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Abstract—We study the properties of secret sharing schemes,
where a random secret value is transformed into shares dis-
tributed among several participants in such a way that only

the qualified groups of participants can recover the secret
value. We improve the lower bounds on the sizes of shares for
several specific problems of secret sharing. To this end, we use
the method of non-Shannon-type information inequalities going
back to Z. Zhang and R.W. Yeung. We employ and extend
the linear programming technique that allows to apply new
information inequalities indirectly, without even writing them
down explicitly. To reduce the complexity of the problems of
linear programming involved in the bounds we extensively use
symmetry considerations.

Index Terms—Shannon entropy, non-Shannon-type informa-
tion inequalities, secret sharing, linear programming, symmetries,
copy lemma, entropy region

I. INTRODUCTION

Secret sharing was introduced in [2], [29], see [27] for a

more recent survey. The central problem in this field is to

compute for a given access structure its optimal information

ratio, i.e., the infimum of the size of the largest share in

proportion to that of the secret. In general, this problem

remains widely open. In this paper we study several particular

access structures (all of them are based on matroids) and

improve known lower bounds (see [13]) for their information

ratios.

We use a combination of several known techniques. First of

all, we apply new non-Shannon-type information inequalities

(more specifically, we use the copy lemma introduced impli-

citly in [33]; see Section II-B for a more detailed discussion

of this technique). We apply non-Shannon-type inequalities

indirectly, using the linear programming approach, as pro-

posed in [13], [17]. We use very extensively the symmetry

considerations. Though each of these elements was known,

the combination of these methods turns out to be surprisingly

efficient. The bounds we have improved are summarized in

Table I. We believe that similar techniques can be productive

not only in secret sharing but also in the other applications of

non-Shannon-type information inequalities.

In Section II we explain the context in more detail and

give the necessary formal definitions. In Section III we discuss

symmetry tools and prove our main theorem. In the last section

we present the improved bounds that we prove for secret

sharing schemes.

II. ENTROPIC VECTORS AND INFORMATION INEQUALITIES

A. Entropy Vectors

Let X = (Xi)1≤i≤n be a sequence of jointly distributed

random variables with a finite range. We denote by hX the

entropy vector whose coordinates are the values of Shannon

entropy for all sub-tuples of X . This vector consists of 2n−1
components hI = H((Xi)i∈I) for each ∅ 6= I ⊆ J1, nK.

Following [33], we use the notation Γ∗
n for the set of all

entropy vectors of dimension 2n−1 (for all distributions of n-

tuples of random variables) and Γ∗
n for the closure of this set.

The linear inequalities for 2n − 1 variables that are true

for all points in Γ∗
n (interpreted as inequalities for entropies

of jointly distributed random variables) are called information

inequalities. The linear combinations of those of the form

H(XI) +H(XJ) ≥ H(XI∪J) +H(XI∩J)

(which is equivalent in the standard notation to the inequality

I(XI : XJ |XI∩J) ≥ 0) are called Shannon-type (classical)

inequalities.

The vectors with 2n − 1 coordinates (not necessarily en-

tropic) satisfying all classical inequalities is noted Γn

Note that Γ∗
n ⊂ Γ∗

n ⊂ Γn, that Γ∗
n is closed under addition

and that Γ∗
n is a convex cone [32].

B. Non-Shannon-Type Inequalities

There exists infirmation inequalities that are not Shannon-

type. The first non-Shannon-type inequality was discovered

by Zhang and Yeung [33]. Now we know infinitely many

examples of non-Shannon-type inequality. All known non-

Shannon-type information inequalities were proven with one

of two techniques: the Ahlswede–Körner (AK) lemma (intro-

duced in [1], discussed in [6] and [20]) or the copy lemma

(implicitly used in [33], formally introduced in [11], discussed

in [21], [12] and [17], and with the name book ineuqualities

in [8]).

Lemma 1 (Copy Lemma). Let X,Y, Z be three jointly

distributed random vectors. There exists random vectors

X ′, Y ′, Z ′, Z ′′ such that the following three conditions are

satisfied:

1) (X,Y, Z) has the same joint distribution as (X ′, Y ′, Z ′),
2) (X ′, Z ′) has the same joint distribution as (X ′, Z ′′),
3) Z ′′ is independent of (Y ′, Z ′) given X ′, i.e.

