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Abstract—Topological quantum codes are favored because they
allow qubit layouts that are suitable for practical implementation.
An N -qubit topological code can be decoded by minimum-weight
perfect matching (MWPM) with complexity O(poly(N)) if it is
of CSS-type. Recently it is shown that various quantum codes,
including non-CSS codes, can be decoded by an adapted belief
propagation with memory effects (denoted MBP) with complexity
almost linear in N . In this paper, we show that various two-
dimensional topological codes, CSS or non-CSS, regardless of the
layout, can be decoded by MBP, including color codes and twisted
XZZX codes. We will comprehensively compare these codes in
terms of code efficiency and decoding performance, assuming
perfect error syndromes.

I. INTRODUCTION

Quantum codes can be understood as codes over GF(4) [1].
We consider error operators that are tensor products of Pauli
matrices I = [ 1 0

0 1 ], X = [ 0 1
1 0 ], Z = [ 1 0

0 −1 ], and Y = iXZ.
Let Xj = I⊗(j−1) ⊗ X ⊗ I⊗(N−j) and similarly for Zj .
Then {Xj , Zj}Nj=1 together with iI⊗N generate the N -fold
Pauli group GN . An abelian subgroup of GN that does not
contain −I⊗N is called a stabilizer group and its elements
are stabilizers. A stabilizer group with N − K independent
generators defines an [[N,K,D]] quantum stabilizer code,
which encodes K information qubits into N physical qubits,
and D is the minimum distance of the code. The code space is
the joint +1 eigenspace of the stabilizers, and we can regard
the stabilizer group as “parity checks” for this quantum code.
For basics of stabilizer codes, please refer to [1]–[3].

A Calderbank–Shor–Steane (CSS) code is a stabilizer code
with a set of independent stabilizer generators that are all
Pauli Xs or Zs [4], [5]. They are of interest for fault-tolerant
quantum computation (FTQC). Moreover, CSS codes can be
treated as classical binary codes and X and Z errors are
separately decoded in a suboptimal way.

A topological code is a stabilizer code, where the composed
qubits are placed on a lattice and only local interactions
between qubits are required. A stabilizer generator is defined
by a plaquette (or called face) and it operates nontrivially
on only the vertices (qubits) of the plaquette. Thus stabilizer
measurements can be locally done, which is a desirable feature
for some technologies, such as superconducting qubits. Note
that only a subset of the stabilizers defined by all the plaquettes
are independent. Since stabilizers will be constantly measured
in error correction, the time cost for stabilizer measurements

KYK and CYL were supported by the Ministry of Science and Technology
(MOST) in Taiwan, under Grant MOST110-2628-E-A49-007.

affects the decoding complexity. Thus low-weight stabilizer
generators are favored. We will consider the average and max-
imum weight of stabilizer generators that will be measured,
denoted by wavg and wmax, respectively.

If a family of [[N,K,D]] codes has a two-dimensional (2D)
lattice representation, the code parameters must satisfy the
Bravyi–Poulin–Terhal (BPT) bound [6]

N ≥ KD2/c (1)

for a certain c. This number c characterizes the “efficiency”
of the code family and a code family with large c is desirable.

In general, a topological code is degenerate and has many
low-weight stabilizers. The minimum distance does not nec-
essarily characterize its error performance and one has to see
the its performance over a noisy channel using a decoding
procedure. A related notion is the error threshold of the
combination of a code family and a decoding procedure, which
is defined as the physical error rate, below which the logical
error rate can be arbitrarily decreased by increasing the lattice
size [7]–[10]. Usually a higher threshold is desirable.

Kitaev proposed a family of toric codes with qubits placed
on the surface of a torus [11]. A toric code has two types of
stabilizer generators XXXX or ZZZZ operating on the four
vertices of a plaquette (c.f. Fig. 1(a)). Toric codes satisfy the
BPT bound with c = 1. For higher code rate (higher c), one
may also consider rotated toric codes [12], [13] (c.f. Fig. 2).

