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ABSTRACT

Blind super-resolution can be cast as low rank matrix re-

covery problem by exploiting the inherent simplicity of the

signal. In this paper, we develop a simple yet efficient non-

convex method for this problem based on the low rank struc-

ture of the vectorized Hankel matrix associated with the target

matrix. Theoretical guarantees have been established under

the similar conditions as convex approaches. Numerical ex-

periments are also conducted to demonstrate its performance.

Index Terms— Blind super-resolution, non-convex opti-

mization, projected gradient descent, vectorized Hankel lift.

1. INTRODUCTION

Blind super-resolution of point sources is the problem of si-

multaneously estimating locations and amplitudes of point

sources and point spread functions from low-resolution mea-

surements. Such problem arises in various applications, in-

cluding single-molecule imaging [1], medical imaging [2],

multi-user communication system [3] and so on.

Under certain subspace assumption and applying the lift-

ing technique, blind super-resolution can be cast as a matrix

recovery problem. Recent works in [4, 5, 6, 7, 8] exploit the

intrinsic structures of data matrix and propose different con-

vex relaxation methods for such problem. Theoretical guaran-

tees for these methods have been established. However, due

to the limitations of convex relaxation, all of these methods

do not scale well to the high dimensional setting.

In contrast to convex relaxation, a non-convex recovery

method is proposed in this paper based on the Vectorized Han-

kel Lift [8] framework. More precisely, harnessing low-rank

structure of vectorized Hankel matrix corresponding to the

signal in terms of the Burer-Monteiro factorization, we de-

velop a projected gradient descent algorithm, named PGD-

VHL, to directly recover the low rank factors. We show that

such a simple algorithm possesses a remarkable reconstruc-

tion ability. Moreover, our algorithm started from an initial

guess converges linearly to the target matrix under the similar

sample complexity as convex approaches.

The rest of this paper is organized as follows. We begin

with the problem formulation and describe the proposed algo-
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rithm in Section 2. Section 3 provides a convergence analysis

of PGD-VHL. Numerical experiments to illustrate the perfor-

mance of PGD-VHL are provided in Section 4. Section 5

concludes this paper.

2. ALGORITHM

2.1. Problem formulation

The point source signal can be represented as a superposition

of r spikes

x(t) =

r∑

k=1

dkδ(t− τk),

where dk and τk are the amplitude and location of k-th point

source respectively. Let {gk(t)}
r
k=1 be the unknown point

spread functions. The observation is a convolution between

x(t) and {gk(t)}
r
k=1,

y(t) =

r∑

k=1

dkδ(t− τk) ∗ gk(t) =

r∑

k=1

dkgk(t− τk).

After taking Fourier transform and sampling, we obtain the

measurements as

y[j] =

r∑

k=1

dke
−2πıτk·j · ĝk[j] for j = 0, · · · , n− 1. (2.1)

Let gk =
[
ĝk[0] · · · ĝk[n− 1]

]T
be a vector correspond-

ing to the k-th unknown point spread function. The goal

is to estimate {dk, τk}
r
k=1 as well as {gk}

r
k=1 from (2.1).

Since the number of unknowns is larger than n, this problem

is an ill-posed problem without any additional assumptions.

Following the same route as that in [4, 5, 6, 8], we assume

{gk}
r
k=1 belong to a known subspace spanned by the columns

of B ∈ Cn×s, i.e.,

gk = Bhk.

Then under the subspace assumption and applying the lifting

technique [9], the measurements (2.1) can be rewritten as a

linear observations of X♮ :=
∑r

k=1 dkhka
T
τk ∈ Cs×n:

yj =
〈
bje

T

j ,X
♮
〉

for j = 0, · · · , n− 1, (2.2)
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where bj is the j-th row of B, ej is the (j + 1)-th standard

basis of Rn, and aτ ∈ Cn is the vector defined as

aτ =
[
1 e−2πıτ ·1 · · · e−2πıτ ·(n−1)

]T
.

The measurement model (2.2) can be rewritten succinctly as

y = A(X♮), (2.3)

where A : C
s×n → C

n is the linear operator. Therefore,

blind super-resolution can be cast as the problem of recover-

ing the data matrix X♮ from its linear measurements (2.3).

