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Abstract

We consider the problem of communicating over a classical-quantum (CQ) multiple access channel with classical states non-
causally available at the transmitter, henceforth referred to as a QMSTx. QMSTx is a classical-quantum multiple access analogue
of the channel studied [1] by Gelfand and Pinsker in 1980. We undertake a Shannon-theoretic study and focus on the problem of
characterizing inner bounds to the capacity region of a QMSTx. We propose a new coding scheme based on union coset codes -
codes possessing algebraic closure properties and derive a new inner bound that subsumes the largest known inner bound based
on IID random coding. We identify examples for which the derived inner bound is strictly larger.

I. INTRODUCTION

Consider the scenario of communicating over a classical-quantum (CQ) multiple access channel with classical states (QMSTx)
depicted in Fig. 1. S1, S2 model a pair of channel states that are jointly distributed and whose evolution across time is IID.
Transmitter (Tx) j is provided the entire realization of the state Sj non-causally and is required to communicate its message
Mj to a receiver (Rx) that is uninformed of the states. If the channel is in state s1, s2 and Txs 1, 2 choose input symbols
x1, x2 respectively, then the Rx is provided the quantum state ρx1x2s1s2 . Our focus is on the problem of characterizing an
inner bound to the capacity region of a general QMSTx. In the sequel, we describe our motivation and contributions.

Our motivation in addressing this problem is four fold. Firstly, QMSTx is a network for which the conventional long
established technique of proving inner bounds via IID random codes, also referred to herein as unstructured codes, is sub-
optimal. In this article, we design a coding scheme based on union coset codes (UCC) - codes possessing algebraic closure
properties - that strictly outperforms the best known coding scheme based on IID codes. Specifically, we analyze performance
of the designed coding scheme to derive an inner bound (Thms. 2, 3) to the capacity region of a QMSTx that, not only
subsumes the largest inner bound via unstructured codes, but strictly enlarges the same for identified examples (Ex. 1, Prop. 3).
These findings build on our earlier work [2], [3] and maybe viewed as another step [4], [5] in our pursuit of designing coding
schemes based on coset codes for network CQ communication.

While the utility of coset codes have been established in several networks [3]–[8], their use for a QMSTx is unique and
leads us to our second motivation. Coset codes have facilitated higher rates in communication scenarios wherein a compressive
bivariate function of the messages or codewords have to be decoded. For instance, on both the 3−user interference [4], [9]
and broadcast channels [8], coset codes enable efficient decoding of the bivariate interference. QMSTx is a CQ MAC wherein
both messages need to be decoded and decoding a compressive bivariate function of either the codewords or the messages can
lead to obfuscation of the messages. Indeed, coset codes have no role in communication over a CQ-MAC without Tx states.
It is therefore natural to question the utility of structured codes in communicating over a QMSTx. A second motivation of our
work is to demonstrate how algebraic closure properties can be exploited to efficiently sieve relevant information and thereby
facilitate enhanced communication over a QMSTx. We illustrate this phenomena in the context of an example (Ex. 1) and a
self contained discussion (Secs. III-B, III-C). In particular, Sec. III enables us convey the main ideas of this article.

Thirdly, this study enables us enrich the family of coset codes for CQ communication beyond nested coset codes (NCC) [4],
[5] and partitioned coset codes (PCC) [10] studied recently. As elaborated in [3] and recent works [11], [12], coding schemes
based on NCC or PCC designed for a classical analogue of a QMSTx, i.e., a classical MAC with states, can be strictly inferior
to a coding scheme based on UCC. We have taken this cue and designed UCC based coding schemes and our results in Sec. VI
also prove that UCCs achieve capacity of a single sender CQ channel. Lastly, our findings maybe viewed as developing new
strategies to handle various network scenarios arising in an eventual quantum communication network.

Enc 1M1

ρX1X2S1S2
 Dec.
POVM

Y Y

Enc 2M2

X1

X2

S2

S2

M1,M2

Fig. 1.

ar
X

iv
:2

20
3.

01
30

8v
3 

 [
cs

.I
T

] 
 1

3 
M

ar
 2

02
2



2

Our presentation is organized in a modular fashion. In Sec. III, we illustrate the main ideas of our work through a discussion
in the context of a carefully chosen example (Ex. 1). A general coding scheme for a QMSTx consists of two layers - unstructured
codes and UCC. In order to illustrate the new elements in a simplified setting, we present a simplified coding scheme involving
only the UCC layer in Sec. IV, wherein we provide a detailed description and proof steps. In Sec. V, we present our inner
bound that comprises of both unstructured and UCC layers. In Sec. VI, we prove that a coding scheme based on UCCs can
achieve the best known single-letter inner bound to the capacity region of a single sender version of a QMSTx, i.e., single
Tx, single Rx classical-quantum channel with random classical channel states available only at the Tx, referred to therein as
a QSTx. In this article, we focus on conveying the ideas and techniques developed.

The study of channels with Tx state information traces its roots back to Shannon [13] and has had considerable influence
on other problems. Indeed, Gelfand and Pinkser’s coding scheme [1] for the classical single Tx channel with states, henceforth
referred to as the Gelfand-Pinsker channel, forms the core of Marton’s coding [14] for the broadcast channel. Recently, Boche,
Cai and Nötzel [15] studied the CQ analogue of the Gelfand-Pinsker channel and proved achievability of a corresponding inner
bound. Their work exploits the method of types and the findings by Nötzel [16] in proving achievability of the inner bound.
Moreover, their work [15] highlights the difference between the causal and the non-causal availability of state information at
the Tx in regards to the single-letterization of the capacity. Our focus is on designing a new coding scheme and characterizing
its performance via a single-letter expression. We have not commented on optimality of the bounds derived herein.

II. PRELIMINARIES AND PROBLEM STATEMENT

For n ∈ N, [n] =∆ {1, · · · , n}. Fq denotes the finite field of size q and ⊕q denotes addition within Fq . For a Hilbert space
H, L(H),P(H) and D(H) denote the collection of linear, positive and density operators acting on H respectively. We let an
underline denote an appropriate aggregation of pairs of objects. For example, U =∆ U1 × U2 denotes the Cartesian product for
sets, x =∆ (x1, x2) ∈ X and xn =∆ (xn1 , x

n
2 ). The specific aggregation will be clear from context. We abbreviate probability

mass function as PMF.
Consider a (generic) QMSTx specified through (i) two finite input sets X1,X2, (ii) two finite sets S1,S2 of states, (iii) a

PMF pS(·) on S, (iii) a collection (ρxs =∆ ρx1x2s1s2 ∈ D(HY ) : (x, s) ∈ X × S) of density operators and (iv) cost functions
κj : Xj × Sj → [0,∞) for j ∈ [2]. The cost function is additive, i.e., having observed the state sequence snj the cost incurred
by sender j in preparing the state ⊗nt=1ρxtst is κj(xnj , s

n
j ) =∆ 1

n

∑n
t=1 κj(xjt, sjt). Reliable communication on a QMStx entails

identifying a code.

Defn. 1. An (n,M, e, λ) QMSTx code consists of two message index setsMj : j ∈ [2], two encoder maps ej : [Mj ]×Snj → Xnj
and a decoder POVM λ =∆ {λm = λm1,m2

∈ P(H⊗n) : m ∈M}. The average error probability of the code is

ξ(e, λ) =∆ 1− 1

|M|
∑
m∈M

∑
sn∈Sn

pnS(sn) tr
(
λmρm,sn

)
.

where ρm,sn =∆ ⊗nt=1ρxtst and (xj1, · · · , xjn) = ej(mj , s
n
j ). Average cost incurred by sender j in transmitting mj is

τj(ej |mj) =∆
∑
snj

pnSj (s
n
j )κj(ej(mj , s

n
j ), snj ) and the average cost incurred by sender j is τj(ej) =∆ 1

|Mj |
∑
mj
τj(ej |mj).

The object of interest is the capacity region of a QMSTx defined below. In this article, we focus on characterizing inner
bounds to the capacity region of a QMSTx.

Defn. 2. A rate-cost quadruple (R, τ) ∈ [0,∞)4 is achievable if there exists a sequence of QMSTx codes (n,M(n), e(n), λ(n))
for which lim

n→∞
ξ(e(n), λ(n)) = 0,

lim
n→∞

n−1 logM(n)
j = Rj , and lim

n→∞
τj(e

(n)
j ) ≤ τj .

The capacity region C of the QMSTx is the set of all achievable rate-cost vectors and C (τ) =∆ {R : (R, τ) ∈ C }.

III. ROLE OF ALGEBRAIC STRUCTURE/CLOSURE

In this section, we explain how and why structured codes can facilitate enhanced communication over a QMSTx. We begin
by reviewing the best known unstructured coding scheme.