Since the torus layout may not be physically implemented, a
2D planar lattice is desirable and surface codes (c.f. Fig. 1(b))
and color codes (c.f. Fig. 4) are thus introduced [14], [15].
Surface codes have a rectangular layout. Color codes, with
non-rectangular layouts, have higher efficiency than surface
codes but they have stabilizer generators of higher weight.

For a higher ratio of D2/N , one may consider non-CSS
topological codes. A specific type of codes is defined by a
weight-four stabilizer generator XZZX operating on each
plaquette of a lattice [16], [17]. The smallest XZZX code is
the well-known [[5, 1, 3]] code [2], [18] when described on
a twisted torus (see Fig. 6(a)). However, the decoding of an
XZZX code may be more complicated since it is non-CSS.

We will compare the toric, surface, color, and XZZX codes
in this paper in the perspectives of efficiency, stabilizer weight,
decoding performance and complexity. We consider decoding
by the minimum-weight perfect matching (MWPM) [19] and
the refined belief propagation with memory effects (MBP)
[20]. (See [21] for some basics of BP decoding of quantum
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(a) (b)

Fig. 1. (a) The lattice of a [[2L2, 2, L]] toric code for L = 3. (b) The
lattice of a [[2L2−2L+1, 1, L]] surface code for L = 3. Each data qubit is
represented by a yellow box labeled by a number, from 1 toN . Each green box
with label W ∈ {X,Z} surrounded by four data qubits i, j, k, l represents a
stabilizer WiWjWkWl. In (a), each orange box on the boundary represents
the yellow box with the same label and it is used to indicate the connection of
qubits since the lattice is on the surface of a torus. For example, the label Z
surrounded by qubits 1, 2, 4, 16 represents Z1Z2Z4Z16. In (b), some qubits
and stabilizers in (a) are deleted to create physical boundaries. Thus there are
no wrapped connections and the boundary stabilizers are of weight three, e.g.,
the label X surrounded by qubits 1, 4, 6 represents X1X4X6.

(a) (b)

Fig. 2. The lattices of [[L2, 2, L]] rotated toric codes for even L ≥ 2: (a)
L = 2 and (b) L = 4. The labels are similarly defined as in Fig. 1.

codes.) In particular, MBP achieves a threshold of 17.5% for
many code families, compared to 15.5% by MWPM. The
results are summarized in Tables I and II.

We review CSS and non-CSS topological codes in Secs. II
and III, respectively, and compare the codes in Table I.
Their decoding performances are discussed in Sec. IV, and
a summary is given in Table II. Then we conclude in Sec. V.

II. CSS TOPOLOGICAL CODES

A. Toric codes

The family of Kitaev’s [[2L2, 2, L]] toric codes has a lattice
representation on the surface of a torus [11], as shown in
Fig. 1(a) for L = 3. Note that the toric codes have wrapped
boundaries (or say, no physical boundaries). The toric codes
saturate the BPT bound with efficiency c = 1.

A family of [[L2, 2, L]] rotated toric codes with c = 2 for
even L ≥ 2 has a similar lattice representation [12], [13], as
shown in Fig. 2 for L = 2 and 4. Note that labels Z and X
are alternated on each row or column of the lattice.

Both toric and rotated toric codes have wmax = wavg = 4.

B. Surface codes

The lattice of a toric code is defined on the 2D surface of a
torus. One can similarly define a lattice on the 2D surface of a
plane, by deleting some qubits and stabilizers in a toric code to
create physical (or called open) boundaries [14]. This results
in a family of [[2L2−2L+1, 1, L]] surface codes, as shown in
Fig. 1(b) for L = 3. Since surface codes have a planar lattice,

(a) (b)

Fig. 3. The lattice of [[L2, 1, L]] rotated surface codes for odd L ≥ 3: (a)
L = 3 and (b) L = 5. The labels are similarly defined as in Fig. 1.

they are more suitable for physical implementation. However,
the surface codes have lower efficiency c ≈ 1/2.

Similarly, a family of [[L2, 1, L]] rotated surface codes for
odd L ≥ 3 has higher efficiency c = 1 [12], [13], as shown
in Fig. 3 for L = 3.

Both unrotated and rotated surface codes have wmax = 4
and wavg ≈ 4 (asymptotically).