I(Z ′′ : Y ′, Z ′|X ′) = 0.
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We say that Z ′′ is a Y ′-copy of Z ′ over X ′. By abuse of

notation we identify X ′, Y ′, Z ′ with X,Y, Z respectively and

say that Z ′′ is a Y -copy of X over Z .

This lemma can be extended to the case when X,Y, Z
are not individual variables but tuples of jointly distributed

variables.

How to use the copy lemma to prove a non-Shannon-type

inequality? The new variables created with the copy lemma

are also subject to information inequalities. Given a set of

random variables, we can apply (one or many times) the copy

lemma and then write down Shannon-type inequalities for all

the involved random variables (the original ones along with the

new ones added by copy lemma), together with the constraints

on the entropy values from the conditions of the copy lemma.

For instance, if we apply the copy lemma to create a new

variable Z ′ that is a Y -copy of Z over X , we get the linear

constraints

H(X,Z) = H(X,Z ′) and I(Z ′ : Y, Z|X) = 0

We get more linear constraints if X and Z ′ are tuples that

contain more than one random varibale. For example if we

take a C-copy of D,E over A,B, we create two new variables

D′, E′ defined by the following inequalities:

H(D)=H(D’)

H(A,D)=H(A,D’)

H(B,D)=H(B,D’)

H(A,B,D)=H(A,B,D’)

H(E)=H(E’)

H(A,E)=H(A,E’)

H(B,E)=H(B,E’)

H(A,B,E)=H(A,B,E’)

H(D,E)=H(D’,E’)

H(A,D,E)=H(A,D’,E’)

H(B,D,E)=H(B,D’,E’)

H(A,B,D,E)=H(A,B,D’,E’)

I(D’,E’:C,D,E|A,B)=0

These linear equalities and inequalities together may imply

some linear inequality for the entropy values of the initial

random variables; and in some cases (if the copy lemma was

applied in a clever way), the resulting information inequality

can be non-Shannon-type.

Until recently all known proofs of non-Shannon-type infor-

mation inequalities could be expressed in two equivalent form:

as an argument with the copy lemma and as an argument

with the AK lemma. Kaced has shown [20] that this is not

a pure coincidence. In fact, every proof of a non-Shannon-

type information inequality based on the AK lemma can be

rephrased as an equivalent proof of the same inequality with

the copy lemma. Also, a weak conversion of this rule is true:

if a proof of an information inequality uses the copy lemma

where each single instance of the “copy” operation creates

only one new variable (technically, this means that Lemma 1

is used in such a way that Z is a single variable and not a tuple

of several variables), then this argument can be rephrased as

an argument using the Ahlswede–Körner lemma.

L. Csirmaz observed in [9] that the copy lemma is theore-

tically stronger than the AK lemma. That is, some argument

with the “copying” operation creates copies at once for 2 (or

more) random variables, then this argument in general cannot

be reproduced with the technique of the AK lemma. However,

we know very few evidence of this strength of the general

version of the the copy lemma in natural application. To the

best of our knowledge, before [9] the only examples of an

argument that substantially uses the general version of the copy

lemma were [12] and [17].

In this paper we come up with a few new applications of the

general version of the copy lemma (for which an equivalent

argument based on the AK lemma seems doubtful, perhaps

even impossible). Moreover, we combine several important

ideas, which make the set of used non-Shannon-type infor-

mation inequalities more powerful:

• the general version of the copy lemma that we have

discussed above;

• implicit usage of new non-Shannon-type inequalities in

the sense of [13] and [17] (the technique of linear

programming permits us to apply new non-classical in-

formation inequalities without even revealing and writing

them down explicitly);

• we extensively use symmetries of the implied problems,

which permits to decrease significantly the dimension

of the relevant problem of linear programming and to

reduce dramatically the computational complexity of our

problem (see analysis and applications of symmetries for

information inequalities in [31], [17]);

• all our proofs are computer-assisted: we prove new re-

sults in information theory (more specifically, new lower

bounds for information ratio of secret sharing schemes)

that hardly can be found manually; in each case, we

produce with the help of a computer, a linear program

representing our problem of information theory, and then

obtain the required bounds using linear program solvers

(computer-assisted proofs were used in similar contexts

in [12], [28], [17], [13]).