A. Joint Decoding of Unstructured Codes

A QMSTx is a ‘MAC extension’ of a single sender CQ channel with random states [15]. A coding scheme for the QMSTx
can therefore be obtained by combining the Gelfand-Pinsker encoding scheme [1] with a simultaneous decoder of a MAC [17,
Thm. 2]. Specifically, each sender j builds a Uj−code (Tab. II) on an auxillary set Uj . The Uj−code comprises of 2n(Rj+Bj)

codewords partitioned into 2nRj bins. The message mj ∈ [2nRj ] indexes a bin and the encoder looks for a codeword within
this bin that is jointly typical with the state sequence snj . The chosen codeword, denoted as unj (mj , s

n
j ), and the state sequence

snj are mapped to an input sequence in Xnj .
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w t γ(w, t)
0 0 |0〉〈0|
0 1

∣∣v⊥θ 〉〈
v⊥θ

∣∣
1 0 |1〉〈1|
1 1 |vθ〉〈vθ|

TABLE I
ρx1x2s1s2=γ(x1⊕x2, s1⊕s2) sj

n

2R
j    bins 

2B
j

Mj
Message

Indexes bin
state 

sequence

jointly
typicalUj -code

Uj 

TABLE II
ENCODING RULE FOR SENDER j .

The decoder POVM performs simultaneous decoding on the U1, U2−codebooks. Specifically, one can adopt the decoding
POVM proposed in proof of [17, Thm. 2]. Leveraging the ‘projector trick’ therein and the ‘overcounting trick’ [18] in the
context of Marton decoding, we can analyze the error probability and derive an inner bound. The latter is the largest known
inner bound achievable via any unstructured coding scheme and we provide a characterization of the same below.

Theorem 1. A rate-cost quadruple (R, τ) is achievable if there exists finite sets U1,U2, conditional distributions pXj ,Uj |Sj on
Xj × Uj for j ∈ [2] such that pSUX(s, u, x) = pS(s)

∏2
j=1 pXjUj |Sj (xj , uj |sj) with respect to which

Rj<I(Uj ;Y,Uj)σ−I(Uj ;Sj)σ,E{κj(Xj , Sj)}≤τj ,
R1 +R2 < I(U ;Y )σ + I(U1, S1;U2, S2)σ,

for j ∈ [2], where all informations are computed wrt the state

σY XSU =∆
∑
s,x,u

pSUX(s, u, x)ρxs ⊗ |x u s〉〈x u s| . (1)

B. Binary Double Dirty MAC

Our discussion for the following example portrays the deficiency of unstructured codes and the role of structure.

Ex. 1. Let X1 = X2 = S1 = S2 = {0, 1}, pS(s) = 1
4 for every s ∈ S, |vθ〉 = [cos θ sin θ]T and

∣∣v⊥θ 〉 = [sin θ −cos θ]T . For
(x, s) ∈ {0, 1}4, let ρx1x2s1s2 = γ(x1⊕x2, s1⊕s2), where γ(·, ·) is provided in Table I, ⊕ denotes addition in the binary field
F2 and the cost function κj(xj , sj) = 1{xj=1} is the Hamming weight function. For a τ ∈ (0, 1

2 ), what is C (τ, τ)?

Our discussion below for the θ = 0 case leads us pedagogically to the non-commuting case θ ∈ (0, π2 ) which follows. The
classical channel corresponding to θ = 0 was first studied by Philosof and Zamir [19] and the following discussion describes
their findings.

Case θ = 0 : Since the collection
(
ρxs : (x, s) ∈ {0, 1}4

)
is commuting, we identify this as a classical MAC with distributed

states whose output Y ∈ {0, 1}, inputs X1, X2 ∈ {0, 1} and states S1, S2 ∈ {0, 1} are related as Y = X1 ⊕ S1 ⊕ X2 ⊕ S2.
S1, S2 are uniformly distributed and the average Hamming weight of the inputs is constrained to τ < 1

2 . The latter constraint
precludes the senders from negating the effect of the state. What rate pairs are then achievable?

We first study the best unstructured coding scheme and characterize the corresponding largest known inner bound. Towards
that end, observe that the effective classical channel of Ex. 1 is a ‘MAC extension’ of a single sender channel with random
parameters whose output Y ∈ {0, 1}, Hamming cost-constrained input X ∈ {0, 1} and uniformly distributed state S ∈ {0, 1}
are related as Y = X ⊕ S. Philosof and Zamir [19] proved that the best unstructured coding strategy for Ex. 1 is obtained
by replicating, at both the senders, the capacity achieving strategy for the single sender channel. Specifically, they prove the
optimal choice of parameters in Thm. 1 for Ex. 1 to be binary auxillary sets U1 = U2 = {0, 1}, pUj |Sj (1|0) = pUj |Sj (0|1) =
τ = 1− pUj |Sj (0|0) = 1− pUj |Sj (1|1) and Xj = Uj ⊕ Sj for j ∈ [2].

We now detail the coding scheme corresponding to the above choice to shed light on its deficiency. To communicate at
rate Rj < hb(τ), sender j randomly partitions the entire set of 2n sequences into 2nRj bins. The message mj indexes the
bin within which the sender looks for a codeword that is within an average Hamming distance of τ from the observed state
sequence. Since each bin contains 2n(1−Rj) > 2n(1−hb(τ)) sequences chosen randomly, the sender finds such a codeword whp.
Let Unj denote the chosen codeword and Snj the observed state sequence. Sender j inputs Xn

j = Unj ⊕ Snj on the channel.
The choice of the Uj−codeword guarantees that the Hamming weight constraint is met.
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Observe that the channel relationship Y = X1 ⊕ S1 ⊕X2 ⊕ S2 implies that the received vector is Y n = Un1 ⊕ Un2 . Recall
that each message mj of sender j is assigned a bin of Uj−codewords. The space of received sequences occupied by a single
message pair (m1,m2) is therefore got by adding all possible codeword pairs in the two bins indexed by m1,m2. Since the
codewords in each bin is picked uniformly and independently without any joint structure, every pair yields whp a distinct sum,
resulting in the range of this addition to be of size 2n(2−R1−R2) > 22n(1−hb(τ)). Since the ‘fan-out’ of every message pair is
of size atleast 22n(1−hb(τ)), we cannot hope to pack more than 2n

22n(1−hb(τ))
fan-outs in the binary output space resulting in the

following fact.

Fact. 1. Consider Ex. 1 with average Hamming cost constraint τ < 1
2 . Any rate pair (R1, R2) achievable by unstructured

coding schemes satisfies R1 + R2 < uce{max{0, 2hb(τ) − 1}} where uce{f(τ)} denotes the upper convex envelope of the
function f(τ). See [19] for a proof.

We now present a linear coding scheme that can achieve any rate pair (R1, R2) satisfying R1 +R2 < hb(τ). For simplicity,
we describe achievability of the rate pair (hb(τ), 0). Our coding scheme is identical to the unstructured coding scheme with
two key differences. The first key difference is that the bins of each sender’s codebook are chosen to be cosets of a common
linear code. Let λ2 denote a linear code of rate 1 − hb(τ) whose cosets can quantize a uniform source to with an average
Hamming distortion of τ . In other words, a uniformly and randomly chosen coset of λ2 contains a codeword within an average
Hamming distance of τ of the observed state sequence whp. See [20] or [3] for proof of existence. Since sender 2 has no
message to transmit, it is provided with just λ2 that serves as its only bin. Sender 1 is provided with all of the 2nhb(τ) cosets
of λ2, each of which serves as its bins. The encoding is identical to that for unstructured coding.

The codebook of sender 2 when added to any bin of user 1’s code results in a coset of λ2, and therefore contains at most
2n(1−hb(τ)) codewords. Moreover, since Un2 lies in λ2, user 1’s codeword Un1 and the received vector Y n = Un1 ⊕2 U

n
2 lie in

the same coset. The receiver can identify the coset from which sender 1 chose his U1−codeword and hence gather sender 1’s
message. Since the channel is noiseless, sender 1 may employ all cosets of λ2 and therefore communicate at rate hb(τ) which
is larger than 2hb(τ)− 1 for all τ ∈ (0, 1

2 ).

Case θ ∈ (0, π2 ) : The arguments in [19] can be used to prove that the optimal choice of parameters in Thm. 1 for this case
too is U1 = U2 = {0, 1}, pUj |Sj (1|0) = pUj |Sj (0|1) = τ = 1 − pUj |Sj (0|0) = 1 − pUj |Sj (1|1) and Xj = Uj ⊕ Sj where ⊕
denotes addition mod−2. This implies the quantum state corresponding to which we compute our information quantities is

σY S1S2X1X2U1U2 =
∑
s1,s2

τ(1−τ)

4

[
1{s1⊕s2=0 }

|1〉〈1|+ 1{s1⊕s2=1 }
|vθ〉〈vθ|

]
⊗ |s1 s2〉〈s1 s2| ⊗

[
|0 1 s1 1⊕ s2〉〈0 1 s1 1⊕ s2|+
|1 0 1⊕ s1 s2〉〈1 0 1⊕ s1 s2|

]

+
∑
s1,s2

[
1{s1⊕s2=0 }

|0〉〈0|+ 1{s1⊕s2=1 }
∣∣v⊥θ 〉〈v⊥θ ∣∣]⊗ |s1 s2〉〈s1 s2| ⊗

[
(1−τ)2

4 |0 0 s1 s2〉〈0 0 s1 s2|+
τ2

4 |1 1 1⊕ s1 1⊕ s2〉〈1 1 1⊕ s1 1⊕ s2|

]
.