C. Color Codes

Color codes also have a planar structure like the surface
codes [15] and three families of color codes are discussed
here, as in Fig. 4 and [22, Fig. 2(c)]. They are designed to
have better efficiency c at the cost of larger stabilizer weights.

A color code is represented by a graph composed of three
types of plaquettes (indicated by three colors: red, green, and
blue). A data qubit is placed on each vertex in the graph.
A plaquette defines both an X-type stabilizer and a Z-type
stabilizer, with an X or Z on each of its vertices. There are two
rules to build colorful plaquettes. First, a plaquette and any of
its adjacent plaquettes share two vertices; second, two adjacent
plaquettes have different colors. The two rules guarantee that
the generated stabilizers commute with each other.

The color codes in Fig. 4 and [22, Fig. 2(c)] are [[N, 1, D]]
codes with odd D:

• The (6,6,6) structure has N = (3D2+1)/4 and stabilizer
weights wmax = 6 and wavg ≈ 6.

• The (4,8,8) structure has smaller N = (D2 + 2D− 1)/2
but larger wmax = 8 and wavg = (4 + 8 + 8)/3 ≈ 6.67.

• The (4,6,12) structure has N = (3D2 − 6D + 5)/2 and
larger wmax = 12 and wavg = (4 + 6 + 12)/3 ≈ 7.33.

III. NON-CSS TORIC CODES

To have topological codes with higher ratio of D2/N , non-
CSS topological codes are studied. A plaquette defines X-type
or Z-type stabilizers for CSS topological codes. Non-CSS
stabilizers can be similarly defined by plaquettes [16], [17]
but care needs to be taken for commutation relations. Some
general constructions are provided in [23]. Herein, we consider
the XZZX codes in [16], where each code has a rectangular
layout rotated by a special angle. We provide an interpretation
of a twisted torus by combining two regular squared lattices
to illustrate the structure of a twisted XZZX code.

Recall that a rotated structure has better efficiency. One can
use a lattice like that in Fig. 2 to define a non-CSS code but



(a)

(b)

Fig. 4. The structures of (a) (6,6,6) color codes and (b) (4,8,8) color codes, for
D = 3, 5, 7 in each subfigure. There is another typical structure of (4,6,12)
color codes, as shown in [22, Fig. 2(c)]. Each color plaquette defines both an
X-type stabilizer and a Z-type stabilizer. For example, the green plaquette in
subfigure (a) defines two stabilizers X1X2X3X4 and Z1Z2Z3Z4.

(a) (b)

Fig. 5. The lattice of [[L2, 2− (L%2), L]] XZZX toric codes for (a) L = 2
and (b) L = 3. The labels are similarly defined as in Fig. 1. Label S#
represents a stabilizer XiZjZkXl in the four vertices i, j, k, l on the left-
upper, right-upper, left-lower, right-lower corners, respectively. For example,
S1 in (a) is X1Z2Z3X4, and S9 in (b) is X9Z7Z3X1 = X1Z3Z7X9.

each plaquette defines a stabilizer of the form XiZjZkXl. This
leads to the family of [[L2, 2− (L%2), L]] XZZX toric codes
for L ≥ 2 as shown in Fig. 5. This family of codes satisfy the
BPT bound with c = 2 for even L and c = 1 for odd L. Note
the XZZX toric codes can be defined for L ≥ 2 but rotated
toric codes are only defined for even L.

XZZX surface codes can be similarly defined by a lattice
structure as in Fig. 3.

To have XZZX codes with higher D2/N , one can adjust
the connections of the wrapped boundaries of an L×L torus
lattice as follows. Let J denote an integer twist offset so that
the wrapped boundaries have a shift J [24]–[29]. J has to be
coprime with L, i.e., gcd(L, J) = 1, such that J generates
all the elements in ZL = {0, 1, 2, . . . , L − 1}. For example,
a twist offset J = 1 in the wrapped boundaries is shown in
Fig. 6. In addition, a J × J lattice needs to be attached to the
L×L lattice so that we have a wrapped structure. For J = 1,
this is illustrated in Fig. 6(a) with qubit 5 and stabilizer S5,
or in Fig. 6(b) with qubit 10 and stabilizer S10. An example
of twist offset J = 2 is shown in Fig. 7.