None of these major ideas is new, each one was discussed

and used in a similar context. However, we find surprising

how efficient can be a combination of these ideas when they

work together. Using the non-classical information inequalities

implicitly implied by the combination of these techniques,

we have improved known bounds for the information ratio

of several access structures. In what follows we discuss

each of these ideas in more detail: the implicit use of non-

classical inequalities in subsection II-E, symmetries in the

section with the same name, and the different aspects of linear

programming on different sections.

C. Secret Sharing and Matroids

One of the usual “benchmarks” for the techniques of non-

classical information inequalities are lower bounds for the

information ratio of secret sharing schemes. Let us remind



that secret sharing was introduced in [2] and [29]. An access

structure for secret sharing among n parties is a subdivision

of all subsets of participants P(J1, nK) into two classes:

the class of accepted (or authorized) and the class of not

accepted (or unauthorized) subsets of J1, nK. Each accepted

subset of parties should have an access to the secret key; no

unauthorized party should have any information on the secret.

It is assumed that the property of being accepted is monotone:

a superset of an accepted set is also accepted, a subset of an

unauthorized set is also unauthorized. Observe that such an

access structure is determined uniquely by the family of all

minimal (by inclusion) accepted subsets of parties.

A standard example of an access structure is a threshold

structure: we can take as the set of accepted sets as those

containing at least
⌊
n
2

⌋
parties and accordingly define the sets

that contain strictly less than
⌊
n
2

⌋
parties as unauthorized.

A secret sharing scheme for a given access structure is

defined as a joint distribution (s0, s1, . . . , sn) satisfying the

following conditions for each J = {j1, . . . jk}:

H(s0|sJ) = 0, if J is an accepted set,
H(s0|sJ) = H(s0), if J is an unauthorized set.

(1)

The random variable s0 is understood as the secret key and sj
for j = 1, . . . , n are the shares given to each party.

The information ratio of a secret sharing scheme is the

proportion of the size of the largest key to that of the secret,

i.e. maxi
H(si)
H(s0)

. The information ratio of an access structure

is the infimum of the information ratios of the secret sharing

schemes on the access structure.

A general problem in information theory is to find the

information ratio for a given access structure. It is proven by

Ito, Saito and Nishizeki (see [19]) that any access structure as

we defined above (monotone), admits a secret sharing scheme

realizing it. It can easily be seen that the information ratio is at

least 1 (Let x be a share, {x, y1, . . . , yi} a minimal accepted

set and z the secret, then H(x) ≥ I(x : z|y1, . . . , yi) =
H(z|y1, . . . , yi)−H(z|x, y1, . . . , yi) = H(z).). Secret sharing

schemes which attain this lower bound are called ideal. For

every n, there exists an access structure with n parties, which

has an information ratio of at least n/ log2 n, as proven by

Csirmaz [7]; this is the best lower bound we know for the

maximal information ratio of access structures [14].

D. Access Structures on Matroids

Among all possible access structures, one end of the

spectrum is represented by the access structures that admit

ideal secret sharing schemes, i.e. those schemes where the

information ratio is equal to 1. It is known that ideal secret

sharing is closely connected with combinatorics of matroids.

(The definition of a matroid was introduced in [30], see also

[25] for a detailed introduction to the theory of matroids).

More specifically, let M = (E, I) be a matroid with a ground

set E and the family of independent sets I ⊂ P(E). Let us

fix an element p ∈ E and identify the other elements of the

ground set with parties of a secret sharing scheme. Following

[4], we define the corresponding access structure as follows:

we let minimal accepted set be sets C ⊂ E \ {p} such that

C ∪{p} is a circuit (a minimal dependent set) in the matroid.

It is known that ideal secret sharing is possible only if the

access structure can be defined (as explained above) in terms

of some matroid M ; on the other hand, for all access structures

that cannot be defined in terms of matroids, the information

ratio is at least 3
2 , see [24]. Thus, it is interesting to study

the access structures in between these extremal cases: access

structures defined on matroids but without ideal secret sharing.

