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Gaussian Data Privacy

Under Linear Function Recoverability

Ajaykrishnan Nageswaran†

Abstract

A user’s data is represented by a Gaussian random variable. Given a linear function of the data, a querier is

required to recover, with at least a prescribed accuracy level, the function value based on a query response provided

by the user. The user devises the query response, subject to the recoverability requirement, so as to maximize

privacy of the data from the querier. Recoverability and privacy are both measured by ℓ2-distance criteria. An exact

characterization is provided of maximum user data privacy under the recoverability condition. An explicit optimal

achievability scheme for the user is given whose privacy is shown to match a converse upper bound.

Index Terms

Gaussian data privacy, linear function computation, query response, recoverability

I. INTRODUCTION

A (legitimate) user’s data is represented by a Gaussian random variable (rv) and a querier wishes to compute

a given linear function of the data from a query response provided by the user. The query response is a suitably

randomized version of the data which the user constructs so as to enable the querier to recover the function value

with a prescribed accuracy. Under this recoverability requirement, the user wishes to maximize privacy of the data

from the querier. Both recoverability and privacy are measured by ℓ2-distance criteria.

The contributions of this paper are as follows. In our formulation, the user-provided query response should be

such that its expected ℓ2-distance from the function value is no greater than ρ, ρ ≥ 0. Under this recoverability

constraint, we consider a notion of privacy measured by the expected ℓ2-distance between the user data and the

querier’s best estimate of it based on the query response, i.e., the corresponding minimum mean-square estimation

error (MMSE). We provide an exact characterization of maximum privacy under the ρ-recoverablity requirement

as a function of ρ, and specify an explicit query response that attains it. This maximum privacy is shown to be

a nondecreasing piecewise affine function of ρ, and depends on the linear mapping only through its rank and

singular values. The user implements the optimal query response by attenuating the function value and adding to it

a suitable independent Gaussian noise. This query response constitutes a multidimensional extension of a scheme

in [22] in the separate context of maximizing the MMSE in estimating a one-dimensional Gaussian rv on the basis

of a one-dimensional randomized version of it under a constraint on the expected ℓ2-distance between the input

and the randomized output, where the maximization is over all possible randomization mechanisms satisfying the

constraint.

This work is motivated by applications involving analog user data in a database which then must release functional

information to a querying consumer. An important goal is to preserve user data privacy while ensuring high accuracy

of the released information. For example, when analog biometric data, such as fingerprint or voice patterns, are

collected and certain attributes are released, an objective is to safeguard the privacy of individual user data while

ensuring high utility of the released information.

Our approach is in the spirit of prior works [21], [13], [4], [12], [16], [17], [18] that deal with maximizing data

privacy for a given level of utility of a randomized function of the data. Specifically, for example, in [21], [13], [4],

a setting where a user possesses private finite-valued data with associated nonprivate correlated data is considered.

A randomized version of the nonprivate data is released publicly. The utility constraint is that the expected distortion
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between the nonprivate and public data should be no more than a specified level. The public data is designed by

the user in such a way that privacy measured in terms of the mutual information between the private and public

data is maximized. Next, in [16], [17], user data is represented by a finite-valued rv and a querier which wishes to

compute a given function of user data. Privacy is gauged in terms of probability of error incurred by the querier in

estimating the user data based on a query response that is a user-provided randomized version of the data. Privacy is

maximized under a constraint on the utility of the query response as measured by a conditional probability of error

criterion. In all these works, the data that is considered is of the digital type. Our work is motivated by applications

involving analog data. This work is a preliminary Gaussian counterpart of our earlier works on data privacy under

function recoverability for a finite-valued rv [16], [17]; notions of privacy and recoverability are different, as is the

technical approach.

Related works in [1], [2] deal with private and nonprivate correlated data with a given joint distribution. In [1],

a Gaussian noise independent of the private and nonprivate data is added to the latter and released publicly. The

parameters of the Gaussian noise are obtained as a result of minimizing the MMSE in estimating the nonprivate

data from the public data. This minimization is done under a constraint on the MMSE in estimating the private

data from the public data. In [2], first a Gaussian noise independent of the private and nonprivate data is added

to the latter, and the sum is quantized and released publicly. In this case, the parameters of the Gaussian noise

are obtained as a result of maximizing the mutual information between the public and nonprivate data under a

constraint on the mutual information between the public and private data. In another related work in [5], motivated

by MMSE as a measure of information leakage, a neural network-based estimator of MMSE is characterized. These

works involve maximizing recoverability under a privacy constraint. In contrast, our goal is to maximize privacy

under a recoverability constraint.