Let H be the vectorized Hankel lifting operator which

maps a matrix X ∈ Cs×n into an sn1 × n2 matrix,

H(X) =




x0 x1 · · · xn2−1

x1 x2 · · · xn2

...
...

. . .
...

xn1−1 xn1
· · · xn−1


 ∈ C

sn1×n2 ,

where xi is the (i + 1)-th column of X and n1 + n2 =
n + 1. It is shown that H(X♮) is a rank-r matrix [8] and

thus the matrix H(X♮) admits low rank structure when r ≪
min(sn1, n2). It is natural to recover X by solving the con-

strained least squares problem

min
X

1

2
‖y −A(X)‖22 s.t. rank(H(X)) = r.

To introduce our algorithm, we assume that X♮ is µ1-

incoherent which is defined as below.

Assumption 2.1. Let H(X♮) = UΣV H be the singular

value decomposition of H(X♮), where U ∈ Csn1×r,Σ ∈

Rr×r andV ∈ Cn2×r. DenoteUH =
[
UH

0 · · · UH
n1−1

]H
,

where Uℓ = U [ℓs + 1 : (ℓ + 1)s, :] is the ℓ-th block of U for

ℓ = 0, · · ·n1 − 1. The matrix X♮ is µ1-incoherence if U and

V obey that

max
0≤ℓ≤n1−1

‖Uℓ‖
2
F
≤

µ1r

n
and max

0≤j≤n2−1

∥∥eTj V
∥∥2
2
≤

µ1r

n

for some positive constant µ1.

Remark 2.1. Assumption 2.1 is the same as the one made

in [10, 11] for low rank matrix recovery and is used in blind

super-resolution [8]. It has been established that Assumption

2.1 is obeyed when the minimum wrap-up distance between

the locations of point sources is greater than about 1/n.

Letting L♮ = UΣ
1/2 and R♮ = V Σ

1/2, we have

max
0≤ℓ≤n1−1

∥∥∥L♮
ℓ

∥∥∥
F

≤

√
µ1rσ1

n
and

∥∥R♮
∥∥

2,∞
≤

√
µ1rσ1

n
,

where σ1 =
∥∥H(X♮)

∥∥. Since that target data matrix X♮ is

µ1-incoherence and the low rank structure of the vectorized

Hankel matrix can be promoted by H(X♮) = L♮R♮H, it is

natural to recover the low rank factors of the ground truth ma-

trix H(X♮) by solving an optimization problem in the form

of

min
M∈M

{
f(M) :=

1

2

∥∥y −AH†(LRH)
∥∥2

2

+
1

2

∥∥(I −HH†
)
(LRH)

∥∥2

F

+
1

16

∥∥LHL−RHR
∥∥2

F

}
, (2.4)

where M =
[
LH RH

]H
∈ C(sn1+n2)×r, H† is the Moore-

Penrose pseudoinverse of H obeying that H†H = I, the sec-

ond term in objective guarantees that LRH admits vectorized

Hankel structure. Last term penalizes the mismatch between

L and R, which is widely used in rectangular low rank matrix

recovery [12, 13, 14]. The convex feasible set M is defined

as follows

M =

{[
L

R

]
: max

0≤ℓ≤n1−1
‖Lℓ‖F ≤

√
µrσ

n
,

‖R‖2,∞ ≤

√
µrσ

n

}
, (2.5)

where Lℓ is the ℓ-th block of L, µ and σ be two absolute

constants such that µ ≥ µ1 and σ ≥ σ1.

2.2. Projected gradient descent method

Inspired by [15], we design a projected gradient descent

method for the problem (2.4), which is summarized in Algo-

rithm 1. The initialization involves two steps: (1) computes

Algorithm 1 PGD-VHL

Input: A,y, n, s, r
Initialization:

n1 = n/2, n2 = n+ 1− n1

Û0Σ̂0V̂
H

0 = PrHA∗(y)

L̂0 = Û0Σ̂
1/2
0 , R̂0 = V̂0Σ̂

1/2
0

(L0,R0) = PM((L̂0, R̂0))

M0 =
[
LH

0 RH

0

]H
while not convergence do

Mt+1 = PM (Mt − η∇f(Mt)).
end while

the best rank r approximation of H(A∗(y)) via one step hard

thresholding Pr(·), where A∗ is the adjoint of A ;(2) projects

the low rank factors of best rank-r approximated matrix onto

the set M. Given a matrix M =

[
L

H
R

H
]H

, the projection

onto M, denoted by
[
L̂

H
R̂

H

]H
, has a closed form solution:

[L̂]ℓ =

{
Lℓ if ‖Lℓ‖F ≤

√
µrσ
n

1
‖Lℓ‖F

Lℓ ·
√

µrσ
n o.w.



for 0 ≤ ℓ ≤ n1 − 1 and

eTj R̂ =




eTj R if

∥∥eTj R
∥∥
2
≤

√
µrσ
n

eT

jR

‖eT

j
R‖

2

·
√

µrσ
n o.w.

for 0 ≤ j ≤ n2 − 1. Let Mt be the current estimator.

The algorithm updates Mt along gradient descent direction

−∇f(Mt) with step size η, followed by projection onto the

set M. The gradient of f(M) is computed with respect to

Wirtinger calculus given by ∇f =
[
∇H

Lf ∇H

Rf
]H

where

∇Lf =
(
HD−2A∗

(
AH†(LRH)− y

))
R

+
((
I −HH†

)
(LRH)

)
R+

1

4
L
(
LHL−RHR

)
,

∇Rf =
(
HD−2A∗

(
AH†(LRH)− y

))H
L

+
((
I −HH†

)
(LRH)

)H
L+

1

4
R

(
RHR −LHL

)
.

To obtain the computational cost of ∇f , we first introduce

some notations. Let Hv be the Hankel operator which maps a

vector x ∈ C1×n into an n1 × n2 matrix,

Hv(x) =



x1 · · · xn2

...
. . .

...

xn1
· · · xn


 ,

where xi is the i-th entry of x. The adjoint of Hv, denoted

by H∗
v , is a linear mapping from n1 × n2 to 1 × n. It is

known that the computational complexity of both H∗
v(LℓR

H)
and (Hv(x))R is O(rn log n) flops [16]. Moreover, the au-

thors in [8] show that H(X) = P H̃(X), where H̃(X) is a

matrix constructed by stacking all {Hv(e
T

ℓ X)}sℓ=1 on top of

one another, and P is a permutation matrix. Therefore we

can compute H†(LRH) and H(X)R by using O(srn log n)
flops. Thus the implementation of our algorithm is very effi-

cient and the main computational complexity in each step is

O(sr2n+ srn log(n)).

3. MAIN RESULTS

In this section, we provide an analysis of PGD-VHL under a

random subspace model.

Assumption 3.1. The column vectors {bj}
n−1
j=0 of B are inde-

pendently and identically drawn from a distribution F which

satisfies the following conditions

E
{
bjb

H

j

}
= Is, j = 0, · · · , n− 1, (3.1)

max
0≤ℓ≤s−1

|bj [ℓ]|
2 ≤ µ0, j = 0, · · · , n− 1. (3.2)

Remark 3.1. Assumption 3.1 is a standard assumption in

blind super-resolution [4, 5, 6, 17, 8], and holds with µ0 = 1
by many common random ensembles, for instance, the com-

ponents of b are Rademacher random variables taking the

values ±1 with equal probability or b is uniformly sampled

from the rows of a Discrete Fourier Transform (DFT) matrix.

Now we present the main result of the paper.

Theorem 3.1. Let µ ≥ µ1 and σ = σ1(Σ̂0)/(1 − ε) for 0 ≤

ε ≤ 1/3. Let η ≤ σr

4500(µ0µsr)2σ2 and M
♮
=

[
L

♮H
R

♮H
]H

.

Suppose X♮ obeys the Assumption 2.1 and the subspace B

satisfies the Assumption 3.1. If

n ≥ c0ε
−2µ2

0µs
2r2κ2 log2(sn),

with probability at least 1 − c1(sn)
−c2 , the sequence {Mt}

returned by Algorithm 1 satisfies

dist2(Mt,M
♮) ≤ (1− ησr)

t ·
ε2σr

µ0s
, (3.3)

where c0, c1, c2 are absolute constants, σr = σr(H(X♮)),
κ is the condition number of H(X♮), and the distance

dist(M ,M ♮) is defined as

dist(M ,M ♮) = min
QQT=QTQ=Ir

∥∥M −M ♮Q
∥∥
F
.

