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Abstract—The study of the fundamental limits of informa-
tion systems is a central theme in information theory. Both
the traditional analytical approach and the recently proposed
computational approach have significant limitations, where the
former is mainly due to its reliance on human ingenuity, and
the latter due to its exponential memory and computational
complexity. In this work, we propose a new computational
approach to tackle the problem with much lower memory
and computational requirements, which can naturally utilize
certain intuitions, but also can maintain the strong compu-
tational advantage of the existing computational approach. A
reformulation of the underlying optimization problem is first
proposed, which converts the large linear program to a maximin
problem. This leads to an iterative solving procedure, which uses
the LP dual to carry over learned evidence between iterations.
The key in the reformulated problem is the selection of good
information inequalities, with which a relaxed LP can be formed.
A particularly powerful intuition is a potentially optimal code
construction, and we provide a method that directly utilizes it
in the new algorithm. As an application, we derive a tighter
outer bound for the storage-repair tradeoff for the (6, 5, 5)
regenerating code problem, which involves at least 30 random
variables and is impossible to compute with the previously known
computational approach.

I. INTRODUCTION

The study of the fundamental limits of information systems
is a central theme in information theory since its invention by
Claude Shannon in 1948 [1]. There have been many advances
in this area over the years [2]–[5], and more and more
information systems have been studied using an information
theoretic approach, such as coding for distributed data storage
[6], [7], coded caching [8], private information retrieval [9],
and straggler-resilient coded computation [10].

Fundamental limits of information systems, i.e., outer
bounds or converse bounds, have traditionally been derived
using an analytical approach, which are usually presented as a
sequence of bounding steps involving information inequalities.
This approach requires a deep understanding on the problem
under consideration, familiarity with information theoretic
techniques, and perhaps most importantly, a heavy dose
of human ingenuity. As information systems become more
complex, this approach becomes rather unwieldy. Recently, a
computational approach has been proposed to address such
difficulties, and a few notable results have been obtained with
the assistance of this approach [11]–[20].
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Despite the successes of the computational approach in
these studies, its limitation has become increasingly apparent.
The main idea of this approach is that the class of information
inequalities usually used in such problems (i.e., Shannon-
type inequalities) are linear in terms of the joint entropies
[21]; by viewing the derivation of the converse bound as an
optimization problem with the joint entropies as variables, and
the information inequalities and problem-specific conditions
as constraints in a linear program (LP), outer bounds and the
corresponding proofs can be found by solving the LP and the
dual. The key difficulty in this approach is that the number
of Shannon-type information inequalities grows exponentially
[5] in the total number of random variables, meaning that
for problems of slightly larger scales, it is unrealistic to
complete the needed computation. Although symmetry and
implication relations can be used to reduce the scale of the LP,
which indeed made some seemingly impossible cases become
possible to compute [11], [13], [22], they cannot fully resolve
the memory and computational hurdle [23].

In view of the difficulty discussed above, new techniques
are sorely needed to break the aforementioned memory and
computation barriers. For this purpose, it is beneficial to con-
sider how human researchers approach the problem differently
from the computational approach. Firstly, humans usually take
a trial-and-error approach, and it may take multiple attempts
to find a viable bound. Secondly, humans are very good at
using intuitions, which can be obtained from side information
(SI) channels such as potentially optimal codes, easy-to-
study smaller instances, genie-aided (relaxed) systems, etc.. In
contrast, the existing computational approach is largely single-
shot, exhaustive (on using Shannon-type inequalities), and not
relying on any SI. Therefore, we need to make the existing
approach more “intelligent” in some way.

In this work, we propose a new and more intelligent
computational approach based on a reformulated optimization
problem, which is motivated by the following critical ob-
servation. Although the number of Shannon-type inequalities
can be extremely large to start with, the number of effective
inequalities in the eventual proof is usually quite small (often
only tens, when the LPs may have hundreds of thousands or
even millions of random variables); see [11]–[13] for specific
examples. A direct consequence of this observation is that if
the set of effective inequalities could be identified beforehand,
solving this small LP and obtaining the bound would be quite
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simple; if it could be approximately identified, then solving
the LP would still be very fast and still yield a strong converse
bound.