The bound on the sum rate achievable using IID random codes as stated in Thm. 1 is I(U1U2;Y )σ−I(U1;S1)−I(U2;S2)σ . In
Appendix A, we have provided characterization of the component quantum states with respect to which the above information
quantities have to be computed. Referring to the same, it can be verified that I(U1U2;Y )σ − I(U1;S1) − I(U2;S2)σ =
α− 2 + 2hb(τ) where

α = h̃b((1− 2τ)2 sin θ)− h̃b(
√

1− 4ε(1− ε) sin2 θ), h̃b(x) =∆ hb

(
1

2
+
x

2

)
and ε = 2τ(1− τ). (2)

It maybe verified that α = 1 if θ = 0 indicating the maximum sum rate achievable is a continuous function of θ as one expects.
In Prop. 3, we verify that the linear coding scheme achieves any rate pair satisfying R1 +R2 < uce{max{0, α− 1 + hb(τ)}}
which strictly subsumes that achievable above.

Two important observations are in order. Firstly, since exponentially many pairs of codewords from λ2 and the coset chosen
by sender 1 have the same sum, the receiver cannot disambiguate the pair of codewords chosen by the two senders. It can
only disambiguate the sum Un1 ⊕ Un2 . The second key difference in this coding scheme is that the receiver must not attempt
to decode the pair, but instead decipher the message by decoding the sum of the two codewords.

C. Sieving Relevant Information via Algebraic Closure

The key difference between the structured and unstructured coding scheme is the decoding rule. While the former pins down
the pair, the latter only decodes the sum, leaving uncertainity in the pair. Note that, the codeword unj (mj , s

n
j ) chosen by sender j

contains, in addition to the message, information about snj . By requiring the receiver to pin down the pair (unj (mj , s
n
j ) : j ∈ [2])

of chosen codewods, the unstructured coding scheme is forcing the receiver to gather information of the state seqeuences that
is not of value to it. Is there a function of (unj (mj , s

n
j ) : j ∈ [2]) that, while containing information of the pair m1,m2 of

messages can also suppress the amount of information of the pair sn1 , s
n
2 and can the coding scheme enable the Rx decode

this function efficiently? The structured coding scheme is enabling the Rx do this via the mod−2 function.
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IV. INNER BOUND BASED ON UNION COSET CODES

Theorem 2. A rate-cost quadruple (R, τ) is achievable if there exists a finite field V1 = V2 =W = Fq and conditional PMFs
pXjVj |Sj on Xj × Vj for j ∈ [2] with respect to which

R1 +R2<min{H(V1|S1)σ : j ∈ [2]}−H(V1 ⊕q V2|Y )σ (3)

where all mutual informations are computed wrt the state

σYXV S =∆
∑

s,v,w,x

pSVWX(s, v, w, x)ρxs⊗|x v w s〉〈x v w s|with

pSVWX(s, v, w, x)= pS(s)

2∏
j=1

pXjVj |Sj (xj , vj |sj)1{ w=
v1⊕qv2}.

for all (s, v, w, x) ∈ S × V ×W ×X .

Proof. We begin by outlining our techniques and identifying the new elements. The main novelty is in the code structure we
design and the decoding POVM we propose. In Sec. IV-A, we characterize a UCC and describe our codes. The Gelfand-Pinsker
encoding (Sec. IV-B) is employed by both senders. We decode only the sum codeword and hence employ a single user decoding
POVM (Sec. IV-C). Since we decode into a UCC obtained by adding two statistically correlated UCCs, our analysis is not a
standard one and detailed in Sec. IV-D.

A. Code Structure

The gain in rates for Ex. 1 crucially relied on the bins of both codes being coset shifts of a common linear code, thereby
ensuring that the size of the sum of any pair of bins was contained. We observe that the shifts can be arbitrary and there are
no structural requirement on the union of these cosets. We are thus led to a UCC.

Defn. 3. A UCC built over Fq is specified through a generator matrix g ∈ Fk×nq and a map ι : F lq → Fnq of coset shifts. The
collection c(m) =∆ {vn(a,m) = ag ⊕q ι(m)} forms the bin corresponding to message m ∈ F lq and the union ∪uc(m) of bins
forms the code. We refer to this as an (n, k, l, g, ι) UCC or an (n, k, l, g, c) UCC.

We employ UCCs as the codebook for both senders. The symmetry in Ex. 1 permitted us to design codes of the same
rate for both senders. In general, to enable codes of different rates, we propose a ‘nesting’ of the two UCCs. Without loss of
generality, assume the size of sender 1’s bins is the smaller of the two. We equip user j with UCC (n, kj , lj , gj , ιj) and enforce

g2 =
[
gT1 gT2/1

]T
. This ensures that the bins of user 1’s code are sub-cosets of the bins of user 2’s code, thus guaranteeing

the desirable property mentioned prior to Defn. 3. Let λj =∆ (vnj (aj ,mj) =∆ ajgj ⊕q ιj(mj) : (aj ,mj) ∈ Vkj × V lj ) denote
the codebook of sender j

B. Encoding

Our encoding is identical to that described for unstructured codes in Sec. III-A. On observing message mj ∈ [qlj ] and state
sequence snj , sender j looks for a codeword in cj(mj) that is jointly typical with snj . It it finds atleast one, one among these is
chosen and denoted vnj (mj , s

n
j ). If it finds none, vnj (mj , s

n
j ) is set to a default codeword in cj(mj). The pair (snj , v

n
j (mj , s

n
j ))

is mapped to an input sequence via a ‘fusion map’ fj : Snj × Vnj → Xnj . For the sake of the ensuing analysis, we formalize
this encoding with some notation.

Let αj(mj , s
n
j ) =∆

∑
aj
1{(vnj (aj ,mj),snj )∈Tη(pSjVj )} be the number of available jointly typical codewords and let

Lj(mj , s
n
j ) =∆

{
{aj :(vnj (aj ,mj),s

n
j )∈Tη(pVjSj )} if αj(mj ,snj )≥1

{0kj} otherwise

For every pair (mj , s
n
j ), aj(mj , s

n
j ) is an element chosen from Lj(mj , s

n
j ). We define vnj (mj , s

n
j ) =∆ vnj (aj(mj , s

n
j ), snj ). A

predefined ‘fusion map’ fj : Snj × Vnj → Xnj is used to map the pair snj , v
n
j (mj , s

n
j ) to an input sequence in Xnj henceforth

denoted xnj (mj , s
n
j ).



6

C. Decoding POVM

Consider the UCC (n, k2, l1+l2, g2, ι⊕) where ι⊕(m) = ι1(m1)⊕qι(m2) and let wn(a,m) =∆ ag2⊕qι1(m1)⊕qι2(m2) denote
its codewords. Let πa,m be the conditional typical projector of ⊗nt=1ρwt(a,m) wrt the state ρw =

∑
x,s pXS|W (x, s|w)ρxs :

w ∈ W where pSXW is as defined in the Thm. statement. We define γa,m =∆ πY πa,mπ
Y where πY is the unconditional typical

projector of the state
∑
x,s pXS(x, s)ρxs. The decoding POVM is

λm =∆

 ∑
â,m̂1,m̂2

γâ,m̂1,m̂2

− 1
2∑
a

γa,m

 ∑
â,m̂1,m̂2

γâ,m̂1,m̂2

− 1
2

(4)

and λ−1 =∆ I⊗n −
∑
m λm.

D. Probability of Error Analysis

We begin our analysis by stating the distribution of the random code. Specifying g1, g2/1, ιj(mj), aj(mj , s
n
j ), xnj (mj , s

n
j ) :

(mj , s
n
j ) ∈ [qlj ] × Snj completely specifies the code. A distribution for the random code is therefore specified through a

distribution of these objects. We let upper case letters denote the corresponding random objects. (G2, G2/1, ιj(mj) : mj ∈
[qlj ] : j ∈ [2] are mutually independent and uniformly distributed on their respective range spaces. Aj(mj , s

n
j ) is conditionally

independent of the earlier mentioned objects given αj(mj , S
n
j ) and uniformly distributed in L(mj , s

n
j ). Finally, given all of

the earlier mentioned objects, Xn
j (mj , s

n
j ) ∼ pnX|V S(·|Vj(mj , S

n
j ), Snj ).