To sum up, we have a family of [[N = L2 + J2,K,D]]
twisted XZZX codes, where gcd(L, J) = 1, K = 2, D = L
for even N , and K = 1, D = L + J for odd N . We remark

(a) (b)

Fig. 6. The lattice of twisted XZZX codes with twist J = 1 for (a) L = 2
and (b) L = 3. The labels are similarly defined as in Fig. 5. The (blue) arcs
indicate the connections of the wrapped boundaries.

Fig. 7. The lattice of a twisted XZZX code with twist J = 2 for L = 3,
which corresponds to a [[13, 1, 5]] code with stabilizers cyclicly generated by
X1Z2Z9X10. The labels are defined similarly as in Fig. 6.

that such a twisted XZZX code has its stabilizer generators
that can be cyclicly generated. For example, the stabilizers in
Figs. 6(a) and (b) can be cyclicly generated by X1Z2Z3X4

and X1Z2Z4X5, respectively. (As a quantum code is like an
additive code, the corresponding classical codes over GF(4)
is not necessarily a cyclic linear code.)

For J = L − 1, we have a family of twisted XZZX codes
with parameters [[(D2 + 1)/2, 1, D]] for D = 2L− 1 for any
integer L ≥ 2. This family of codes satisfy the BPT bound
with efficiency c ≈ 2. The smallest nontrivial code in this
family is the unique [[5, 1, 3]] code in Fig. 6(a).

Obviously, the twisted XZZX codes have wmax = wavg = 4.
All the mentioned codes are compared in Table I. Observe

that a toric code family exists with good efficiency c = 2 and
low stabilizer weights wavg = wmax = 4. On the other hand,
planar codes usually have smaller c or larger wavg and wmax.

IV. DECODING PERFORMANCE

We assume depolarizing errors. The threshold of a code
family and a decoding procedure is estimated by the intersec-
tion point of the performance curves (see [9] or Fig. 10).

MWPM is the most widely used decoder for 2D topological
codes. The threshold of toric, surface, or XZZX codes using
MWPM is about 15.5% [9], and the threshold of color codes
using MWPM is about 13% [30], [31]. The complexity of
decoding toric and surface codes by MWPM is O(N2), but
it is O(N3) for the XZZX codes [32, supplemental material]
and O(N4) for the color codes [31].

We proposed MBP and it achieves thresholds close to 16%
and 17.5% on the surface and toric codes, respectively, with
complexity O(N log logN) [20]. The decoding procedure is
simply the syndrome-based quaternary message passing on the
Tanner graph corresponding to the underlying code, CSS or
non-CSS, regardless of the layout. Since MBP can handle



TABLE I
COMPARISON OF VARIOUS CODES WITH 2D TOPOLOGICAL STRUCTURES.

codes structure [[N,K,D]] codes with D ≈ 3 c wavg wmax planar
toric codes [11] Fig. 1(a) [[2L2, 2, L]] [[18, 2, 3]] 1 4 4
surface codes [11], [14] Fig. 1(b) [[2L2 − 2L+ 1, 1, L]] [[13, 1, 3]] ≈ 1/2 ≈ 4 4

√

rotated toric codes [12] Fig. 2 (even L) [[L2, 2, L]] [[16, 2, 4]] 2 4 4
rotated surface codes [12] Fig. 3 (odd L) [[L2, 1, L]] [[9, 1, 3]] 1 ≈ 4 4

√

(6,6,6) color codes [15] Fig. 4(a) (odd D) [[ 3
4
D2 + 1

4
, 1, D]] [[7, 1, 3]] ≈ 4/3 ≈ 6 6

√

(4,8,8) color codes [15] Fig. 4(b) (odd D) [[ 1
2
D2 +D − 1

2
, 1, D]] [[7, 1, 3]] ≈ 2 ≈ 6.67 8

√

(4,6,12) color codes [15] [22, Fig. 2(c)] (odd D) [[ 3
2
D2 − 3D + 5

2
, 1, D]] [[7, 1, 3]] ≈ 2/3 ≈ 7.33 12

√

XZZX toric codes [17] Fig. 5 [[L2, 2− (L%2), L]] [[9, 1, 3]], [[16, 2, 4]] 2− L%2 4 4
XZZX surface codes [17] Fig. 3 (but plaquette XZZX) [[L2, 1, L]] [[9, 1, 3]] 1 ≈ 4 4