This new formulation converts the problem of solving
for the optimal solution of a large LP into the problem of
finding a good (not necessarily optimal) solution of a discrete
optimization problem (more precisely, a discrete maximin
problem). The (maximization) variables in the reformulation
can be viewed as the selected set of inequalities, and the
objective function is the optimal LP value under this set
of inequality constraints. The immediate benefit is a much
lighter requirement on memory to perform pre-processing and
problem setup. It also leads to a natural iterative procedure,
where the LP dual can be used to carry over learned evidence
between iterations. More importantly, the key to solve this op-
timization problem becomes finding a good subset of inequal-
ities, for which other SI and previous experience can be used
to narrow down the choices. In this work, we use potentially
optimal code constructions to narrow down the choice of the
information inequalities. The proposed approach is applied to
the regenerating code problem [6] with n = 6 nodes, yielding
new outer bounds which is considerably tighter than those
in the literature obtained using the analytical approach. This
problem, which involves at least 30 random variables, was
impossible to compute with the previous approach.

II. THE ENTROPY LINEAR PROGRAM FRAMEWORK

The entropy LP framework was first described by Yeung
[21] for the purpose of proving information inequalities, and
was developed further in several more recent works [11], [13],
[22] for the purpose of directly establishing outer bounds. We
briefly review the general approach next for the latter purpose.

Suppose all the relevant quantities in a particular informa-
tion system (i.e., a coding problem) are represented as random
variables (X1, X2, . . . , XN ). The derivation of a fundamental
limit in an information system may be understood conceptu-
ally as the following optimization problem:

minimize: a weighted sum of joint entropies (1)
subject to: (I) generic information constraints (2)

(II) problem-specific information constraints,
(3)

where the variables in this optimization problem are all the
joint entropies on the random variables X1, X2, . . . , XN , as
well as certain additional problem variables such as rates.
Therefore, there are 2N − 1 variables of the form of H(XA)
where A ⊆ {1, 2, . . . , N}. The objective function is denoted
as f0. Intuitively, since any code must satisfy these constraints,
the optimal value of the LP immediately provides a lower
bound to the given information system.

To obtain a strong outer bound, we wish to include all
the Shannon-type inequalities as generic constraints in the
first group of constraints. Yeung identified a minimal set of

constraints which are called elemental inequalities [21], [24]:

H(Xi|XA) ≥ 0, i ∈ {1, 2, . . . , N},
A ⊆ {1, 2, . . . , N} \ {i} (4)

I(Xi;Xj |XA) ≥ 0, i 6= j, i, j ∈ {1, 2, . . . , N},
A ⊆ {1, 2, . . . , N} \ {i, j}. (5)

There are N+
(
N
2

)
2N−2 elemental inequalities, and we denote

this set of inequalities as (I).
The second group of constraints (II) are the problem

specific constraints. These are usually the implication relations
required by the system (i.e., the specific coding requirements),
and symmetry relations. For example, if X4 is a coded
representation of X1 and X2, then it can be represented as

H(X4|X1, X2) = H(X1, X2, X4)−H(X1, X2) = 0, (6)

which is a linear constraint. This group of constraints may also
include independence and conditional independence relations.
The two groups of constraints are both linear in terms of the
optimization problem variables, i.e., the 2N−1 joint entropies
and the rate variables.

As an example, consider a hypothetical problem with 30
random variables. There will be roughly one billion variables
in the LP, and over one hundred billion Shannon-type in-
equalities. Representing this problem and pre-processing it
for symmetry and implication reductions require close to one
terabyte of memory, which is impossible to complete on a
standard workstation, and more importantly, solving an LP
of such a scale is beyond the capability of any realistic LP
solvers1.

III. THE PROPOSED ALTERNATIVE COMPUTATIONAL
APPROACH

In this section, we introduce a new reformulated optimiza-
tion problem, which naturally leads to an iterative optimiza-
tion procedure. We further provide a heuristic procedure to se-
lect important information inequalities, and a method to utilize
side information of potentially optimal code constructions.

A. A Reformulated Optimization Problem

We introduce a new optimization problem reformulation,
i.e., the subset selection problem mentioned earlier. Mathe-
matically, denote the optimal value of the problem in (1-3) as
P ∗(I&II), where I&II indicates that the solution is obtained
under the full set of constraints; we will use a similar notation
for the optimal value under different sets of constraints.