The matroids defined on 7 or less points are all linearly

representable, and all corresponding access structures are

known to have an ideal secret sharing. Thus, the problem of

secret sharing is getting non-trivial for the access structures

defined on matroids with a ground set of 8 points. The

corresponding access structure would consist of 7 participants

(we will denote them {1, 2, 3, 4, 5, 6, 7}, to be consistent with

the notation of [13]).

We will focus on a few access structures whose study

was initiated in [13]. All these access structures defined on

matroids having some nice geometric interpretation. They are

named after the matroids in [25], from which they are derived.

As usual, each access structure can be defined by their minimal

authorized sets:

Acccess Structure List of Minimal Authorized Sets

A
123, 145, 167, 246,
257, 347, 356, 1247

A∗
123, 145, 167, 246, 257,

347, 1356, 2356, 3456, 3567

F
123, 145, 167, 246, 257,

347, 356, 1247, 1256

F∗
123, 145, 167, 246, 257, 1347, 1356,
2347, 2356, 3456, 3457, 3467, 3567

F̂
123, 145, 167, 246, 257, 347,
1256, 1356, 2356, 3456, 3567

Q
123, 145, 167, 246, 257, 347,

1247, 1256, 1356, 2356, 3456, 3567

Q∗
123, 145, 167, 246, 257, 1247, 1347,

1356, 2347, 2356, 3456, 3457, 3467, 3567

The ultimate goal is to find the optimal information ratio for

each of these structures (and study the connection of optimal

ratio with the combinatorial properties of matroids). This goal

was not achieved in [13], and it is not achieved in our work.

However, we take a new step in this direction and improve the

known lower bound for optimal information ratio of these 7
access structures.

E. Lower Bounds for Secret Sharing From the Copy Lemma

How to prove a lower bound for the information ratio

of a certain access structure? The usual approach uses the

technique of information inequalities. We write down the

equalities (1) that define the access structure, and all Shannon

type inequalities for the involved random variables, and then

try to combine these equalities and inequalities to derive a

conclusion

max{H(si)} ≥ r ·H(S0) (2)



for a certain real number r. If we succeed, this means that the

information ratio of this access structure is at least r. Such an

argument can be found, for example, in [10].

For some access structures the proposed simple scheme can

be improved: we can add non-Shannon-type inequalities for

entropies of the involved random variables; the new (non-

classical) constraint may help to prove (2) with a larger value

of r. Proofs following this scheme can be found, e.g., in [5]

and [23].

As we prove new non-Shannon-type inequalities with the

help of the copy lemma, the entire proof of a lower bound for

the information ratio can be subdivided into two big steps:

Step 1: Apply one or several times the copy lemma, write

down Shannon-type inequalities for the involved random va-

riables, and deduce a new non-Shannon-type inequality.

Step 2: Write the conditions (1), write down classical inequa-

lities for Shannon entropies of the involved random variables,

add a non-Shannon-type inequality proven on Step 1, and

deduce (2) for some specific r.

Historically, Step 1 and Step 2 were often done in two

different publications (typically done by different groups of

authors), often with years between the first and the second

one (see the section 6 of [24]). The main disadvantage of

this approach is that we cannot know in advance which new

inequality should be proven on Step 1 so that it could be useful

to eventually use in Step 2. It turns out that the two steps can

be merged together, so that we do not even need to reveal

explicitly the “useful” non-Shannon-type inequality:

Merged steps 1+2: Write the conditions (1), apply one or

several times the copy lemma, write down Shannon-type

inequalities for the involved random variables, and deduce (2)

for some specific r.

This type of argument was discussed in detail in [17]. A

similar approach (with the AK lemma instead of the copy

lemma) was used earlier in [13], [3].

The mentioned approach has an important inherent disad-

vantage: each new random variable added by the copy lemma

doubles the dimension of the final linear program, which

increases dramatically the computational complexity of the

problem. There is one tool that helps to mitigate this flaw:

reduce the required applications of the copy lemma and

decrease the dimension of the problem of linear programming.

This tool is symmetries.

The symmetries of the random variables in (1) can be pre-

served despite the use of non symmetric applications of copy

lemma, by adding symmetry conditions to the linear program.

These extra conditions may improve the r in (2) if the copy

lemma applications in consideration are not symmetric. More

detailed discussion of this method is given in the next section,

precisely from Theorem 1 to (including) subsection III-C.