An important movement in data privacy that has dominated attention over the years is differential privacy,

introduced in [6], [7] and explored further in [14], [3], [11], [15], among others. Consider a data vector that

represents multiple users’ data. The notion of differential privacy requires that altering a data vector slightly leads

only to a near-indistinguishable change in the corresponding probability distribution of the output of the data release

mechanism, which is a randomized function of the data vector. A large body of work exists that seeks to maximize

function recoverability under a differential privacy constraint, by minimizing a discrepancy cost between function

value and randomized output; cf. e.g., [10], [8], [9]. Our alternative approach, i.e., maximizing privacy under a

recoverability constraint, can be viewed as a complement to this body of work.

Our model for ρ-recoverable linear function computation with associated privacy is described in Section II and

the derivation of ρ-privacy is given in Section III. A closing discussion is contained in Section IV.

II. PRELIMINARIES

Let a user’s data be represented by a R
n-valued redundant Gaussian rv X ∼ N (0, In) with covariance matrix

In, n ≥ 1, the identity matrix of size n. A querier – who does not know X – wishes to compute a given linear

function of the user data AX, where A ∈ R
m×n and has rank 1 ≤ r ≤ min {m,n}. The querier obtains from the

user a query response (QR) Z that is a R
m-valued rv generated by a conditional distribution PZ|X . A QR Z must

satisfy the following recoverability condition.

Definition 1. Given ρ ≥ 0, a QR Z is ρ-recoverable if

E

[

‖AX − Z‖2
]

≤ ρ, (1)

where the expectation is with respect to the distribution of (X,Z). Such a ρ-recoverable Z will be termed ρ-QR.

We note that the distribution of Z will depend, in general, on ρ.

Definition 2. Given ρ ≥ 0, the privacy of a ρ-QR Z satisfying (1) is

πρ(Z) , inf
g

E

[

‖X − g (Z)‖2
]

= mmse (X|Z) (2)

where the infimum is taken over all (Borel) measurable estimators g : Rm → R
n of X on the basis of Z . Clearly,

the infimum in (2) is attained by an MMSE estimator so that πρ(Z) is mmse(X|Z), where mmse(X|Z) denotes

the MMSE in estimating X on the basis of Z .



3

Definition 3. Given ρ ≥ 0, the maximum privacy that can be attained by a ρ-QR Z is termed ρ-privacy and denoted

by π (ρ) , i.e.,

π (ρ) , sup
PZ|X :E[‖AX−Z‖2]≤ρ

πρ (Z) . (3)

Our objective is to characterize ρ-privacy π(ρ), ρ ≥ 0, and identify a ρ-QR that achieves it. This objective is

addressed in Section III.

III. ρ-PRIVACY

Theorem 1 below provides an exact characterization of ρ-privacy in (3). This is done by obtaining first an upper

bound (converse) for π(ρ), ρ ≥ 0, and then identifying a ρ-QR whose privacy meets the bound (achievability).

Throughout the rest of the paper, we consider a particular singular value decomposition of1

A = USV T , (4)

where U and V are, respectively, m×m- and n×n-orthonormal matrices. In2 (4), the m×n matrix S containing

the singular values of A and represented by

Sij =

{

sk, i = j = k, k = 1, . . . , r

0, otherwise, i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},
(5)

is such that

0 < s1 ≤ · · · ≤ sr, (6)

where s1, . . . , sr are the nonzero singular values of A. Let S̃ be the r × n-matrix consisting of the first r rows of

S; the remaining m− r rows of S are all-zero rows.

Recalling that U and V are orthonormal matrices and using (4), (5), standard calculations, repeated in Appendix A

for the sake of completeness, show that var(AX) = tr
(

AAT
)

=
r
∑

i=1
s2i and

mmse (X|AX) = n− r. (7)

Theorem 1. ρ-privacy equals

π(ρ) = n− r +min



















ρ

s21
, 1 +

ρ− s21
s22

, . . . , r − 1 +

ρ−
r−1
∑

i=1
s2i

s2r
, r



















, ρ ≥ 0. (8)

Remarks:

(i) By Theorem 1 and (6),

π(ρ) =



















































n− r + ρ
s2
1

, 0 ≤ ρ ≤ s21

n− r + 1 + ρ−s2
1

s2
2

, s21 ≤ ρ ≤ s21 + s22
...