Now consider a subset Ip ⊆ I of Shannon-type inequailities,
and it follows that P ∗(I&II) ≥ P ∗(Ip&II). On the other hand,

1Modern special-purpose large-memory server may indeed have several
terabytes of RAM, however, although modern LP solvers are very powerful,
they usually will have difficulty with LPs with either the number of variables
or the number of constraints at the million-order scale, or on more difficult
problems at a much smaller scale.
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Fig. 1. The iterative procedure to computer outer bound.

if there exists a subset I∗p ⊆ I with |I∗p| ≤ κ, such that
P ∗(I&II) = P ∗(I∗p&II), then we can write

P ∗(I&II) = max
Ip⊆I:|Ip|=κ

P ∗(Ip&II) = max
Ip⊆I:|Ip|=κ

min
Ip&II

f0. (7)

Thus, the original optimization problem can be converted
to the problem of finding an optimal set Ip on the right
hand side of (7). For small subset of cardinality κ, the inner
minimization is easy to compute. Moreover, since

P ∗(I&II) ≥ P ∗(Ip&II), Ip ⊆ I, |Ip| = κ, (8)

choosing any feasible subset Ip yields a valid outer bound.
Since the value of κ is unknown a priori, it will be viewed
as a hyper-parameter during the computation and adjusted
dynamically at run-time. Recall the observation previously
discussed in Section I, which suggests that this value will be
much smaller than the total number of elemental Shannon-
type inequalities, thus making the problem computable.

A naive algorithm naturally fits the reformulated optimiza-
tion problem is exhaustive enumeration. More precisely, we
can enumerate all the subset Ip of a fixed cardinality, and for
each such set, compute P ∗(Ip&II) using an LP solver; the
maximum of such computed values will be the outer bound
being sought after. It is not too difficult to see that this naive
approach will induce an astronomical computation cost for
moderate-sized problems, and thus not practical.

B. An Iterative Optimization Procedure Using LP Dual

Instead of exhaustive enumeration, we need to find the
optimal constraint set I∗p or a good suboptimal constraint set
in a more intelligent manner. To do so, we take an episodic
approach, reminiscent to those used in reinforcement learning
[25]. The procedure is shown in Fig. 1.

In each episode a set of inequalities Ip will be chosen,
and the corresponding LP solved under the constraints Ip&II,
which yields an outer bound P ∗(Ip&II). This bound may be
loose, but its value can be viewed as the (delayed) cost for
the selected set Ip in the episode. As shown in [11], the
solution to the dual of this LP identifies all the necessary
inequalities to prove this outer bound. This implies that the LP
solver can in fact also provide the effective inequalities (and

the corresponding coefficients) for the outer bound computed
in that episode, which can be viewed as evidence on the
usefulness of these information inequalities. This learned
evidence can be used to initialize in the next episode, from
which a new set of inequalties can be generated (potentially
in a randomized manner) and the corresponding LP and dual
solved again.

In order to avoid the explosive memory footprint growing
exponentially in the number of random variables at run-time,
a new data structure is needed to form the LP for larger
instances. The approach of pre-assigning an index to each
subset of the random variables and then perform symmetry
and implication reductions is highly inefficient, not only
because this requires too much memory and computation
time, but also because this is a huge waste since the eventual
LP is quite small and only a tiny portion of the full set of
information inequalities is eventually used. Instead we choose
to use a key-value data structure to manage the joint entropies
and the information inequalities that will be used in the LP.
We omit the implementation details due to space constraints.

C. Random Ip Set Generation

The module of generating Ip set in the procedure shown in
Fig. 1 is in fact very critical. A naive strategy is to select a
random subset in the elemental inequalities, which is however
not efficient for the following reason. The majority of the
Shannon type inequalities can be written in the following form

I(XB;XC |XA)
= H(XA ∪XB) +H(XA ∪XC)
−H(XA ∪XB ∪XC)−H(XA) ≥ 0, (9)

i.e., each such constraint only has 4 joint entropy terms,
despite the fact that there are 2N − 1 joint entropy terms in
the problem, where N is the number of random variables. It
follows that if only a small number of information inequal-
ities are selected uniformly at random, most joint entropy
terms in them will only appear once. However since the
objective function only involves very few quantities (such
as the eventual coding rates), all other joint entropy terms
in the inequalities must cancel out each other when forming
the eventual bound. If each joint entropy term appears only
once in the set of selected inequalities, they will not have
a counterpart to cancel out with. Therefore, this system of
constraints has many useless ones (many inequalities cannot
be effective), leading to a weak converse bound.

Given this observation, we use a different strategy to
generate the constraint set Ip. We start from a bootstrapping
set of joint entropies, which can be initialized at the start of
each episode using learned evidence. For example, it can be
the joint entropy terms that are present in the problem-specific
constraints, or it can be those found useful in the previous
episodes. We then gradually introduce new joint entropy terms
and information inequalities: take intersections and union of
the terms in the bootstrapping set to form new joint entropy
terms and to also add new inequalities.
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Fig. 2. The regenerating code problem with (n, k, d) = (6, 5, 5). .