III. SYMMETRIES

A. Entropic Vectors and the Existence of Symmetric Solutions

In this subsection we talk about the use of symmetries on

the sets of almost entropic vectors. In what follows we assume

that we are focused on the properties of some “symmetric”

subset E of Γ∗
n:

Definition 1. We say that E is symmetric for a permutation

σ if for every element h = (h{1}, . . . , h{1,...,n}) ∈ E, we

have σ · h = (hσ·{1}, . . . , hσ·{1,...,n}) ∈ E. We say that it

is symmetric for a permutation group G < Symn if it is

symmetric for every element of G.

Similarly, we say that an element f of the dual space (a

linear form on E) is invarinat for σ if f · h = f · (σ−1 · h)
for all h.

Lemma 2. Let E be convex and symmetric for a group G and

suppose we want to optimize a scalar product f ·h with h ∈ E
and that f is invariable under G. Then we can restrain this

problem on a subset of E which may have lower dimension:

max f ·h over E is equal to the maximum of this linear form

on the subset of E that respects the symmetries, namely

E ∩ {h | ∀σ ∈ G, σ · h = h}

Proof. If a point h′ ∈ E is an optimal solution and f ·h′ = a,

then the same optimal value is achieved on every element in

h′G (the orbit of h′ under actions by elements of G), because

f is invariant under G. All this orbit belongs to E since E
is symmetric for G. By convexity of E, the symmetric vector

h = 1
|G|

∑
σ∈G σ ·h′ belongs to E, and f ·h = 1

|G|f ·
∑

σ∈G σ ·

h′ = a. Thus, the optimal value is attained on a symmetric

vector.

Remark 1. Note that even if E is not symmetric for G, if

there exists a symmetric (for G) subset of E that contains an

optimal (for f ) vector, then we can still use these symmetries

(G) on E without needing to explicitly express that subset.

B. Symmetries for Linear Programs

In this subsection, we combine the symmetry considerations

with technique from Section II-E.

The linear programs for finding lower bounds on secret

sharing were discussed in [28] and used with copy lemmas

in [17], here we reformulate it as a proposition:

Proposition 1. Let A be an access structure with r < n
participants and (s0, s1, . . . , sr) be a secret sharing scheme

for this access structure. We extend this distribution by adding

random variables sr+1, . . . , sn−1. The linear program P
described below provides a lower bound on the information

ratio of A:

minx subject to

i x ≥ hT for every singleton T ⊆ {2, . . . , r + 1}
ii classical information inequalities for (hS)∅ 6=S⊆{1,2,...,n}

iii the information equalities (1) for the entropies of

(s0, s1, . . . , sr) that define the access structure A,

iv the normalization condition h{1} = 1.

v the equalities for entropies that define each of the random

variables sr+1, . . . , sn−1 as a copy of other variables

(with smaller indices), obtained by an instance of an

application of the copy lemma.



We will refer to the sets of conditions above as items (i),

(ii), (iii), (iv) and (v) in the rest of this subsection.

We will apply the following proposition to 7 access struc-

tures mentioned in the subsection II-D.

Let us explain now how we can use symmetries to “amplify”

the linear programs providing lower bounds for information

ratio of secret sharing schemes.

Theorem 1. Let P be a linear program from Proposition 1 for

some access structure, and let G < Sym({2, 3, . . . , r + 1})
be the symmetry group of the access structure mentioned in

the item (iii) at the beginning of this subsection. Suppose the

objective function is symmetric under G. Then we can add the

constraints hS = hσ·S for all σ ∈ G and S ⊆ {1, 2, . . . , r+1}
as extra conditions to the linear program P . The resulting

linear program provides a lower bound on the minimal ratio

of this access structure.

Proof. Let E be the closure of the set of almost entropic vec-

tors in Γ∗
r+1 that correspond to the secret sharing schemes of

the access structure; i.e. vectors (hI)∅ 6=I⊆{1,...r+1} satisfying

the linear constraints (iii), (when ∅ 6= I ⊆ {2, . . . , r + 1}
is an accepted set, h{1}∪I − hI = 0 and otherwise

h{1}∪I − hI = h1). This set is convex because it’s a subset of

the convex cone, defined by linear inequalities (if two vectors

satisfy the same linear inequalities, so does their weighted

average), moreover it’s symmetric for G as Γ∗
r+1 is symmetric

for Symr+1 ≥ G and that the inequalities (iii) are symmetric

for G by definition.