...

n− r + r − 1 +
ρ−

r−1
∑

i=1

s2i

s2r
,

r−1
∑

i=1
s2i ≤ ρ ≤

r
∑

i=1
s2i

n, ρ ≥
r
∑

i=1
s2i ,

(9)

is piecewise affine in ρ. For example, a plot of π(ρ) vs. ρ is given in Fig. 1 for n = 5, m = r = 3, s1 =
2, s2 = 3 and s3 = 4.

1Some notation relevant for the rest of the paper: For a matrix B, we denote its transpose and trace by BT and tr(B), respectively. For

a rv Y , var(Y ) will denote the trace of the covariance matrix of Y .
2The columns of U and columns of V are the left-singular vectors and right-singular vectors of A, respectively.
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(ii) In particular, for ρ = 0, π(ρ) = n− r which, from (7), is the error of an MMSE estimator of X on the basis

of AX. For ρ ≥
r
∑

i=1
s2i = tr

(

AAT
)

= var(AX), π(ρ) = n = var(X) is the error of a MMSE estimator of X

without any observation.

(iii) ρ-privacy π(ρ), ρ ≥ 0, is a nonincreasing function of each individual singular value when the remaining r−1
singular values are fixed.

π(ρ)

ρ
4 13 29

2

3

4

5

Fig. 1: π(ρ) vs. ρ.

The following Lemmas 2 and 3 are pertinent to the proof of Theorem 1. Their proofs are relegated to Appendix B.

Lemma 2. For ρ ≥ 0,

sup
PZ|X :E[‖AX−Z‖2]≤ρ

inf
g

E

[

‖X − g(Z)‖2
]

= sup
PZ̄|X :E

[

‖SV TX−Z̄‖
2
]

≤ρ

inf
g

E

[

∥

∥X − g(Z̄)
∥

∥

2
]

, (10)

where the R
m-valued rv Z̄ represents a generic stand-in for a ρ-QR under recoverability of SV TX.

Remark: Since V is orthonormal and X ∼ N (0, In), X̄ = V TX has the same distribution as X. Hence, the

right-side of (10) can be interpreted as ρ-privacy under recoverability of SX̄, X̄ ∼ N (0, In). For reasons of ease

of notation, we do not use this observation for the proof of Theorem 1.

The significance of Lemma 2 is that ρ-privacy under recoverability of AX from Z is equivalent to ρ-privacy

under recoverability of SV TX from Z̄ . Recalling that S̃ is the r × n-matrix consisting of the r nonzero rows

of S, the covariance matrix of the R
r-valued rv S̃V TX is a diagonal matrix S̃S̃T , an observation that facilitates

establishing the converse for the proof of Theorem 1.

The following notation is relevant for the rest of the paper. For given R
m-valued rvs Φ and φ, let the components

of Φ− φ be denoted by [(Φ− φ)1 , . . . , (Φ− φ)m]T .

Lemma 3. For ρ ≥ 0,

sup
PZ̄|X :E

[

‖SV TX−Z̄‖
2
]

≤ρ

inf
g

E

[

∥

∥X − g(Z̄)
∥

∥

2
]

= sup
PZ̃|X :E

[

‖S̃V TX−Z̃‖
2
]

≤ρ

E

[

|(S̃V TX−Z̃)
i
|
2
]

≤s2i ,

i=1,...,r

inf
g

E

[

∥

∥

∥
X − g(Z̃)

∥

∥

∥

2
]

, (11)

where the R
r-valued rv Z̃ represents a generic stand-in for a ρ-QR under recoverability of S̃V TX and satisfies

the additional constraints given under the supremum in the right-side of (11).