The average probability of error is

ξ(e, λ) =
∑
m

ζ(m)

|M|
where ζ(m) =∆

∑
sn

pnS(sn)ζ(m|sn) (5)

ζ(m|sn)=∆ tr{(I−λm)ρm,sn}, ρm,sn=∆
n⊗
t=1

ρx1(m1,sn1)tx2(m2,sn2)tst

where I = I⊗n, Mj = [qlj ] and hence |M| = ql1+l2 . Henceforth, we focus on a generic term ζ(m). Let a⊕ =∆

a1(m1, s
n
1 ) 0k2−k1 ⊕ a2(m2, s

n
2 ) and Ej =∆ {αj(mj , s

n
j ) ≥ 1}, E =∆ E1 ∩ E2. With these, we have,

ζ(m|sn) ≤ t0 + t1 + t2 where t0 =∆ 1Ec1 + 1Ec2 (6)

t1 = tr{(I − γa⊕,m)ρm,sn}1E , t2 =∆
∑

â⊕ 6=a⊕
m̂ 6=m

tr
(
γâ⊕,m̂ρm,sn

)
1E

where, we recall γa,m = πY πa,mπ
Y and πa,m is the conditional typical projector of ⊗nt=1ρwt(a,m). The rest of our proof

derives upper bounds on Ti =∆
∑
sn p

n
S(sn)E{ti} for i ∈ [3].

Upper bound on T0 : E1, E2 are events involving only classical probabilities and we refer to [2, Lemma 7 in Appendix B] for
a proof of the following.

Prop. 1. For any η > 0, ∃Nη ∈ N such that ∀n ≥ N(η), E{T0} ≤ exp{−nη} if kj log q
n > log q −H(Vj |Sj) for j ∈ [2].

To comprehend the above bound, note that codewords of a random UCC are uniformly distributed. The expected number of
codewords jointly typical with a typical state sequence snj is |Tη(Vj |snj )|qk−n whose exponent is k log q−n log q+nH(Vj |Sj).
Prop. 1 guarantees the latter exponent is positive.

Upper bound on T1 : Since t1 involves the event E = E1∩E2, an upper bound on T1 can be derived using pinching and gentle
operator lemma. Since this is fairly straightforward we refer the reader to a subsequent version of this manuscript for details.

Upper bound on T2 : In our study, we have assumed k2 ≥ k1, i.e., the size of bins in sender 2’s code to be larger of the two.
Under this assumption, we get only one bound on k1+2k2+l1+l2

n log q, but in general, we get two bounds that are stated below.

Prop. 2. For any η > 0, there exists Nη ∈ N such that for all n ≥ N(η), T2 ≤ exp{−nη} if

max
j=1,2

{
kj
n

}
+

2∑
i=1

ki+li
n

<3−
H(W |Y )σ−

∑2
i=1H(Vi|Si)σ

log q

Proof. Proof is provided in Appendix B.

By eliminating k1 log q
n , k2 log q

n from the bounds in Prop. 1 and 2 and equating Rj =
lj log q
n , we obtain the condition stated

in the theorem statement.
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Fig. 2. Bound uce{max{0, α−2+2hb(τ)}} on the sum rate achievable via IID random codes is plotted in blue and the sum rate uce{max{0, α−1+hb(τ)}}
achievable via UCC is plotted in red.

Prop. 3. Consider Ex.1 for τ ∈ (0, 1
2 ) and θ = π

8 . The inner bound achievable via UCCs is strictly larger than that achievable
via unstructured codes.

Proof. By choosing V1 = V2 = F2 the binary field and pXjVj |Sj (1, 1 ⊕ sj |sj) = τ = 1 − pXjVj |Sj (0, sj |sj) for sj ∈
{0, 1} and j ∈ [2] and evaluating the inner bound in Thm. 2, it can be verified that any rate pair (R1, R2) satisfying
R1 + R2 < uce{max{0, α − 1 + hb(τ)}} is achievable where α is as defined in (2). See Fig. 2 for plots of the rate regions
R1 + R2 < uce{max{0, α − 2 + 2hb(τ)}} and R1 + R2 < uce{max{0, α − 1 + hb(τ)}} achievable via IID and structured
codes respectively to verify the latter is strictly larger.

V. ENHANCING IID CODING SCHEMES VIA UCCS

The UCC based coding scheme can enable efficient decoding of V1 ⊕ V2. On a QMSTx wherin the latter function contains
the information of the pair of messages, the UCC coding scheme can outperform the use of unstructured codes. In general, the
information corresponding to the message pair can be embedded in both univariate and bivariate functions of auxillary RVs. A
general coding scheme for QMSTx must therefore incorporate both unstructured codes and UCCs. We present the following
inner bound that subsumes the inner bounds stated in Thms. 1, 2.

Theorem 3. A rate-cost (R, τ) quadruple is achievable if there exists finite sets U1,U2, a finite field V1 = V2 =W = Fq of
size q and conditional PMFs pUjVjXj |Sj : j ∈ [2] wrt which

Rj ≤ I(Uj ;UjY )σ − I(Uj ;Sj)σ −H(W |UY )σ
+ min {H(V1|U1S1)σ, H(V2|U2S2)σ} , for j = 1, 2,

R1 +R2 ≤ I(U ;Y )σ − I(U ;S)σ −H(W |UY )σ
+ min {H(V1|U1S1)σ, H(V2|U2S2)σ} ,

where the above entropies are evaluated wrt the state

σYXUVWS =∆
∑

s,u,v,w,x

pSUVWX(s, u, v, w, x)ρxs⊗|x u v w s〉〈x u v w s| ,

pSUVWX (s,u,v,w,x)= pS(s)

2∏
j=1

pXjVjUj |Sj (xj , vj , uj |sj)1{ w=
v1⊕qv2}.

for all (s, v, w, x) ∈ S × V ×W ×X .

By choosing V1 = V2 = φ, we can recover the inner bound achievable via IID codes in 1. By choosing U1 = U2 = φ, we
can recover the inner bound in Thm. 2, thus proving that above inner bound subsumes all known inner bounds for a general
QMSTx. We now outline the main elements of our proof and furnish details in a subsequent version of this manuscript. The
code structure and the encoding is identical to the classical MAC with distributed states and is provided in [2]. Decoding
is based on a combination of joint and successive decoding. A joint decoding POVM is employed to decode into U1, U2.
Following this, decoding of V1 ⊕ V2 is performed on the collapsed state. We leverage an alternate form of the ‘overcounting
trick’ that we have used in [10] to obtain the same pre-Fourier Motzkin bounds as those in [2, Proof of Thm. 5].
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VI. COMMUNICATING OVER CLASSICAL-QUANTUM CHANNEL WITH RANDOM STATES USING UCCS

We begin with a formal description of a point-to-point classical quantum channel with classical random states available
non-causally at the transmitter. We henceforth refer to this channel as a QSTx.

Consider a (generic) QSTx specified through (i) a finite input set X , (ii) a finite set S of states, (iii) a PMF pS(·) on S,
(iii) a collection (ρxs ∈ D(HY ) : (x, s) ∈ X × S) of density operators and (iv) cost function κ : X × S → [0,∞). The cost
function is additive, i.e., having observed the state sequence sn the cost incurred by the sender in preparing the state ⊗nt=1ρxtst
is κ(xn, sn) =∆ 1

n

∑n
t=1 κ(xt, st). Reliable communication on a QSTx entails identifying a code.

Defn. 4. An (n,M, e, λ) QSTx code consists of a message index set M, an encoder map e :M×Sn → Xn with codewords
denoted (xn(m, sn) = (xn(m, sn)t : 1 ≤ t ≤ n) : (m, sn) ∈M×Sn) and a decoder POVM λ =∆ {λm ∈ P(H⊗nY ) : m ∈M}.
The average error probability of the code is

ξ(e, λ) =∆ 1− 1

|M|
∑
m∈M

∑
sn∈Sn

pnS(sn) tr
(
λmρxn(m,sn),sn

)
where ρxn(m,sn),sn =

n⊗
t=1

ρx(m,sn)t,st .

Average cost incurred by the sender in transmitting message m is τ(e|m) =∆
∑
sn p

n
S(sn)κ(e(m, sn), sn) and the average cost

incurred by the sender is τ(e) =∆ 1
|M|

∑
m τ(e|m).

The object of interest is the capacity region of a QSTx defined below. In this section, we prove achievability of the current
known largest single-letter inner bounds to the capacity region of a QSTx.

Defn. 5. A rate-cost quadruple (R, τ) ∈ [0,∞)2 is achievable if there exists a sequence of QSTx codes (n,M(n), e(n), λ(n))
for which lim

n→∞
ξ(e(n), λ(n)) = 0,

lim
n→∞

n−1 logM(n) = R, and lim
n→∞

τ(e(n)) ≤ τ.

The capacity region C of the QSTx is the set of all achievable rate-cost vectors and C (τ) =∆ {R : (R, τ) ∈ C }.