The minimal information ratio can be (purely theoretically)

described as the optimal value of the following linear program:

We take 2r+1 − 1 variables HI , ∅ 6= I ⊆ {1, . . . , r + 1}
for the components of entropic vectors in Γ∗

r+1 and assume

these vectors belong to E (which is true for all secret sharing

schemes on the access structure). Then we add one more

variable x to the linear program, with (i) as constraints; at

last, we add the normalization condition H1 = 1 (iv). Now,

the minimal value of x gives the optimal information ratio of

the scheme.

Since the set E is symmetric for the group G, we can add

to our linear program the symmetry constraints HS = Hσ·S

for all σ ∈ G and S ⊆ {1, . . . r + 1} without changing the

optimal value of the objective function.

So far this argument was purely theoretical: we do not

have a complete characterization of Γ∗
r+1, and therefore we

do not have a complete description of E. (Even if such a

characterization is eventually found, it will contain infinitely

many linear constraints, see [22]). In a more realistic setting,

we take a linear program that contains not a precise description

of Γ∗
r+1 but only that of a convex superset, with some finite

family of information inequalities, for example all the classical

information inequalities. We can keep the constraints (i), (iii)

and (iv); together with a subset of the constraints for Γ∗
r+1,

these will define a set E′ ⊃ E. The minimal value of the

objective function on E′ can be smaller than on E, so our

linear program may give not necessarily the exact value of

the information ratio but only a lower bound for it. Note that

we can also take all symmetry constraints that are valid for E
as stated in Remark 1 too.

Observe that we can extend a distribution (X1, . . . , Xr+1)
that represents a secret sharing scheme by adding a few new

random variables Xr+2, . . . , Xn applying several times the

copy lemma. For the entropies of the extended distribution

we can write the constraints in the item (v) (the conditions for

the new variables from the copy lemma) and the information

inequalities that are valid for the extended profile (XI) with

I ⊆ {1, . . . n}. In particular, we may take all classical

information inequalities for all involved random variables.

Observe that we can keep the symmetry constraints only

for the coordinates of the entropic vectors (XI) with I ⊆
{1, . . . r + 1} and not for the coordinates Xr+2, . . .Xn intro-

duced with the copy lemma, as the latter may be defined based

on the former in a way to break the symmetries. For instance

if (23) ∈ G, and we take a copy X ′
2 of X2, its relation to X3

will not be the same as to X2.

The linear program described this way, which provides a

lower bound to the minimal information ratio of the access

structure, indeed corresponds to the one stated in the theorem:

We initially had the items (i), (ii), (iv) and a part of the item

(ii), to which we have legitimately added the symmetries, and

to the resulting linear program we have added the item (v) as

well as the extension to full item (ii).

Remark 2. If the linear program is symmetric for a group

G, then the symmetry constraints will not change the optimal

value. However, even in this case the symmetry constraints

can be useful: they may reduce the dimension of the linear

program, therefore improve the computational complexity of

the problem.

C. Adding symmetric version of the copy lemma

Another way of proving the Theorem 1 is based on the

observation that we could make a linear program that is

perfectly symmetric, including the constraints from the item

(v). To this end we would need to add all “symmetric” forms

of the used instances of the copy lemma. In practice we do not

do this, since this would increase dramatically the dimension

of the linear program. However this argument explains and

justifies Remark 2 directly.

In effect the items (i) to (iv) are symmetric under the

symmetry group G. Only the item (v) is not necessarily

symmetric. However we can add all the symmetric copy

lemmas to make the item (v) symmetric. Let us call this

symmetric version of the linear program P ′ (note that P ′ may

have a larger n thus might be too costly in time to solve). As

P ′ is stable under G (i.e. G is a subgroup of the symmetry

group of the set of solution vectors defined by P ′) we can add

the conditions claimed in this theorem to P ′ and we still get a

lower bound for the intended quantity. Adding these symmetry

conditions to P is legitimate from Remark 1. Another way to

see this is to simply add the symmetries to P ′ and then delete

the symmetric copy lemmas from the resulting linear program



to obtain what we want. Deleting conditions will only decrease

the objective value as we minimize the objective function.