By Lemma 3, we can restrict the class of ρ-QRs Z̄ for recovering SV TX in Lemma 2 to those specified Z̃ for

the recoverability of S̃V TX, as detailed under the supremum in the right-side of (11) without any loss in ρ-privacy.
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Proof of Theorem 1: Using Lemmas 2 and 3, we get in (3) that

π(ρ) = sup
PZ|X :E[‖AX−Z‖2]≤ρ

inf
g

E

[

‖X − g(Z)‖2
]

= sup
PZ̄|X :E

[

‖SV TX−Z̄‖
2
]

≤ρ

inf
g

E

[

∥

∥X − g(Z̄)
∥

∥

2
]

= sup
PZ̃|X :E

[

‖S̃V TX−Z̃‖
2
]

≤ρ

E

[

|(S̃V TX−Z̃)
i
|
2
]

≤s2i ,

i=1,...,r

inf
g

E

[

∥

∥

∥
X − g(Z̃)

∥

∥

∥

2
]

. (12)

We establish (8), with (12) serving as the springboard. First, we prove a converse proof showing that π(ρ) cannot

exceed the right-side of (12). Then an achievability proof shows the reverse inequality by identifying an explicit

ρ-QR that attains the right-side of (12) as ρ-privacy.

Starting with the converse, we have that for every R
r-valued rv Z̃ , generated according to a PZ̃|X satisfying the

constraints in the right-side of (12),

E

[

∥

∥

∥
S̃V TX − Z̃

∥

∥

∥

2
]

≤ ρ, E

[

∣

∣

∣

(

S̃V TX − Z̃
)

i

∣

∣

∣

2
]

≤ s2i , i = 1, . . . , r, (13)

so that

inf
g

E

[

∥

∥

∥
X − g(Z̃)

∥

∥

∥

2
]

≤ E

[

∥

∥

∥

∥

X − V S̃T
(

S̃S̃T
)−1

Z̃

∥

∥

∥

∥

2
]

(14)

= E

[

∥

∥

∥

∥

X − V S̃T
(

S̃S̃T
)−1

S̃V TX + V S̃T
(

S̃S̃T
)−1

S̃V TX − V S̃T
(

S̃S̃T
)−1

Z̃

∥

∥

∥

∥

2
]

= E

[

∥

∥

∥

∥

X − V S̃T
(

S̃S̃T
)−1

S̃V TX

∥

∥

∥

∥

2
]

+ E

[

∥

∥

∥

∥

V S̃T
(

S̃S̃T
)−1

S̃V TX − V S̃T
(

S̃S̃T
)−1

Z̃

∥

∥

∥

∥

2
]

+ 2E

[

XT

(

In − V S̃T
(

S̃S̃T
)−1

S̃V T

)T

V S̃T
(

S̃S̃T
)−1 (

S̃V TX − Z̃
)

]

= mmse
(

X|S̃V TX
)

+ E

[

∥

∥

∥

∥

V S̃T
(

S̃S̃T
)−1 (

S̃V TX − Z̃
)

∥

∥

∥

∥

2
]

(15)

+ 2E

[

XT

(

S̃V T − S̃V TV S̃T
(

S̃S̃T
)−1

S̃V T

)T
(

S̃S̃T
)−1 (

S̃V TX − Z̃
)

]

= mmse(X|UTAX) + E

[

∥

∥

∥

∥

S̃T
(

S̃S̃T
)−1 (

S̃V TX − Z̃
)

∥

∥

∥

∥

2
]

(16)

= mmse(X|AX) +

r
∑

i=1

1

s2i
E

[

∣

∣

∣

(

S̃V TX − Z̃
)

i

∣

∣

∣

2
]

(17)

= n− r +

r
∑

i=1

1

s2i
E

[

∣

∣

∣

(

S̃V TX − Z̃
)

i

∣

∣

∣

2
]

, (18)

where: (14) uses the MMSE estimator of X on the basis of S̃V TX, leading to the first term in (15); the first term

in (16) is obtained since S̃ is the matrix consisting of the nonzero rows of S and (4); the second terms in (16)
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and (17), and the first term in (18), are obtained by the orthonormality of V , (5) and (7), respectively. Considering

the second term in the right-side of (18), for t = 0, 1, . . . , r,

r
∑

i=1

1

s2i
E

[

∣

∣

∣

(

S̃V TX − Z̃
)

i

∣

∣

∣

2
]

=

t
∑

i=1

1

s2i
E

[

∣

∣

∣

(

S̃V TX − Z̃
)

i

∣

∣

∣

2
]