Theorem 4. Consider a QSTx characterized through a finite set S of states, a PMF pS on S modeling the distribution of the
random state, an input set X and a collection of density operators (ρxs ∈ D(HY ) : (x, s) ∈ X ×S). For τ > 0, R ∈ C (τ) if
there exists a PMF pSpV X|S on S × V × X for which

∑
x,s pS(s)pX|S(x|s)κ(x, s) ≤ τ and R < I(V ;Y )− I(V ;S) where

all information quantities are computed with respect to the quantum state

σY SXV =∆
∑
x,s,v

pS(s)pV X|S(v, x|s)ρxs ⊗ |s x v〉〈s x v| . (7)

Proof. The two new elements in our proof are the code structure (Sec. VI-A). Specifically, we build a union coset code
to communicate over the QSTx. Since the codewords of a random union coset code are not mutually independent and are
uniformly distributed, a standard information theoretic proof is not applicable. We therefore provide detailed steps in Sec. VI-D,
Sec. VI-E.

A. Code Structure
Let V = Fq be a finite field of size q. Consider a (n, k, l, g, ι) UCC whose codewords are (vn(a,m) =∆ ag⊕q ι(m) : (a,m) ∈

Vk × V l). The message index set M = [ql] and the bin corresponding to message m is the collection c(m) =∆ (ag ⊕q ι(m) :
a ∈ Vk). As we describe in the sequel, the encoder observes the state sequence sn ∈ Sn and chooses a codeword in c(m)
where m ∈M is the message that needs to communicated to the Rx.

B. Encoding
For every possible pair (m, sn) of message and state sequence, let

α(m, sn) =∆
∑
a∈Vk

1{(vn(a,m),sn)∈Tnη (pV S)} (8)

be the number of codewords in the bin indexed by the mesage that is jointly typical with the observed state sequence sn ∈ Sn.
Let

L(m, sn) =∆
{
{a:(vn(a,m),sn)∈Tη(pV S)} if α(m, sn) ≥ 1

{0k} otherwise, i.e. α(m, sn) = 0.
(9)

be a list of candidate code words that is available to the encoder for the message, state sequence pair (m, sn). Let a∗m,sn be
chosen from L(m, sn) and v∗(m, sn) =∆ vn(a∗m,sn ,m). A predefined ‘fusion map’ f : Sn ×Vn → Xn is used to map the pair
sn, v∗(m, sn) to an input sequence in Xn henceforth denoted xn(m, sn). On observing state sequence sn and message m, the

encoder chooses state sequence xn(m, sn) = (x(m, sn)t : 1 ≤ t ≤ n), and we define ρm,sn =∆
n⊗
t=1

ρx(m,sn)tst .
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C. Decoding POVMs

Consider a PMF pSV X = pSpV X|S on S × V × X . Let

ρ =∆
∑
x,s

pSX(s, x)ρxs, ρv =∆
∑
x,s

pXS|V (x, s|v)ρxs
have spectral

decompositions ρ =
∑
y∈Y

q(y) |fy〉〈fy| and ρv =
∑
y∈Y

rY |V (y|v)
∣∣ey|v〉〈ey|v∣∣

respectively. Let

πY =∆
∑

yn∈Yn

n⊗
t=1

|fyt〉〈fyt |1{yn∈Tnη (q)} and πvn =∆


0 if vn /∈ Tnη (pV )∑
yn∈Yn

n⊗
t=1

∣∣eyt|vt〉〈eyt|vt∣∣1{(vn,yn)∈Tnη (pV rY |V )} otherwise. (10)

be the unconditional and conditional typical projectors. For (a,m) ∈ Vk × V l, let

γa,m =∆ πY πvn(a,m)π
Y and λm=∆

 ∑
â,m̂∈Vk×Vl

γâ,m̂

− 1
2∑
a∈Vk

γa,m

 ∑
â,m̂∈Vk×Vl

γâ,m̂

− 1
2

for m ∈ [ql] and λ−1 = I⊗nHY −
∑
m∈M

λm (11)

and {λm : m ∈M = [ql], λ−1} be the decoding POVM.

D. Error Probability

As is standard in information theory, we derive an upper bound on the error probability of the best code by averaging
the error probability over an ensemble of codes. We begin by specifying the distribution of a random code in our ensemble.
Note that a code is completely specified via (i) the generator matrix g ∈ Vk×n, the map ι : V l → Vn and the collection
(a∗m,sn ∈ Vk : (m, sn) ∈M×Sn). The generator matrix G, the map ι and the collection (A∗m,sn ∈ Vk : (m, sn) ∈M×Sn)
of a random code are distributed with PMF

P

(
G = g, ι(m̃) = dn(m̃) : m̃ ∈ V l,

a∗m,sn = a(m, sn) : (m, sn) ∈M× Sn
)

=
1

qkn

 ∏
m̃∈Vl

1

qn

 ·
 ∏
m∈Vl

∏
sn∈Sn

1

|L(m, sn)|
1{a(m,sn)∈L(m,sn)}

 . (12)

From (12), it can be verified that the generator matrix G and the range of (ι(m) : m ∈ V l) are mutually independent and
uniformly distributed in the respective range spaces. Moreover, for (m, sn) ∈M× Sn and any a ∈ L(m, sn), we note that

P

(
a∗m,sn = a(m, sn) for
(m, sn) ∈M× Sn

∣∣∣∣G = g, ι(m̃) = dn(m̃)
for m̃ ∈ V l

)
=

1

|L(m, sn)|
1{a(m,sn)∈L(m,sn)}, (13)

a relation we shall opportunity to use in our analysis. For a specific code, the average error probability of the code is

ξ(e, λ) =∆
1

ql

∑
m

∑
sn

pnS(sn) tr {(I − λm) ρm,sn} ≤ t0 +
1

ql

∑
m

∑
sn

pnS(sn) tr {(I − λm) ρm,sn}1EL−η , where,

t0 =∆
1

ql

∑
m,sn

pnS(sn)1EcL−η , EA =∆
{
α(m, sn) ≥ 2nA

}
. Suppose S = γa∗

m,sn
,m, T =

∑
a 6=a∗

m,sn

γa,m +
∑
m̂ 6=m

∑
a

γa,m̂, then

λm ≥ (S + T )−
1
2S(S + T )−

1
2 and the operator inequalities 0 ≤ S ≤ I , 0 ≤ T hold. In breaking down the error event, we

have considered the event EL−η and the choice of L will be specified in due course. From the Hayashi Nagaoka inequality
[21] [22, Lemma 16.4.1], we have

I⊗n − λm ≤ I⊗n − (S + T )−
1
2S(S + T )−

1
2 ≤ 2(I − S) + 4(I − T ) and hence ξ(e, λ) ≤ t0 + t1 + t2 where

t1 =∆
2

ql

∑
m

∑
sn

pnS(sn) tr
([

I − γa∗
m,sn

,m

]
ρm,sn

)
1EL−η , t2 = t21 + t22, t21 =∆

4

ql

∑
m

∑
sn

∑
â6=a∗

m,sn

pnS(sn) tr(γâ,mρm,sn)1EL−η

and t22 =∆
4

ql

∑
m

∑
sn

∑
m̂ 6=m

∑
â

pnS(sn) tr(γâ,m̂ρm,sn)1EL−η .

Let Ti : 0 ≤ i ≤ 3 denote abov terms corresponding to a random code whose distribution is specified in (12). In the sequel,
we derive upper bounds for each of the four terms t0, t1, t21, t22 corresponding to the best code by evaluating upper bounds
on E{Ti} : 0 ≤ i ≤ 3.

Bound on E{T0} : We note that t0 concerns only the event that the encoder cannot find atleast 2n(L−η) codewords in the
bin indexed by the message that is jointly typical with the observed state sequence. The analysis of this event involves only
classical probabilities. Using a standard second moment method similar to that in [2, Lemma 7 in Appendix B] or [8, Lemma
8 in Appendix A]. Employing these techniques, the following lemma can be proved.
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Lemma 1. For every η > 0, there exists Nη ∈ N such that for all n ≥ Nη , we have

E{T0} ≤ exp

{
−n
(
k log q

n
− [log q −H(V |S) + L− η]

)}
. (14)

Bound on E{T1} : For a specific code, we have t1 = t11 + t12, where

t11 =∆
2

ql

∑
m

∑
sn

pnS(sn) tr
([

I − γa∗
m,sn

,m

]
ρm,sn

)
1α(m, sn) ≥ 2n(L−η), (sn, v∗(m, sn)) ∈ Tnη (pSV )

xn(m, sn) /∈ Tnη (pX|SV |sn, v∗(m, sn))


t12 =∆

2

ql

∑
m

∑
sn

pnS(sn) tr
([

I − γa∗
m,sn

,m

]
ρm,sn

)
1{
α(m, sn) ≥ 2n(L−η), (sn, v∗(m, sn), xn(m, sn)) ∈ Tnη (pSV X)

}.
A bound on E{T11} can be derived using standard bounds on typical sequences. Indeed, since Xn(m, sn) is conditionally
picked wrt

∏
pX|V S(·|v∗(m, sn), sn), the probability that it is not conditionally typically falls exponentially. In the following,

we indicate how we breakup t12 and indicate how each term in corresponding breakup can be bounded.