Therefore it is legitimate to add these conditions to P and

that they cannot give a better bound than the objective value

of P ′.

P P ′

P + sym. P ′ + sym.

add symmetric copy lemmas

add symmetries

delete symmetric copy lemmas

add symmetries

The objective values of these linear programs compare as:

val(P ) ≤ val(P + sym) ≤ val(P ′ + sym) = val(P ′)

D. Symmetry Group of Access Structures

The symmetry groups of these access structures are:

• A,A∗: 〈(12)(56), (14)(36), (17)(35)〉
• F ,F∗: 〈(12)(4576), (46)(57)〉
• Q, F̂ ,Q∗: 〈(12)(47), (12)(56)〉

It is easy to check that these access structures are invariant

under these permutations. In the following subsections we

explain how to find for each access structure its group of

symmetries.

1) For A and A∗ : For A, we can present the structure as

in the image below:

1

2

(3)

4 (5)

(6)

7

Any two points with the line according to which they are at

the same side is a minimum accepting set as well as all four

points. In fact points are exactly those that appear more times

in the list of minimal authorized sets and lines are those that

appear less times. Now for any permutation on {1, 2, 4, 7},

we have a permutation on {3, 5, 6} such that the minimum

authorized sets (described geometrically) are preserved. Let us

take a generating set of Sym({1, 2, 4, 7}) = 〈(12), (14), (17)〉,
we have transpositions (56), (36) and (35) respectively, which

make them preserve the minimum authorized sets. Thus

〈(12)(56), (14)(36), (17)(35)〉 generate the symmetry group

of A. The same argument works for A∗, we just change the

geometric definition of minimum authorized sets to “any two

points with the line according to which they are at the same

side as well as any point with all three lines”.

2) For F and F∗: For F we use the following geometric

presentation:

(1)

(2)

4 5

6 7

In fact 3 is the only one not appearing in the minimum

authorized sets of size four, thus it must be stable. 1 and 2
are the only ones appearing in both of them. Hence we have

three orbits. Looking at the minimum authorized sets of size

three, we get the rest of the image. The authorized sets are:

• with 3:

– both lines

– two points separated by both lines

• without 3:

– two points with a line not separating them

– both lines with two points separated by both lines

The symmetries are mirror images and rotations for this image,

therefore they are generated by (12)(4576) and (46)(57). The

same argument works for F∗, we just change the interpretation

of the image to define the minimum authorized sets as

• “with 3:

– both lines

– a line with two points separated by both lines

– any three points

• without 3: two points with a line not separating them”.

3) For Q, F̂ and Q∗: For Q, F̂ and Q∗ we have four

orbits: {1, 2}, {3}, {4, 7} and {5, 6}.

For Q, the number of times the keys appear in minimum

authorized sets of size four reveal the restrictions on the orbits:

1 and 2 three times, 3 four times, 4 and 7 twice, 5 and 6 five

times.

For F̂ , 3 is the only one appearing four times among

minimum authorized sets of size four, 1 and 2 appear twice,

5 and 6 five times, and 4 and 7 once.

For Q∗, 3 is stable because it is the only one to appear only

once in minimum accepted sets of size three. 1 and 2 are the

only ones to be with 3 in this appearance. 4 and 7 are the

only ones to appear both with 1 and 2 in a single minimum

authorized set of size four.

Hence the symmetry group is 〈(12)(56), (12)(47)〉. In fact,

it can be checked that both generating elements preserve

minimum authorized sets.

E. Inherent sanity checks

Remark 3. In practice, we can make errors while prog-

ramming the symmetries for an access structure. However,



Access
structure

known lower bound
based on AK lemma [13]

how we use copy lemma
bounds we prove
using symmetries

weaker bounds we can
prove without symmetries

A 9/8 = 1.125 0, 3, 4, 7|1, 2, 5, 6 57/50 = 1.14 135/119 = 1.134 . . .

A∗ 33/29 = 1.137 . . .
5, 6-copy(0, 3|1, 2, 4, 7) and
0, 0′, 3, 3′-copy(1, 2|4, 5, 6, 7)

52/45 = 1.15 33/29 = 1.137 . . .

F 9/8 = 1.125 0, 2, 4, 6|1, 3, 5, 7 17/15 = 1.13 26/23 = 1.130 . . .