√

XZZX twisted codes [16] Figs. 6(a) and 7 (J = L− 1) [[(D2 + 1)/2, 1, D]] [[5, 1, 3]] ≈ 2 4 4

p1 p2 p3 p4 p5 p6 p7 p8 p9 pn

= (pIn, pXn , pYn , pZn )

E1 E2 E3 E4 E5 E6 E7 E8 E9

z1 z2 z3 z4 z5 z6 z7 z8

X
Y
Z

Fig. 8. The Tanner graph of the [[9, 1, 3]] surface code in Fig. 3(a).
En ∈ {I,X, Y, Z} is a variable node corresponding to the Pauli error on
the n-th qubit. pn is the initial belief of En. zm ∈ {0, 1} is the syndrome
bit of the m-th stabilizer measurement.

binary or quaternary messages, we will use MBP4 with a
subscript to emphasize that quaternary decoding is considered
here [20, Algorithm 1].

MBP4 is a message passing algorithm on the Tanner graph
defined by the check matrix of a code. A check matrix S of
a code is an M × N matrix over {I,X, Y, Z}, where M is
the number of measured stabilizers. For example, the [[9, 1, 3]]
surface code in Fig. 3(a) has

S =


X X I I I I I I I
Z Z I Z Z I I I I
I X X I X X I I I
I I Z I I Z I I I
I I I Z I I Z I I
I I I X X I X X I
I I I I Z Z I Z Z
I I I I I I I X X


and the corresponding Tanner graph is shown in Fig. 8, drawn
as a factor graph to also show the initial distribution pn.

MBP4 uses a message normalization parameter α.
One can optimize the decoding performance over α ∈
{1, 0.99, . . . , 0.5} to select an optimum α∗, and this is referred
to as adaptive MBP4 (AMBP4) [20, Algorithm 2].

First we consider the twisted XZZX codes with parameters
[[(D2 + 1)/2, 1, D]]. In Fig. 9, we show that MBP4 improves
the conventional BP4 with α = 0.7. (We collect 100 logical
errors for each data point for a figure at this scale.) The
performance of AMBP4 for D = 23 is also shown in Fig. 9.

We apply AMBP4 for different D and show in Fig. 10 that
the threshold of AMBP4 on the twisted XZZX codes is close to
17.5%. (We collect 10000 logical errors for each data point for
a figure at this scale.) To prevent any performance fluctuation,
we use the technique of initializing pn by a fixed depolarizing

Fig. 9. MBP decoding performance. Dotted lines are conventional BP4. Solid
lines are MBP4 with α = 0.7, which has performance saturation effect
because a fixed α is used. The bold line is AMBP4 (which uses MBP4

but chooses an optimum α∗ and has higher complexity). Several bounded-
distance-decoding (BDD) performance curves are also shown for reference.

rate ε0, i.e., fixing pn = (1 − ε0, ε03 ,
ε0
3 ,

ε0
3 ) regardless of the

actual ε. (See [20] for more discussions of this technique).
Denote the error distribution by p = (pI , pX , pY , pZ).

XZZX codes are more effective for biased Pauli errors [33],
but they need a tailored MWPM with complexity O(N3) due
to the non-CSS plaquette [32, supplemental material]. For
MBP, any distribution p can be supported and the decoding
complexity remains the same. Herein, we focus on depolariz-
ing errors for comparison. The performance curves of AMBP4

on the XZZX toric codes defined in Fig. 5 is shown in Fig. 11.
Both even L and odd L roughly achieve a threshold of 17.5%.