Bound on E{T12} : We have

t12 ≤ 2

ql

∑
m∈Vl
a∈Vk

∑
(sn,vn,xn)
∈Tnη (pSVX)

pnS(sn) tr
([
I − πY πvnπY

]
ρxn,sn

)
1{
a∗m,sn = a, vn(a,m) = vn, xn(m, sn) = xn

}

≤ 2

ql

∑
m∈Vl
a∈Vk

∑
(sn,vn,xn)
∈Tnη (pSVX)

pnS(sn) tr
([
I − πY πvnπY

]
ρxn,sn

)
1{
vn(a,m) = vn, xn(m, sn) = xn

} = t121 − t122

t121 =∆
2

ql

∑
m∈Vl
a∈Vk

∑
(sn,vn,xn)
∈Tnη (pSVX)

pnS(sn)1{
vn(a,m) = vn, xn(m, sn) = xn

}

t122 =∆
2

ql

∑
m∈Vl
a∈Vk

∑
(sn,vn,xn)
∈Tnη (pSVX)

pnS(sn) tr
([
πY πvnπ

Y
]
ρxn,sn

)
1{
vn(a,m) = vn, xn(m, sn) = xn

}.

A lower bound on E{T122} can be derived using gentle operator lemma and pinching. Specifically, we have

E{T122} =
2

ql

∑
m∈Vl
a∈Vk

∑
(sn,vn,xn)
∈Tnη (pSVX)

pnS(sn) tr
([
πY πvnπ

Y
]
ρxn,sn

)
P
(
vn(a,m) = vn, xn(m, sn) = xn

)

=
2

ql+n

∑
m∈Vl
a∈Vk

∑
(sn,vn,xn)
∈Tnη (pSVX)

pnS(sn) tr
(
πvnπ

Y ρxn,snπ
Y
)
pX|V S(xn|vn, sn)

≥ 2

ql+n

∑
m∈Vl
a∈Vk

∑
(sn,vn,xn)
∈Tnη (pSVX)

pnS(sn)
[
tr(πvnρxn,sn)−

∥∥πY ρxn,snπY − ρxn,sn∥∥1

]
pX|V S(xn|vn, sn). (15)

The first term on the RHS of (15) can be lower bounded by the pinching lemma [22, Property 15.2.7] and the second term
can be upper bounded via gentle operator lemma [22, Lemma 9.4.2]. We now proceed to E{T11}

Bound on t11 :

t11 ≤
2

ql

∑
m

∑
sn

pnS(sn)1{
(sn, v∗(m, sn)) ∈ Tnη (pSV ), xn(m, sn) /∈ Tnη (pX|SV |sn, v∗(m, sn))

} and

(16)
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In the sequel, we compute upper bound on E{T11} and lower bound on E{T12}. We begin with the latter. We have

E{t12} =
2

ql

∑
m

∑
(sn,vn,xn)
∈Tη(pSVX)

pnS(sn) tr
(
πY πvnπ

Y ρxn,sn
)
P (Xn(m, sn) = xn, V ∗(m, sn) = vn)

=
2

ql

∑
m

∑
(sn,vn,xn)
∈Tη(pSVX)

pnS(sn) tr
(
πY πvnπ

Y ρxn,sn
)
pX|V S(xn|vn, sn)P (V ∗(m, sn) = vn)

≥ 2

ql

∑
m

∑
(sn,vn,xn)
∈Tη(pSVX)

pnS(sn) tr
(
πY πvnπ

Y ρxn,sn
)
pX|V S(xn|vn, sn)P (V ∗(m, sn) = vn) (17)

Bound on E{T21} : Before we study E{T21}, we begin by noting that

t21 =
4

ql

∑
m

∑
sn

∑
â 6=a∗

m,sn

pnS(sn) tr(γâ,mρm,sn)1EL−η =
4

ql

∑
m

∑
sn

∑
â6=a∗

m,sn

pnS(sn) tr
(
πY πvn(â,m)π

Y ρm,sn
)
1EL−η (18)

=
4

ql

∑
m

∑
sn

∑
a,â∈Vk
a 6=â

∑
vn,v̂n,xn

pnS(sn) tr
(
πY πv̂nπ

Y ρxn,sn
)
1α(m, sn) ≥ 2n(L−η), a∗m,sn = a, vn(a,m) = vn

vn(â,m) = v̂n, xn(m, sn) = xn


(19)

=
4

ql

∑
m

∑
sn

∑
a,â∈Vk
a6=â

∑
vn

v̂n,xn

pnS(sn) tr
(
πY πv̂nπ

Y ρxn,sn
)
1α(m, sn) ≥ 2n(L−η), a∗m,sn = a, vn(a,m) = vn, v̂n ∈ Tη(pV )

vn(â,m) = v̂n, xn(m, sn) = xn, (vn, sn) ∈ Tnη (pV S)


(20)

where (i) ρm,sn =

n⊗
t=1

ρx(m,sn)tst is as defined earlier, (ii) (19) follows by summing over all possible choices for the

corresponding codewords, (iii) (20) holds for L ≥ η since the encoding rule guarantees a∗m,sn ∈ L(m, sn) and the latter set
defined in (9) contains indices corresponding to codewords that are jointly typical with the observed state sequence whenever
α(m, sn) ≥ 1 and (iv) (20) is true since, as defined in (11), πv̂n is the zero projector if v̂n /∈ Tnη (pV ). This implies

E{T21} =
4

ql

∑
m

∑
(vn,sn)
∈Tnη (pV S)

∑
a,â∈Vk
a6=â

∑
v̂n∈Tnη (pV )

xn∈Xn

pnS(sn) tr
(
πY πv̂nπ

Y ρxn,sn
)
P

(
α(m, sn) ≥ 2n(L−η), a∗m,sn = a, vn(a,m) = vn

vn(â,m) = v̂n, xn(m, sn) = xn,

)
. (21)

For (vn, sn) ∈ Tnη (pV S) and â 6= a, we have

P

(
α(m, sn) ≥ 2n(L−η), a∗m,sn = a, V n(a,m) = vn

V n(â,m) = v̂n, Xn(m, sn) = xn,

)
= P

(
V n(a,m) = vn

V n(â,m) = v̂n

)
P

(
α(m, sn) ≥

2n(L−η)

∣∣∣∣ V n(a,m) = vn

V n(â,m) = v̂n

)
(22)

×P
(
a∗m,sn = a

∣∣∣∣ α(m, sn) ≥ 2n(L−η)

V n(a,m) = vn, V n(â,m) = v̂n

)
P

(
Xn(m, sn) = xn

∣∣∣∣ a∗m,sn = a, α(m, sn) ≥ 2n(L−η)

V n(a,m) = vn, V n(â,m) = v̂n

)
≤ 1

q2n
· 1 · 1

α(m, sn)
pX|SV (xn|sn, vn)1{α(m,sn)≥2n(L−η)} ≤

1

q2n
·
pX|SV (xn|sn, vn)

2n(L−η)
≤

2n(H(V |S)+3η)pXV |S(xn, vn|sn)

q2n2n(L−η)
, (23)

where the first inequality in (23) follows the fact that codewords of a UCC are pairwise independent and uniformly distributed
[3] and the second inequality in (23) follows from standard bounds on conditional probability of jointly typical sequences.
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Substituting the bound in the RHS of (23) in (21), we have

E{T21} ≤
4 · 2n(H(V |S)+3η)

ql+2n · 2n(L−η)

∑
m

∑
(vn,sn)
∈Tnη (pV S)

∑
a,â∈Vk
a 6=â

∑
v̂n∈Tnη (pV )

xn∈Xn

tr
(
πY πv̂nπ

Y pXV S(xn, vn, sn)ρxn,sn
)

≤ 4 · 2n(H(V |S)+3η)

ql+2n · 2n(L−η)

∑
m

∑
a,â∈Vk
a6=â

∑
v̂n∈

Tnη (pV )

tr
(
πY πv̂nπ

Y ρ⊗n
)

=
4 · 2n(H(V |S)+3η)

ql+2n · 2n(L−η)

∑
m

∑
a,â∈Vk
a6=â

∑
v̂n∈

Tnη (pV )

tr
(
πv̂nπ

Y ρ⊗nπY
)

(24)

≤ 4 · 2n(H(V |S)−H(Y )+6η)

ql+2n · 2n(L−η)

∑
m

∑
a,â∈Vk
a6=â

∑
v̂n∈

Tnη (pV )

tr
(
πv̂nπ

Y
)
≤ 4 · 2n(H(V |S)−H(Y )+6η)

ql+2n · 2n(L−η)

∑
m

∑
a,â∈Vk
a6=â

∑
v̂n∈

Tnη (pV )

tr(πv̂n) (25)

≤ 4 · 2n(H(V |S)−H(Y )+H(V,Y )+12η)

ql+2n · 2n(L−η)

∑
m

∑
a,â∈Vk
a6=â

1 ≤ 4 · 2n(H(V |S)−H(Y )+H(V,Y )+12η)

q2n−2k · 2n(L−η)
(26)

≤ exp

{
−n
(
L−

[
k log q

n
− log q +H(V |S)

]
+ log q −H(V |Y )− k log

n

)}
(27)

where (24) follows from the operator inequality∑
(vn,sn)
∈Tnη (pV S)

∑
xn∈Xn

pXV S(xn, vn, sn)ρxn,sn ≤
∑

xn,sn,vn

∈Xn×Sn×Vn

pXV S(xn, vn, sn)ρxn,sn = ρ⊗n

which follows from the positivity of the density operators, (25) follows from the operator inequalities πY ρ⊗nπY ≤
2−n[H(Y )−3η]πY [22, Property 15.1.3] and πY ≤ I , (26) follows from tr(πv̂n) ≤ 2n[H(Y |V )+3η] for v̂n ∈ Tnη (pV ) [22,
Property 15.1.2] and |Tnη (pV )| ≤ 2n[H(V )+3η] and the last bound (27) follows by collating all exponents.