+

r
∑

i=t+1

1

s2i
E

[

∣

∣

∣

(

S̃V TX − Z̃
)

i

∣

∣

∣

2
]

(19)

≤
t
∑

i=1

1

s2i
E

[

∣

∣

∣

(

S̃V TX − Z̃
)

i

∣

∣

∣

2
]

+
1

s2t+1

r
∑

i=t+1

E

[

∣

∣

∣

(

S̃V TX − Z̃
)

i

∣

∣

∣

2
]

, using (6)

=

t
∑

i=1

(

1

s2i
−

1

s2t+1

)

E

[

∣

∣

∣

(

S̃V TX − Z̃
)

i

∣

∣

∣

2
]

+
1

s2t+1

r
∑

i=1

E

[

∣

∣

∣

(

S̃V TX − Z̃
)

i

∣

∣

∣

2
]

≤
t
∑

i=1

(

1

s2i
−

1

s2t+1

)

s2i +
ρ

s2t+1

, using (13)

= t+

ρ−
t
∑

i=1
s2i

s2t+1

, (20)

from3 which we get

r
∑

i=1

1

s2i
E

[

∣

∣

∣

(

S̃V TX − Z̃
)

i

∣

∣

∣

2
]

≤ min



















ρ

s21
, 1 +

ρ− s21
s22

, . . . , r − 1 +

ρ−
r−1
∑

i=1
s2i

s2r
, r



















. (21)

Using (21) in (18), the right-side of (12), and therefore π(ρ), is bounded above as

π(ρ) ≤ n− r +min



















ρ

s21
, 1 +

ρ− s21
s22

, . . . , r − 1 +

ρ−
r−1
∑

i=1
s2i

s2r
, r



















. (22)

Next, we demonstrate achievability of the privacy in the right-side of (12) by describing explicitly a ρ-QR for

the purpose. This ρ-QR represents an extension of the scheme in [22, Theorem 13] in the separate context of

maximizing (i.e., under worst-case noise) the MMSE of estimating a one-dimensional Gaussian rv on the basis of

a one-dimensional noisy version of it under a constraint on the expected ℓ2-distance between the input and the

noisy output. The scheme in [22, Theorem 13] has the structure of attenuation of the input followed by additive

independent Gaussian noise which will be the case for our achievability scheme, too, and is therefore an extension.

To this end, by Lemmas 2, 3, it suffices to show a ρ-QR Z̃ = Z̃o for the recoverability of S̃V TX and satisfies the

constraints in (13). Our ρ-QR is the R
r-valued rv given by

Z̃o = DaS̃V
TX +DnoN (23)

where

Da = diag

(

1−
ρ1

s21
, . . . , 1−

ρr

s2r

)

,

Dno = diag

(
√

ρ1 −
ρ21
s21

, . . . ,

√

ρr −
ρ2r
s2r

)

(24)

3In the right-side of (19), the first and second terms are vacuous for t = 0 and t = r, respectively. In the right-side of (20), the second

term and the summation in the second term are vacuous for t = r and t = 0, respectively.
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where diag(d1, . . . , dr) denotes a diagonal matrix with (diagonal) elements (d1, . . . , dr), and

N ∼ N (0, Ir) is a R
r-valued zero-mean Gaussian rv independent of X. Thus, Z̃o entails attenuating S̃V TX by

Da and contaminating it with an additive independent Gaussian noise DnoN . The values of ρ1, . . . , ρr in (24) are

chosen for various ranges of values of ρ as follows.

• 0 ≤ ρ ≤ s21 : ρ1 = ρ, ρ2 = · · · = ρr = 0;

• s21 ≤ ρ ≤ s21 + s22 : ρ1 = s21, ρ2 = ρ− s21, ρ3 = · · · = ρr = 0;

• s21 + s22 ≤ ρ ≤ s21 + s22 + s23 : ρ1 = s21, ρ2 = s22, ρ3 = ρ− s21 − s22, ρ4 = · · · = ρr = 0;

...

•
r−1
∑

i=1

s2i ≤ ρ ≤
r
∑

i=1

s2i : ρ1 = s21, . . . , ρr−1 = s2r−1, ρr = ρ−
r−1
∑

i=1

s2i ;

• ρ ≥
r
∑

i=1

s2i : ρ1 = s21, . . . , ρr = s2r.