D. Side Information: Potentially Optimal Code Constructions

The selection of the set Ip shown in Fig. 1 can be made
more efficient using different methods based on intuitions
that may be mathematically less precise. In this work, we
use the following intuition: if a code construction is optimal,
i.e., the induced inner bound matches an outer bound derived
using a set of information inequalities, then the joint entropy
values induced by this code must make all these information
inequalities hold with equality. This intuition was used in
[26], [27] to derive certain important properties of optimal
codes, and to help construct efficient codes; this approach was
termed “reverse engineering”. In this work, we will instead use
potentially optimal code constructions to help narrow down
the information inequalities used to form the set Ip.

To be more precise, consider a code construction C that in-
duces the random variables X ′1, X

′
2, . . . , X

′
N and subsequently

2N − 1 joint entropy values. Suppose we wish to establish
and prove a particular outer bound that matches this code
construction using the procedure given in Fig. 1, then we
can restrict the selection of Ip to the information inequalities
that satisfy the following conditions: when X ′1, X

′
2, . . . , X

′
N

are substituted into them, the inequalities become equality.
For example, suppose the construction gives H(X ′1) = 1,
H(X ′2) = 1, and H(X ′1, X

′
2) = 2, then the elemental

inequality

I(X1;X2) ≥ 0 (10)

indeed holds with equality, thus can be selected into Ip.
Otherwise, an inequality will not be allowed into Ip.

IV. AN APPLICATION: THE STORAGE-REPAIR TRADEOFF
IN REGENERATING CODES

In this section, we apply the proposed new computational
method on the problem of regenerating codes, and present an
outer bound that is tighter than the best known bounds derived
analytically.

A. The Regenerating Code Problem

The (n, k, d) regenerating code problem [6], [28] deals with
the situation that a unit-sized message is stored in a distributed
manner in n nodes, each having capacity α (Figure 2(a)). Two
coding requirements need to be satisfied: 1) the message can
be recovered from any k nodes (Figure 2(b)), and 2) any single
node can be repaired by downloading β amount of information

from any d of the other nodes (Figure 2(c)). The fundamental
limit of interest is the optimal tradeoff between the storage
cost α and the download cost β. We will consider the case
k = d = n − 1 and particularly n = 6 in this work. In this
setting, the stored contents are W1,W2,W3,W4,W5,W6, and
the repair message sent from node i to repair j is denoted
as Si,j . The set of the random variables in the problem are
therefore

W1,W2,W3,W4,W5,W6

S1,2, S1,3, S1,4, S1,5, S1,6,

S2,1, S2,3, S2,4, S2,5, S2,6

S3,1, S3,2, S3,4, S3,5, S3,6

S4,1, S4,2, S4,3, S4,5, S4,6

S5,1, S5,2, S5,3, S5,4, S5,6

S6,1, S6,2, S6,3, S6,4, S6,5.

It can be observed that the problem has a significant amount
of symmetry, which can be used to reduce the scale of the LP.
For a given instance with n nodes, the optimization problem
in (1-3) has the following objective function

minimize: f0 = α+ ηβ (11)

where η is a non-negative value which controls the direction
of the supporting hyperplane direction of the target converse
bound, or it can be viewed as a Lagrangian multiplier for
the constraint on β. Shannon-type inequalities (I) can be
enumerated in a straightforward manner ). The problem-
specific inequalities (II) are

H(Wi)−H(Wi, {Si,j , j 6= i}) = 0, i = 1, 2, . . . , n (12)
H({Si,j , i 6= j})−H(Wj , {Si,j , i 6= j}) = 0,

j = 1, 2, . . . , n (13)
H(Wi) ≤ α, i = 1, 2, . . . , n (14)
H(Si,j) ≤ β, i = 1, 2, . . . , n, j 6= i (15)
H({Wi, i ∈ N}) ≥ 1, N ⊂ {1, 2, . . . , n}, |N | = n− 1.

(16)

The first two constraints are the repair conditions, i.e., the
helper messages {Si,j , j 6= i} can be produced from the
message Wi, and each stored message Wj can be repaired
using the helper messages {Si,j , i 6= j}. The third and fourth
constraints bound the storage and the repair message costs.
The last inequality guarantees any n−1 nodes can reconstruct
the original data of unit size. This formulation for the (4, 3, 3)
case was used in [11] to yield a tight characterization.

This representation has a total of 36 random variables,
which is the standard form used in the literature. However,
we can simplify the representation: the stored content Wi can
be omitted and replaced by the repair contents {Si,j : j 6= i}.
This alternative representation has 30 random variables, and
we shall use it in the discussion that follows.