Bound on E{T22} : Our analysis of E{T22} is very similar to E{T21}. The only difference between these analyses stems from
the fact that the legitimate codeword V n(a∗m,sn ,m) and an incorrect codeword in the same bin V n(â,m) are not statistically
independent, however the legitimate codeword V n(a∗m,sn ,m) and any codeword in a different bin V n(â, m̂) for m̂ 6= m are
statistically independent. This suggests that we can derive the bounds without having to condition on the realization of a∗m,sn
as in (22) - (23). Except for this minor difference, the rest of the analysis provided below is identical. We have

t22 =
4

ql

∑
m,m̂
m 6=m̂

∑
sn

∑
â

pnS(sn) tr(γâ,m̂ρm,sn)1EL−η =
4

ql

∑
m,m̂
m 6=m̂

∑
sn

∑
â

pnS(sn) tr
(
πY πvn(â,m̂)π

Y ρm,sn
)
1EL−η (28)

=
4

ql

∑
m,m̂
m 6=m̂

∑
sn

∑
â

∑
vn,v̂n,xn

pnS(sn) tr
(
πY πv̂nπ

Y ρxn,sn
)
1α(m, sn) ≥ 2n(L−η), V ∗(m, sn) = vn

vn(â, m̂) = v̂n, xn(m, sn) = xn


(29)

=
4

ql

∑
m,m̂
m 6=m̂

∑
sn

∑
â

∑
vn

v̂n,xn

pnS(sn) tr
(
πY πv̂nπ

Y ρxn,sn
)
1 α(m, sn) ≥ 2n(L−η), V ∗(m, sn) = vn, v̂n ∈ Tη(pV )

vn(â, m̂) = v̂n, xn(m, sn) = xn, (vn, sn) ∈ Tnη (pV S)


(30)

where as earlier, (i) ρm,sn =

n⊗
t=1

ρx(m,sn)tst , (ii) (29) follows by summing over all possible choices for the corresponding

codewords, (iii) (30) holds for L ≥ η since the encoding rule guarantees a∗m,sn ∈ L(m, sn) and the latter set defined in (9)
contains indices corresponding to codewords that are jointly typical with the observed state sequence whenever α(m, sn) ≥ 1
and (iv) (30) is true since, as defined in (11), πv̂n is the zero projector if v̂n /∈ Tnη (pV ). This implies

E{T22} =
4

ql

∑
m,m̂
m 6=m̂

∑
(vn,sn)
∈Tnη (pV S)

∑
â

∑
v̂n∈Tnη (pV )

xn∈Xn

pnS(sn) tr
(
πY πv̂nπ

Y ρxn,sn
)
P

(
α(m, sn) ≥ 2n(L−η), V ∗(m, sn) = vn

V n(â,m) = v̂n, xn(m, sn) = xn

)
. (31)

For (vn, sn) ∈ Tnη (pV S) and m̂ 6= m, we have

P

(
α(m, sn) ≥ 2n(L−η), V ∗(m, sn) = vn

V n(â, m̂) = v̂n, Xn(m, sn) = xn

)
=

∑
a∈Vk

P

(
α(m, sn) ≥ 2n(L−η), a∗m,sn = a, V n(a,m) = vn

V n(â, m̂) = v̂n, Xn(m, sn) = xn,

)

≤
2n(H(V |S)+3η)pXV |S(xn, vn|sn)

q−k+2n2n(L−η)
, (32)
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where (32) follows from the same set of arguments that got us from (22) to (23). Substituting the above upper bound in (31),
we have

E{T22} ≤
4 · 2n(H(V |S)+3η)

q−k+l+2n · 2n(L−η)

∑
m,m̂
m6=m̂

∑
(vn,sn)
∈Tnη (pV S)

∑
â

∑
v̂n∈Tnη (pV )

xn∈Xn

tr
(
πY πv̂nπ

Y pXV S(xn, vn, sn)ρxn,sn
)

≤ 4 · 2n(H(V |S)+3η)

q−k+l+2n · 2n(L−η)

∑
m,m̂
m 6=m̂

∑
â

∑
v̂n∈

Tnη (pV )

tr
(
πY πv̂nπ

Y ρ⊗n
)

=
4 · 2n(H(V |S)+3η)

q−k+l+2n · 2n(L−η)

∑
m,m̂
m6=m̂

∑
â

∑
v̂n∈

Tnη (pV )

tr
(
πv̂nπ

Y ρ⊗nπY
)

(33)

≤ 4 · 2n(H(V |S)+3η)

q−k+l+2n · 2n(L−η)

∑
m,m̂
m 6=m̂

∑
â

∑
v̂n∈

Tnη (pV )

tr
(
πv̂nπ

Y
)
≤ 4 · 2n(H(V |S)+3η)

q−k+l+2n · 2n(L−η)

∑
m,m̂
m 6=m̂

∑
â

∑
v̂n∈

Tnη (pV )

tr(πv̂n) (34)

≤ 4 · 2n(H(V |S)+3η)

q−k+l+2n · 2n(L−η)

∑
m,m̂
m 6=m̂

∑
â

1 ≤ 4 · 2n(H(V |S)−H(Y )+H(V,Y )+12η)

q2n−2k−l · 2n(L−η)
(35)

≤ exp

{
−n
(
L−

[
k log q

n
− log q +H(V |S)

]
+ log q −H(V |Y )− k log

n
− l log

n

)}
(36)

where (33) follows from the operator inequality∑
(vn,sn)
∈Tnη (pV S)

∑
xn∈Xn

pXV S(xn, vn, sn)ρxn,sn ≤
∑

xn,sn,vn

∈Xn×Sn×Vn

pXV S(xn, vn, sn)ρxn,sn = ρ⊗n

which follows from the positivity of the density operators, (34) follows from the operator inequalities πY ρ⊗nπY ≤
2−n[H(Y )−3η]πY [22, Property 15.1.3] and πY ≤ I , (35) follows from tr(πv̂n) ≤ 2n[H(Y |V )+3η] for v̂n ∈ Tnη (pV ) [22,
Property 15.1.2] and |Tnη (pV )| ≤ 2n[H(V )+3η] and the last bound (36) follows by collating all exponents.

E. Collating Bounds and Characterization of a Single-letter achievable Rate Region

Through the above analysis, we have proved that for every choice of a finite field V = Fq and a PMF pSV X on S ×V ×X ,
there exists a code of block length n specified through an encoder e, a decoding POVM λ consisting of ql codewords with
error probability

ξ(e, λ) ≤ exp

{
−n
(
k log q

n
− [log q −H(V |S) + L− η]

)}
+ exp

{
−n
(
L−

[
k log q

n
− log q +H(V |S)

]
+ log q −H(V |Y )− k log

n

)}
+ exp

{
−n
(
L−

[
k log q

n
− log q +H(V |S)

]
+ log q −H(V |Y )− k log

n
− l log

n

)}
if L ≥ η > 0. By choosing L =∆ k log q

n − log q +H(V |S)− 4η we can guarantee ξ(e, λ) ≤ 3 exp {−nη} if

k log q

n
− log q +H(V |S) > 5η > 0 and

(k + l) log q

n
< log q −H(V |Y ) (37)

where are information quantities are computed with respect to the state defined in (7). We therefore choose

k log q

n
= log q −H(V |S) + 5η and

l log q

n
> H(V |S)−H(V |Y )− 5η = I(V ;Y )− I(V ;S)− 5η (38)

and guarantee ξ(e, λ) ≤ 3 exp {−nη}. This completes the proof.