(25)

We show in Appendix C that Z̃o as in (23), (24), (25) satisfies the constraints in (13) (with Z̃ = Z̃o). Observing

that X and Z̃o are jointly Gaussian, we have that the right-side of (12) is bounded below by

inf
g

E

[

∥

∥

∥
X − g(Z̃o)

∥

∥

∥

2
]

= mmse
(

X|Z̃o

)

= E

[

∥

∥

∥

∥

X − E

[

XZ̃T
o

] (

E

[

Z̃oZ̃
T
o

])−1
Z̃o

∥

∥

∥

∥

2
]

= E

[

(

X − E

[

XZ̃T
o

] (

E

[

Z̃oZ̃
T
o

])−1
Z̃o

)T

X

]

= tr
(

E
[

XXT
])

− tr

(

E

[

XZ̃T
o

] (

E

[

Z̃oZ̃
T
o

])−1
E

[

Z̃oX
T
]

)

= tr (In)− tr

(

InV S̃TDT
a

(

DaS̃V
T InV S̃TDT

a +DnoIrD
T
no

)−1
DaS̃V

T In

)

= n− tr

(

S̃TDT
a

(

DaS̃S̃
TDT

a +DnoD
T
no

)−1
DaS̃

)

, since V is orthonormal (26)

= n− r +

r
∑

i=1

ρi

s2i
, (27)

where the second term in the right-side of (26) is calculated using

DaS̃S̃
TDT

a = diag

(

s21 +
ρ21
s21

− 2ρ1, . . . , s
2
r +

ρ2r
s2r

− 2ρr

)

,

DnoD
T
no = diag

(

ρ1 −
ρ21
s21

, . . . , ρr −
ρ2r
s2r

)

,

and for i ∈ {1, . . . , r} , j ∈ {1, . . . ,m},

(

DaS̃
)

ij
=

{

sk −
ρk

sk
, i = j = k, k = 1, . . . , r

0, otherwise,

and

S̃TDT
a

(

DaS̃S̃
TDT

a +DnoD
T
no

)−1
DaS̃ = diag

(

1−
ρ1

s21
, . . . , 1 −

ρr

s2r

)

.

By recalling the equivalence of the right-sides of (8) and (9) and substituting (25) in (27), we get that the right-side
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of (12), and therefore π(ρ), is bounded below as

π(ρ) ≥ n− r +min



















ρ

s21
, 1 +

ρ− s21
s22

, . . . , r − 1 +

ρ−
r−1
∑

i=1
s2i

s2r
, r



















. (28)

The theorem follows from (22) and (28). �

Remark: Recalling (4), let Ũ be the m × r-matrix containing the first r columns of U . The achievability scheme

Z̃o = DaS̃V
TX + DnoN (23) is for maximizing privacy under recoverability of S̃V TX. The corresponding

achievability scheme or ρ-QR for the recoverability of AX, denoted by Zo, is Zo = ŨDaŨ
TAX + ŨDnoN which

can be shown readily from the proof of Lemma 2, and also has the same features of attenuation and independent

additive Gaussian noise.

We conclude this section by extending ρ-privacy to the case when the querier wishes to compute an affine

function AX + b of the Gaussian user data X ∼ N (0, In) , n ≥ 1, for a given A as in Section II, and b ∈ R
m.

In Definition 1, (3) becomes

π(ρ) = sup
PZ|X :E[‖AX+b−Z‖2]≤ρ

inf
g

E

[

‖X − g (Z)‖2
]

(29)

= sup
PZ|X :E[‖AX−(Z−b)‖2]≤ρ

inf
g

E

[

‖X − g (Z − b)‖2
]

= sup
PẐ|X :E

[

‖AX−Ẑ‖
2
]

≤ρ

inf
g

E

[

∥

∥

∥
X − g

(

Ẑ
)
∥

∥

∥

2
]

from which we conclude that π(ρ) as in (29) is equal to the right-side of (8). Observe that π(ρ) does not depend

on b, as is to be expected.

