : i ∈ [K], m ∈ N1,Ei
}. By

combining these arguments, one can observe that the

coded symbols {Yi,m : i ∈ [K], m ∈ N1,Fi
} and the coded

symbols {Yi,m : i ∈ [K], m ∈ N2,Fi
} can be recovered

given the coded symbols {Yi,m : i ∈ [K], m ∈ N1,Ei
}

and the coded symbols {Yi,m : i ∈ [K] \ I1, m ∈ N2,Ei
}.

Similarly as before, it can be shown that given a good

collection {N1,l}l∈[T], there exists a collection {N2,l}l∈[T]
such that the coded symbols {Yi,m : i ∈ [K], m ∈ N1,Fi

},

{Yi,m : i ∈ [K], m ∈ N1,Ei
}, {Yi,m : i ∈ [K], m ∈ N2,Fi

},

and {Yi,m : i ∈ [K] \ I1, m ∈ N2,Ei
} are linearly

independent combinations of the message symbols {Xi, j}.

Fix such a collection {N2,l}l∈[T]. By the same arguments

as before, |{Yi,m : m ∈ N1,Fi
∪N1,Ei

∪N2,Fi
∪N2,Ei

}| =
|N1,Fi

|+|N1,Ei
|+|N2,Fi

|+|N2,Ei
| = (r1 + r2)(γ2 +α) =

n for all i ∈ I2. It is easy to verify that for each i ∈ I2, the



coded symbols {Yi,m : m ∈ N1,Fi
∪N1,Ei

∪N2,Fi
∪N2,Ei

}
are n linearly independent combinations of the message

symbols {Xi, j : j ∈ [n]}. Moreover, as we showed

earlier, the coded symbols {Yi,m : i ∈ [K], m ∈ N1,Fi
}

and {Yi,m : i ∈ [K], m ∈ N2,Fi
} can be recovered

given the coded symbols {Yi,m : i ∈ [K], m ∈ N1,Ei
}

and {Yi,m : i ∈ [K] \ I1, m ∈ N2,Ei
}. Putting these

arguments together, it follows that all message symbols

{Xi, j : i ∈ I2, j ∈ [n]} can be recovered given the coded

symbols {Yi,m : i ∈ [K] \ ∪h−1
g=0Ig , m ∈ Nh,Ei

}h∈[2]. This

implies that {N2,l}l∈[T] is a good collection. Note

also that |{Yi,m : i ∈ [K] \ ∪h−1
g=0Ig, m ∈ Nh,Ei

}h∈[2]| =

∑i∈[K]|N1,Ei
| + ∑i∈[K]\I1

|N2,Ei
| = ∑i∈[K] r1βi +

∑i∈[K]\I1
r2βi = ∑i∈I1

r1βi + ∑i∈[K]\I1
(r1 + r2)βi.

Repeating the same arguments as above for the cases of

k = 3, . . . , P, it can be shown that for each k ∈ [P] \ {1},

given any k − 1 good collections {Nh,l}h∈[k−1],l∈[T],

there exists a good collection {Nk,l}l∈[T]. That is,

there exist {Nk,l}l∈[T] such that all message symbols

{Xi, j : i ∈ Ik, j ∈ [n]} can be recovered given the coded

symbols {Yi,m : i ∈ [K] \ ∪h−1
g=0Ig, m ∈ Nh,Ei

}h∈[k]. This

implies that for each k ∈ [P], there exist {Nh,l}h∈[k],l∈[T]

such that all message symbols {Xi, j : i ∈ ∪k
h=1Ih , j ∈ [n]}

can be recovered given the coded symbols

{Yi,m : i ∈ [K] \ ∪h−1
g=0Ig , m ∈ Nh,Ei

}h∈[k]. Using the

same arguments as before, it can be shown that for each

k ∈ [P], |{Yi,m : i ∈ [K] \ ∪h−1
g=0Ig , m ∈ Nh,Ei

}h∈[k]| =

∑h∈[k] ∑i∈[K]\(I0∪...∪Ih−1)
rhβi. Taking k = P, it then

follows that all Kn message symbols {Xi, j} can be

recovered given the ∑h∈[P] ∑i∈[K]\(I0∪...∪Ih−1)
rhβi coded

symbols {Yi,m : i ∈ [K] \ ∪h−1
g=0Ig , m ∈ Nh,Ei

}h∈[P]. It is

also easy to verify that ∑h∈[P] ∑i∈[K]\(I0∪...∪Ih−1)
rhβi =

∑h∈[P] ∑i∈Ih
(r1 + · · ·+ rh)βi = (∑i∈[K](βi/(α +βi)))n.

By combining these arguments, it follows that there exist

(∑i∈[K](βi/(α +βi)))n coded symbols given which all Kn
message symbols can be recovered.