For color codes, MWPM needs additional processes since a
stabilizer plaquette may have weight higher than four. MWPM
achieves a threshold of 13.3% on the (4,8,8) color codes
without specifying the complexity [30] and a threshold of
13.05% on the (6,6,6) color codes with complexity O(N4)
[31]. (Decoding the (4,8,8) color codes is considered relatively
harder from the trellis complexity of the code [34].) AMBP4,
on the other hand, can decode a color code by just giving its
check matrix, without additional processes. For comparison



Fig. 10. The performance curves of the [[(D2 +1)/2, 1, D]] twisted XZZX
codes over depolarizing errors by AMBP4. The intersection point of the
performance curves roughly suggests a threshold of 17.5%.

Fig. 11. The decoding performance curves of the [[L2, 2−(L%2), L]] XZZX
toric codes over depolarizing errors by AMBP4. Both even L (with efficiency
c = 2) and odd L (with c = 1) roughly achieve a threshold of 17.5%.

in terms of complexity, we decode the (6,6,6) color codes
by AMBP4 and the performance curves roughly suggest a
threshold of 14.5%, as shown in Fig. 12.

We summarize all the results in Table II.
We remark that AMBP4 on color codes is found to have

some error floor in performance, as shown in Fig. 13. Since
BP is an approximation decoder, it may encounter this issue for
some codes. In the fault-tolerant case using MWPM on color
codes, it seems to have an error floor as well [30, Fig. 14].

V. CONCLUSION AND DISCUSSIONS

We compared various 2D topological codes (Table I) and
their decoding performances by MWPM and MBP (Table II).
We conclude that MBP is easier to adapt to different layouts
and tends to have better performance and lower complexity.

It seems that the physical error rate of the intersection point
tends to reduce if we keep increasing D. A technique that may
prevent this reduction is renormalization group (RG) [35] but

Fig. 12. The performance curves of the (6,6,6) color codes over depolarizing
errors by AMBP4, which roughly suggest a threshold of 14.5%. (For D = 17,
pn is initialized by a fixed ε0 = 0.042 to prevent the curve fluctuation.)

TABLE II
THRESHOLDS AND COMPLEXITIES OF VARIOUS QUANTUM CODES WITH

MWPM- OR BP-BASED DECODERS OVER DEPOLARIZING ERRORS.

MWPM [19] AMBP4 [20]
code family threshold complexity threshold
surface 15.5% [9] O(N2) [10] 16%
toric 15.5% [9] O(N2) [10] 17.5%
color 13.05%† O(N4) [31] 14.5% (Fig. 12)
XZZX toric 15.5% [33] O(N3) [32] 17.5% (Fig. 11)
XZZX twisted 17.5% (Fig. 10)
†: The 13.05% is rescaled from the 8.7% for the independent X–Z channel
by a factor of 3/2 [31].
The complexity of AMBP4 is O(N log logN) in each case, by a similar
analysis as in [20].

Fig. 13. The performance curves of the (6,6,6) color codes over depolarizing
errors by AMBP4. (The curve fluctuation can be prevented by using a fixed
ε0 to initialize pn, but this does not improve the error-floor performance.)



Fig. 14. MBP decoding performance. The MBP performance saturation effect
(Fig. 9) can be improved by using different weight gmn per edge (m,n) of
the Tanner graph of the code, where the computation of gmn is referred to
[20, Eq. (10)]. AMBP4 still has better performance (but higher complexity
since the optimum α∗ is determined by many instances of the decoder).

it needs to concern the lattice layouts. Another technique that
may improve the threshold value is discussed in Appendix.

MWPM has been extended to handle measurement and gate
errors in FTQC [7]–[10]. BP can be extended to correct data
and measurement errors simultaneously [36]. It is interesting
to consider gate errors in BP as well.

APPENDIX

Since BP can be seen as a recurrent neural network (RNN),
for MBP4, if the weight of each edge (gmn) can be determined
per iteration [20, Eq. (10)], then the decoder will perform
better than MBP4 with a fixed α, as shown in Fig. 14. Note
that AMBP4 still has better performance, which means that
the thresholds of AMBP4 shown in this paper can be further
improved by determining optimum g∗mn per edge per iteration
(which may be possibly done by pre-training).
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