IV. DISCUSSION

We give a heuristic explanation of the form of π(ρ) in (8). By Lemma 2, note that the recoverability of

AX is equivalent to the recoverability of SV TX, and therefore S̃V TX, which consists of r components. We

recall that S̃ is the matrix composed of the r nonzero rows of S, due to which AX consists effectively of r

components corresponding to the r singular values of A. At ρ = 0, the querier is provided the exact value of

AX. From (23), (24), (25), observe that as ρ increases to s21, the component of AX corresponding to the smallest

singular value of A is concealed from the querier. As ρ increases further, more components of AX are hidden

from the querier, with each subsequent component corresponding to a larger singular value of A. This explains

the piecewise affine form of π(ρ), ρ ≥ 0, in (8). Therefore, for lower values of ρ, i.e., in the high recoverability

regime, only those components that correspond to smaller singular values of A, can be concealed from the querier.

This work is an initial foray into tackling the larger objective of characterizing data privacy under function

recoverability, where the data is of the analog type. Therefore, several open questions remain some of which are

stated next.

For reasons of mathematical tractability, we have assumed that the covariance matrix of the Gaussian user data X

is In. The problem of computing ρ-privacy for an arbitrary (positive-definite) covariance is open. We conjecture that

the form of π(ρ) (piecewise affine in ρ) and the structure of the achievability scheme (attenuation and independent

additive Gaussian noise) in Theorem 1, will hold.

A natural extension of this work involves the querier obtaining from the user multiple QRs each satisfying

the ρ-recoverabilty condition. Specifically, given user data X ∼ N (0, In), a querier receives multiple ρ-QRs

Z1, . . . , Zt, t ≥ 1, each satisfying (1) and generated by conditional distributions PZ1|X , . . . , PZt|X . The ρ-QRs

are taken to be conditionally mutually independent, conditioned on X, but not necessarily identically distributed.

Correspondingly, for each ρ ≥ 0 and t ≥ 1, the ρ-privacy πt(ρ) is defined as

πt(ρ) = sup
PZ1|X ,...,PZt|X :

E[‖AX−Zi‖
2]≤ρ, i=1,...,t

inf
gt

E

[

‖X − gt (Z1, . . . , Zt)‖
2
]
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where the infimum is taken over all estimators gt : R
m×t → R

n of X on the basis of Z1, . . . , Zt. The task is to

characterize πt(ρ) and obtain the rate of decay of πt(ρ) with t. A candidate for the for ρ-QRs is (23) with mutually

independent Gaussian noise rvs added to them. Will this be optimal in attaining πt(ρ)?
Another broader extension of this work entails recoverability and privacy being measured by ℓp-distance and

ℓq-distance criteria, p, q ≥ 1, respectively. We seek a characterization of πp,q(ρ) given by

πp,q(ρ) = sup
PZ|X :E[‖AX−Z‖p]≤ρ

inf
g

E [‖X − g(Z)‖q] .

Does the structure of the solution in Theorem 1 change?

Finally, it is also of interest to examine ρ-privacy under recoverability of an arbitrary but given measurable

function f : Rn → R
m, m ≥ 1, not limited to being linear. This problem, of a more demanding nature due to the

(possible) nonlinearity of the mapping f , requires a new approach.

APPENDIX A

CALCULATION OF VAR(AX) AND MMSE (X|AX)

We have

var(AX) = tr
(

AAT
)

= tr
(

USV TV STUT
)

= tr
(

USSTUT
)

= tr
(

SST
)

=

r
∑

i=1

s2i .

Next, noting that X and AX = USV TX are jointly Gaussian, we have

mmse (X|AX) = mmse
(

X|USV TX
)

= E

[

∥

∥

∥

∥

X − E

[

X
(

USV TX
)T
] (

E

[

USV TX
(

USV TX
)T
])−1

USV TX

∥

∥

∥

∥

2
]

= E

[

(

X − E

[

X
(

USV TX
)T
] (

E

[

USV TX
(

USV TX
)T
])−1

USV TX

)T

X

]

= tr
(

E
[

XXT
])

− tr

(

E

[

X
(

USV TX
)T
] (

E

[

(

USV TX
) (

USV TX
)T
])−1

E
[

USV TXXT
]

)

= tr (In)− tr
(

InV STUT
(

USV T InV STUT
)−1

USV T In

)

= n− tr
(

ST
(

SST
)−1

S
)

= n− r.