APPENDIX A
CHARACTERIZATION OF THE QUANTUM STATES IN EVALUATION OF INFORMATION QUANTITIES FOR EX. 1

Consider Ex. 1 for θ ∈ (0, π2 ). In this appendix, we provide characterization of the quantum state in (1) for the choice
U1 = U2 = {0, 1}, pUj |Sj (1|0) = pUj |Sj (0|1) = τ = 1− pUj |Sj (0|0) = 1− pUj |Sj (1|1) and Xj = Uj ⊕ Sj for j ∈ [2], where
⊕ denotes addition mod−2. The characterizations below enable us compute the information quantities and thereby quantify
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the upper bound on the sum rate achievable via IID random codes. The latter is stated in our discussion prior to Sec. III-C.
For the choice of parameters stated earlier, the quantum state in (1) is

σY S1S2X1X2U1U2 =
∑
s1,s2

τ(1−τ)

4

[
1{s1⊕s2=0 }

|1〉〈1|+ 1{s1⊕s2=1 }
|vθ〉〈vθ|

]
⊗ |s1 s2〉〈s1 s2| ⊗

[
|0 1 s1 1⊕ s2〉〈0 1 s1 1⊕ s2|+
|1 0 1⊕ s1 s2〉〈1 0 1⊕ s1 s2|

]

+
∑
s1,s2

[
1{s1⊕s2=0 }

|0〉〈0|+ 1{s1⊕s2=1 }
∣∣v⊥θ 〉〈v⊥θ ∣∣]⊗ |s1 s2〉〈s1 s2| ⊗

[
(1−τ)2

4 |0 0 s1 s2〉〈0 0 s1 s2|+
τ2

4 |1 1 1⊕ s1 1⊕ s2〉〈1 1 1⊕ s1 1⊕ s2|

]
.

Partial tracing over the appropriate component systems, we have

σS1S2U1U2 =
∑
s1,s2

τ(1− τ)

4
(|s1 s2 1⊕ s1 s2〉〈s1 s2 1⊕ s1 s2|+ |s1 s2 s1 1⊕ s2〉〈s1 s2 s1 1⊕ s2|)

+
∑
s1,s2

τ2

4
|s1 s2 1⊗ s1 1⊕ s2〉〈s1 s2 1⊗ s1 1⊕ s2|+

∑
s1,s2

(1− τ)2

4
|s1 s2 s1 s2〉〈s1 s2 s1 s2| implying

σSjUj =
∑
sj

τ(1− τ) + τ2

2
|sj 1⊕ sj〉〈sj 1⊕ sj |+ σSjUj =

∑
sj

τ(1− τ) + (1− τ)2

2
|sj sj〉〈sj sj |

=
τ

2
|0 1〉〈0 1|+ τ

2
|1 0〉〈1 0|+ 1− τ

2
|0 0〉〈0 0|+ 1− τ

2
|1 1〉〈1 1| for j ∈ [2] and

σY U1U2 =
∑
s1,s2

τ(1−τ)

4

[
1{s1⊕s2=0 }

|1〉〈1|+ 1{s1⊕s2=1 }
|vθ〉〈vθ|

]
⊗
[
|s1 1⊕ s2〉〈s1 1⊕ s2|+ |1⊕ s1 s2〉〈1⊕ s1 s2|

]
+
∑
s1,s2

[
1{s1⊕s2=0 }

|0〉〈0|+ 1{s1⊕s2=1 }
∣∣v⊥θ 〉〈v⊥θ ∣∣]⊗ [ (1−τ)2

4 |s1 s2〉〈s1 s2|+ τ2

4 |1⊕ s1 1⊕ s2〉〈1⊕ s1 1⊕ s2|
]

=
2τ(1− τ)

4
|1〉〈1| ⊗ (|0 1〉〈0 1|+ |1 0〉〈1 0|) +

2τ(1− τ)

4
|vθ〉〈vθ| ⊗ (|0 0〉〈0 0|+ |1 1〉〈1 1|)

+

[
(1− τ)2 + τ2

4

] [
|0〉〈0| ⊗ (|0 0〉〈0 0|+ |1 1〉〈1 1|) +

∣∣v⊥θ 〉〈v⊥θ ∣∣ (|0 1〉〈0 1|+ |1 0〉〈1 0|)
]

implying

=

(
ε |1〉〈1|+ (1− ε)

∣∣v⊥θ 〉〈v⊥θ ∣∣)
4

⊗ (|0 1〉〈0 1|+ |1 0〉〈1 0|) +
(ε |vθ〉〈vθ|+ (1− ε) |0〉〈0|)

4
⊗ (|0 0〉〈0 0|+ |1 1〉〈1 1|) implying

σY =
ε

2
|1〉〈1|+ (1− ε)

2

∣∣v⊥θ 〉〈v⊥θ ∣∣+
ε

2
|vθ〉〈vθ|+

(1− ε)
2
|0〉〈0| , σU1U2 =

1

4

∑
u1,u2

|u1 u2〉〈u1 u2|

where ε = 2τ(1− τ).

APPENDIX B
PROOF OF PROP. 2 : BOUND ON T2

We begin by defining events

F1 =∆
{

V nj (aj ,mj)=v
n
j :j∈[2],Sn=sn

Wn(â,m̂)=ŵn,Wn(a⊕,m)=wn

}
,F2 =∆

{
Aj(mj ,s

n
j )

=aj :j∈[2]

}
∩ E

F3 =∆
{
Xnj (mj ,s

n
j )

=xnj :j∈[2]

}
, β =∆

{
(vnj ,s

n
j )∈Tη(pVjSj)

wn=vn1⊕qv
n
2 ,

}
, ω =∆

{
wn∈Tη(pW )
ŵn∈Tη(pW )

}
.

From the definition of a⊕ and the distribution of the random code, we have

P (F1 ∩ F2 ∩ F3)1β1ω ≤ P (F1)P (F3|F1 ∩ F2)1β1ω (39)

≤ 1

q3n
pS(sn)

2∏
j=1

pnXj |VjSj (x
n
j |vnj , snj )1β1ω (40)

≤ 2n(H(V1|S1)+2η)

q3n2−n(H(V2|S2))
pS(sn)

2∏
j=1

pnXjVj |Sj(x
n
j , v

n
j |snj )1β1ω (41)

= ΘpnSV X(sn, vn, xn)1β1ω where Θ =∆
2n(H(V1|S1)+2η)

q3n2−n(H(V2|S2))
(42)
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where (40) folows from the property of a uniformly distributed UCC proven in [2, Lemma 9 in Appendix E], (41) follows
from the presence of 1β in the factors. The term corresponding to T2 from (6), (5) in E{ξ(e, λ)} is∑

sn

pS(sn)E{T2}=
∑

a1,a2,v
n,sn,xn,wn

(â,m̂) 6=(a⊕,m),ŵn

tr
(
πYπŵnπ

Yρxn,sn
)
P

(
3⋂
k=1

Fk

)
1β1ω

≤ Θ
∑

a1,a2,w
n,ŵn

(â,m̂)6=(a⊕,m)

1ω tr

πYπŵnπY ∑
vn,sn,xn

pnSV X(sn, vn, xn)ρxn,sn1β

 (43)

≤ Θ
∑

a1,a2,w
n,ŵn

(â,m̂)6=(a⊕,m)

1ω tr
(
πYπŵnπ

Y pnW (wn)ρwn
)

(44)

≤ Θ
∑

a1,a2,ŵ
n

(â,m̂)6=(a⊕,m)

1ω tr
(
πYπŵnπ

Y ρ⊗n
)

= Θ
∑

a1,a2,ŵ
n

(â,m̂)6=(a⊕,m)

1ω tr
(
πŵnπ

Y ρ⊗nπY
)

≤ Θ

2nH(Y )σ

∑
a1,a2,ŵ

n

(â,m̂)6=(a⊕,m)

1ω tr
(
πŵnπ

Y
)

=
Θqk1+2k22n(H(Y,W )σ+6η)

2nH(Y )σq−l1−l2
(45)

≤ exp

{
−n

(
3 log q − H(W |Y )σ +

2∑
i=1

H(Ui|Si)σ −
k1 + 2k2 + l1 + l2

n
log q − 8η

)}
where (43) follows by substituting the upper bound (42), (44) follows from averaging the density operators and the fact that
density operators are positive, (45) follows again by averaging and cyclicity of the trace, (45) follows from the operator
inequality πY ρ⊗nπY ≤ 2−n(H(Y )σ−2η)πY and the fact that for typical ŵn, we have tr

(
πŵnπ

Y
)
≤ tr(πŵn) ≤ 2nH(Y |W )+2nη

and the last inequality follows by substituting the value of Θ from (42). We obtained the above bound on k1+2k2+l1+l2
n log q

since we have assumed k2 ≥ k1. In general, we obtain the bound∑
sn

pS(sn)E{T2} ≤ exp

{
−n

(
3 log q − H(W |Y )σ +

2∑
i=1

H(Ui|Si)σ −
k1 + k2 + max{k1, k2}+ l1 + l2

n
log q − 8η

)}
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