The optimal tradeoff for the case (4, 3, 3) was established
in [11], and the case (5, 4, 4) in [12], both through the
computational approach. When restricting to linear codes, the



optimal (α, β) tradeoff for general (n, k = n− 1, d = n− 1)
has indeed been found [29], [30], however, information the-
oretic outer bounds without the linear code restriction turn
out to be extremely difficult to establish, despite considerable
efforts [31]–[34]. There does not exist tight outer bounds for
n ≥ 6 in terms of information theoretical optimality, i.e., the
information theoretic fundamental limits.

B. Potentially Optimal Codes: Canonical Layered Codes

The inner bound induced by the canonical layered storage
code [35] matches the information theoretic bounds for the
(4, 3, 3) and (5, 4, 4) cases [11], [12], and it also matches the
linear code outer bound [29], [30]. Given this result, it has
been strongly suspected that this code is in fact also optimal in
the information theoretic sense for general (n, k = n−1, d =
n− 1). The achieved storage-repair tradeoff pairs are

(α, β) =

(
r

n(r − 1)
,

r

n(n− 1)

)
, r = 2, 3, . . . , n. (17)

This code construction can be described as follows. A code
parameter r = 2, 3, . . . , n is first chosen, and the message
consists of a total of M =

(
n
r

)
(r − 1) code symbols in a

sufficiently large alphabet. Each (r − 1) symbols is grouped
into a parity group, and a single parity symbol is produced
from this parity group. Each parity group is associated with
a specific subset of nodes in {1, 2, . . . , n} of cardinality r,
and the message symbols and the parity symbol are placed
at the node in this subset of nodes, one symbol at a node.
To repair a node, the parity groups involving the failed node
are enumerated, and for each such parity group, the symbols
other than the one on the failed node are transmitted from the
nodes that store them. Given this description, the joint entropy
of any given subset of random variables can be calculated
simply by counting: first determine how many parity groups
are involved, and then for each parity group with a total of t
symbols, count it as max(t, r − 1); the final entropy value is
the summation over all the involved parity groups, normalized
by M .

Consider an example of r = 3. We then have before the
normalization

H(S1,2, S2,1) = 3 + 3 = 6, (18)

where the parity groups of {1, 2, 3}, {1, 2, 4}, and {1, 2, 5}
each contribute two symbols. With this simple counting pro-
cedure, we can use the intuition discussed in Section III.D to
narrow down the information inequalities.

C. The New Outer Bound for the (6, 5, 5) Case

The new outer bound is illustrated in Fig. 3. For reference,
we include the inner bound induced by the canonical layered
code [35], the cutset bound [6] which is also the functional re-
pair optimal tradeoff, and the best known analytically derived
information theoretic bound [33]. It can be seen that the new
approach allows us to find tight bounds for all but one segment
on the optimal tradeoff. The new bound is considerably tighter
than the existing analytically derived bound. For the segment

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34
0.06

0.08
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0.2

inner bound

cutset-bound

best existing outer bound

new computed bound with SI

Fig. 3. Inner and outer bounds for the (n, k, d) = (6, 5, 5) regenerating
code. .

that the outer bound does not match the inner bound, the out
bound is formed by

27α+ 15β ≥ 8, 26α+ 25β ≥ 9.

We note that the bound is not necessarily the best that can be
derived using Shannon-type inequalities.

This result is computed on a workstation with 64GB RAM,
and the result was obtained within ten minutes. We note
that since the problem has at least 30 random variables, the
previous computational approach can not initialize or yield
any result on the same hardware platform. Since these bounds
are proved by computation, we do not write them in the usual
form as a sequence of inequalities; instead, the data for the
proof of the new bound can be found at [36].

V. CONCLUSION

We propose a new computational approach by converting
the entropy LP into a maximin optimization problem. The
new formulation naturally leads to an iterative optimization
procedure, in which intuitions such as potentially optimal
code constructions can be used. As an application of the
new approach, we revisit the regenerating code problem with
(n = 6, k = 5, d = 5) and obtained new and tighter outer
bound.

There have been more recent work using computational
approach based on the entropy linear program approach, e.g.,
[37]–[39]. Some of these approaches can suffer from the same
exponential increase of storage and computational complexity
when the problem is large, and the proposed approach can
potentially be used in them to reduce the computation burden
and make progress on seemingly impossible difficult cases. As
part of our on-going work, we are studying the application of
the proposed approach on larger cases of regenerating code,
coded caching, and private information retrieval problems,
and developing more efficient methods to incorporate other
intuitions in the algorithm.
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