F∗ 42/37 = 1.135
3, 7-copy(0, 4|1, 2, 5, 6) and
0, 0′, 4′, 5-copy(1, 4|2, 3, 6, 7)

8/7 = 1.142 . . . 42/37 = 1.135

F̂ 42/37 = 1.135
2, 6-copy(0, 4|1, 3, 5, 7) and
0, 0′, 4′, 5-copy(1, 4|2, 3, 6, 7)

23/20 = 1.15 42/37 = 1.135

Q 9/8 = 1.125
0, 2, 4, 6-copy(t, v|1, 3, 5, 7) and
0, 2, 4, 6, t′, v′-copy(t, v|1, 3, 5, 7)

with t = (0, 4) and v = (2, 6)

17/15 = 1.13 17/15 = 1.13

Q∗ 33/29 = 1.137 . . .
3, 7-copy(0, 4|1, 2, 5, 6)and

0, 0′, 4, 4′-copy(1, 5|2, 3, 6, 7)
8/7 = 1.142 . . . 33/29 = 1.137 . . .

TABLE I
ACCESS STRUCTURES FOR WHICH WE HAVE IMPROVED LOWER BOUNDS ON THE INFORMATION RATIO.

there is fortunate “sanity check” embedded in this method. If

there is an error in the symmetry group added as conditions

to the linear program (if we use a wrong group H instead of

the symmetry group G of our access structure), then two cases

are possible:

• either H < G, then we still get a valid lower bound,

possibly worse than what we could achieve with the true

group of symmetries of this access structure;

• or H ≮ G, then we get an unfeasible program (with no

solution). Indeed, any element of H \ G applied to the

equalities in the item (iii) gives a contradiction. Namely,

if A is an accepted set but σ ·A for a σ ∈ H ≮ G isn’t,

then as H(secret|A) = 0, H(secret|σ ·A) = 0 too, but

this contradicts H(secret|σ · A) = H(secret).

IV. MAIN RESULTS

Using the symmetries (Theorem 1) and the copy lemma

(Lemma 1), we have improved several lower bounds on the

information ratios of the access structures (on matroids) given

in [13].

In the following theorem σ(Γ) denotes the information ratio

of the access structure Γ.

Theorem 2 (Main Result). For the seven access structures

defined in Section II-D we have the following lower bounds

for their information ratios:

• σ(A) ≥ 57/50 = 1.14
• σ(A∗) ≥ 52/45 = 1.15
• σ(Γ) ≥ 17/15 = 1.13 for Γ ∈ {F ,Q}
• σ(Γ) ≥ 8/7 = 1.142 . . . for Γ ∈ {F∗,Q∗}
• σ(F̂) ≥ 23/20 = 1.15

See Table I

Proof. We prove these bounds with the help of computer. In

what follows we explain the scheme of our proofs so that

they can be reproduced independently, with any linear program

solver.

For each of the seven access structures we construct a

linear program as explained in Proposition 1. In this linear

program we use auxiliary random variables with one or two

applications of the copy lemma (see column 3 of the Table I),

and we add the constraints to express for each access structure

the symmetry conditions (see Section III-D). In this table 0
represents the secret, and 1, 2, 3, 4, 5, 6, 7 are the shares of the

parties; Z|X denotes “copy of Z over X” and Y -copy(Z|X)
denotes “Y -copy of Z over X”. In the column 4 of the Table I

we show the resulting lower bound for the information ratio of

each access structure. For comparison, in column 5 we show

weaker bound (strictly weaker except for Q) that can be proven

with the same usage of the copy lemma but without symmetry

conditions.

Since the needed linear programs (described in Proposi-

tion 1) are too large to type them by hand, we generate them

by a computer. To find the optimal values of these programs

we use a linear program solver software Gurobi Optimizer

9.1.2 [18], and check the obtained bounds with an exact

(rational) linear programs solver QSopt ex [26] based on the

GNU Multiple Precision Arithmetic Library [16] and GNU

Linear Programming Kit [15].
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Cryptology, volume 10, issue 4, 1997.
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https://web.mat.upc.edu/carles.padro/arc02v03.pdf, 2013.
[28] Finding Lower Bounds on the Complexity of Secret Sharing Schemes by
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