To complete the proof, we need to show that

(∑i∈[K](βi/(α +βi)))n ≤ (M/(D + M))kn. It is easy

to show that ∑i∈[K](βi/(α+βi)) is maximized when

βi = M/K for all i ∈ [K], noting that α = D/K does

not depend on {βi}i∈[K], and ∑i∈[K]βi = M. This readily

implies that ∑i∈[K](βi/(α+βi)) ≤ (M/(D + M))K.

V. PROOF OF THEOREM 2

In this section, we present a linear IPIR protocol, re-

ferred to as Group-and-Code, for all K, D, M such that

(D/R + M/R) | K, where R := gcd(D, M), and show that

this protocol achieves the rate (D+ M)/K. The Group-and-

Code protocol consists of three steps described below.

For ease of notation, we define d := D/R, m := M/R,

T := d + m, and P := K/T.

Step 1: First, the user randomly partitions the message

indices 1, . . . , K into P groups I1 , . . . , IP, each of size T
as follows: (i) R (out of P) groups are chosen at random,

and each of these groups is filled with d randomly chosen

message indices from W and m randomly chosen message

indices from S; and (ii) the remaining P − R groups are

randomly filled with the remaining K − D − M message

indices from [K] \ (W ∪ S). Next, the user constructs d
arbitrary length-T row-vectors v1, . . . , vd with entries from

Fq such that the matrix V := [vT
1 , . . . , vT

d ]
T generates a

[T, d] MDS code over Fq. The user then sends I1 , . . . , IP

and v1, . . . , vd as the query Q[W,S] to the server.

Step 2: Given the query Q[W,S], for each k ∈ [P] and each

l ∈ [d], the server computes Zk,l = ∑ j∈[T] vl, jXik, j
, where

Ik = {ik,1, . . . , ik,T} and vl = [vl,1, . . . , vl,T], and sends

{Zk,l}k∈[P],l∈[d] back to the user as the answer A[W,S].

Step 3: Given the answer A[W,S] and the side infor-

mation XS, the user recovers their demand XW as fol-

lows. Without loss of generality, assume that I1, . . . , IR

contain messages indices from W ∪ S. For each k ∈ [R],
let Wk ⊂ Ik and Sk ⊂ Ik be such that (i) Wk ⊆ W and

Sk ⊆ S, and (ii) Ik = Wk ∪ Sk. For each k ∈ [R] and each

l ∈ [d], the user computes Z̃k,l by subtracting off the con-

tribution of the m side information messages XSk
from

Zk,l , i.e., Z̃k,l = ∑ j∈Jk
vl, jXik, j

, where Jk ⊂ [T] is such

that Wk = {ik, j : j ∈ Jk}. For each k ∈ [R], the user then

recovers the d demand messages XWk
from Z̃k,1, . . . , Z̃k,d

by solving a system of linear equations.

The rate of the Group-and-Code protocol is equal to

(D + M)/K. Note that for any realization (W, S), the

answer A[W,S] consists of L := Pd (= Kd/(d + m) =
KD/(D + M)) linear combinations {Zk,l}k∈[P],l∈[d]. It is

also easy to see that {Zk,l}k∈[P],l∈[d] are linearly indepen-

dent combinations of the messages. This implies that all

realizations of A[W,S] consist of L linearly independent

combinations of the messages. Thus, H(AW,S) = LB (as

discussed in Section II), where B = H(Xi) for all i ∈ [K].
Since H(XW) = DB, then the rate of this protocol is equal

to DB/(LB) = D/L = (D + M)/K.

It is also easy to see that the recoverability condition is

satisfied. Fix an arbitrary k ∈ [R]. Note that Z̃k,1, . . . , Z̃k,d

are linear combinations of the demand messages XWk
. Note

also that the coefficient vectors of these linear combinations

are the rows of a d × d submatrix of V, and every d × d
submatrix of V is full-rank because V generates a [T, d]
MDS code. Thus, Z̃k,1, . . . , Z̃k,d are d linearly independent

combinations of the d demand messages XWk
.

To prove that the individual privacy condition is satisfied,

we need to show that P(i ∈ W|Q[W,S] = Q[W,S]) = D/K
for all i ∈ [K]. Fix an arbitrary i ∈ [K]. Let k ∈ [P] be

such that i ∈ Ik. From the description of the protocol, it

is easy to see that P(i ∈ W|Q[W,S] = Q[W,S]) is equal to

the probability that the kth group is one of the R groups

that are randomly chosen at first and the message index i
is one of the d demand message indices that are placed in

the kth group (i.e., the message index i belongs to Wk).

The probability that the kth group is one of the R chosen

groups is R/P = (D + M)/K, and given that the kth group

is one of the R chosen groups, the probability that the mes-

sage index i belongs to Wk is d/T = D/(D + M). Thus,

P(i ∈ W|Q[W,S] = Q[W,S]) = (R/P)× (d/T) = D/K.
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