Remark 3.2. The detailed proof of Theorem 3.1 is provided

in [18]. Compared with the sample complexity established

in [8] for the nuclear norm minimization method, which is

n & µ0µ1 · sr log
4(sn), Theorem 3.1 implies that PGD-VHL

is sub-optimal in terms of s and r. We suspect that it is merely

an artifact of our proof.

Remark 3.3. Theorem 3.1 implies that PGD-VHL con-

verges to M ♮ with a linear rate. Therefore, after T =
O((µ0µsrκ)

2 log(1/ǫ)) iterations, we have dist2(MT ,M
♮) ≤

ǫ ·dist2(M0,M
♮). Given the iterates MT returned by PGD-

VHL, we can estimate XT by H†(LTR
H

T ).

Remark 3.4. Once the data matrix X♮ is recovered, the lo-

cations {τk}
r
k=1 can be computed from X♮ by MUSIC algo-

rithm and the weights {dk,hk}
r
k=1 can be estimated by solv-

ing an overdetermined linear system [8].

4. NUMERICAL SIMULATIONS

In this section, we provide numerical results to illustrate the

performance of PGD-VHL. The locations {τk} of the point

source signal is randomly generated from [0, 1) and the ampli-

tudes {dk} are selected to be dk = (1+10ck)e−ıφk , where ck
is uniformly sampled from [0, 1] and φk is uniformly sampled

from [0, 2π). The coefficients {hk}
r
k=1 are i.i.d. sampled

from standard Gaussian with normalization. The columns of

B are uniformly sampled from the DFT matrix. The step-

size of PGD-VHL is chosen via backtracking line search and

PGD-VHL will be terminated if ‖y −A(Xt)‖2 ≤ 10−5 is

met or a maximum number of iterations is reached. We re-

peat 20 random trials and record the probability of successful



recovery in our tests. A trial is declared to be successful if∥∥Xt −X♮
∥∥
F
/
∥∥X♮

∥∥
F
≤ 10−3.

The first experiment studies the recovery ability of PGD-

VHL through the framework of phase transition and we

compare it with two convex recovery methods: VHL [8] and

ANM [5]. Both VHL and ANM are solved by CVX [19].

The tests are conducted with n = 64 and the varied s and r.

Figure 1(a), 1(c) and 1(e) show that phase transitions of VHL,

ANM and PGD-VHL when the locations of point sources are

randomly generated, and Figure 1(b), 1(d) and 1(f) illustrate

the phase transitions of VHL, ANM and PGD-VHL when

the separation condition ∆ := minj 6=k |τj − τk| ≥ 1/n is

imposed. It can be seen that PGD-VHL is less sensitive to

the separation condition than ANM and has a higher phase

transition curve than VHL.
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Fig. 1. The phase transitions of VHL (a,b), ANM (c,d) and

PGD-VHL (e,f) with (Left) or without (Right) imposing the

separation condition. Here we fix n = 64. The red curve

plots the hyperbola curve rs = 20.

In the second experiment, we study the phase transition of

PGD-VHL when one of r and s is fixed. Figure 2(a) indicates

a approximately linear relationship between s and n for the

successful recovery when the number of point sources is fixed

to be r = 4. The same linear relationship between r and n
can be observed when the dimension of the subspace is fixed

to be s = 4, see Figure 2(b). Therefore there exists a gap

between our theory and empirical observation and we leave it

as future work.
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Fig. 2. (a) The phase transition of PGD-VHL for varying

n and s when r = 4. The red line plots the straight line

n = 2.5s. (b) The phase transition of PGD-VHL for varying

n and r when s = 4. The red line plots the straight line

n = 2.5r.

In the third simulation, we investigate the convergence

rate of PGD-VHL for different n. The results are shown in

Figure 3. The y-axis denotes log
(∥∥Xt −X♮

∥∥
F
/
∥∥X♮

∥∥
F

)

and the x-axis represents the iteration number. It can be

clearly seen that PGD-VHL converges linearly as shown in

our main theorem.
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Fig. 3. Convergence of PGD-VHL for n = 256, 512, 1024.

Here we fix s = 4 and r = 4.

5. CONCLUSION

In this paper, we propose an efficient algorithm named PGD-

VHL towards recovering low rank matrix in blind super-

resolution. Our theoretical analysis shows that the proposed

algorithm converges to the target matrix linearly. This is also

demonstrated by our numerical simulations.
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