APPENDIX B

PROOFS OF LEMMAS 2, 3

Proof of Lemma 2: Recalling (4), we have

E

[

‖AX − Z‖2
]

= E

[

∥

∥U
(

UTAX − UTZ
)
∥

∥

2
]

= E

[

∥

∥SV TX − UTZ
∥

∥

2
]

,

from which we get

sup
PZ|X :E[‖AX−Z‖2]≤ρ

inf
g

E

[

‖X − g(Z)‖2
]

= sup
PZ|X :E[‖SV TX−UTZ‖2]≤ρ

inf
g

E

[

∥

∥X − g(UTZ)
∥

∥

2
]

= sup
PZ̄|X :E

[

‖SV TX−Z̄‖
2
]

≤ρ

inf
g

E

[

∥

∥X − g(Z̄)
∥

∥

2
]

, since U is orthonormal.

�
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Proof of Lemma 3: Since the supremum in the right-side of (11) is over a restricted set compared with the left-side,

it suffices to show that (11) holds with “≤,” i.e.,

sup
PZ̄|X :E

[

‖SV TX−Z̄‖
2
]

≤ρ

inf
g

E

[

∥

∥X − g(Z̄)
∥

∥

2
]

≤ sup
PZ̃|X :E

[

‖S̃V TX−Z̃‖
2
]

≤ρ

E

[

|(S̃V TX−Z̃)
i
|
2
]

≤s2i ,

i=1,...,r

inf
g

E

[

∥

∥

∥
X − g(Z̃)

∥

∥

∥

2
]

. (30)

Since S contains only r nonzero rows, SV TX in the left-side of (11) is a R
m-valued rv containing at most r

nonzero elements. Recalling that S̃ is the r × n-matrix consisting of the nonzero rows of S, it is easily seen that

sup
PZ̄|X :E

[

‖SV TX−Z̄‖
2
]

≤ρ

inf
g

E

[

∥

∥X − g(Z̄)
∥

∥

2
]

= sup
PŽ|X :E

[

‖S̃V TX−Ž‖
2
]

≤ρ

inf
g

E

[

∥

∥X − g(Ž)
∥

∥

2
]

(31)

where Ž is a R
r-valued rv denoting a ρ-QR under recoverability of S̃V TX. For every R

r-valued rv Ž =
[

Ž1, . . . , Žr

]T
, consider the R

r-valued rv Z̃ given by

Z̃ =

[

Ž11

(

E

[

∣

∣

∣

(

S̃V TX − Ž
)

1

∣

∣

∣

2
]

≤ s21

)

, . . . , Žr1

(

E

[

∣

∣

∣

(

S̃V TX − Ž
)

r

∣

∣

∣

2
]

≤ s2r

)]T

. (32)

Observe that

E

[

∣

∣

∣

(

S̃V TX − Z̃
)

i

∣

∣

∣

2
]

=















E

[

∣

∣

∣

(

S̃V TX − Ž
)

i

∣

∣

∣

2
]

, E

[

∣

∣

∣

(

S̃V TX − Ž
)

i

∣

∣

∣

2
]

≤ s2i

s2i , E

[

∣

∣

∣

(

S̃V TX − Ž
)

i

∣

∣

∣

2
]

> s2i

(33)

≤ E

[

∣

∣

∣

(

S̃V TX − Ž
)

i

∣

∣

∣

2
]

, i = 1, . . . , r,

from which, owing to the constraint under the supremum in the right-side of (31), we get

E

[

∥

∥

∥
S̃V TX − Z̃

∥

∥

∥

2
]

≤ E

[

∥

∥

∥
S̃V TX − Ž

∥

∥

∥

2
]

≤ ρ. (34)

Since

X −◦− Ž −◦− Z̃,

and using data processing inequality for MMSE [23], [22], we get

inf
g

E

[

∥

∥X − g(Ž)
∥

∥

2
]

≤ inf
g

E

[

∥

∥

∥
X − g(Z̃)

∥

∥

∥

2
]

. (35)

We have shown that for every R
r-valued rv Ž that satisfies the ρ-recoverability constraint, there exists another

R
r-valued rv Z̃ (32) that also satisfies the ρ-recoverability constraint (34) and additionally, due to (33), meets the

constraints

E

[

∣

∣

∣

(

S̃V TX − Z̃
)

i

∣

∣

∣

2
]

≤ s2i , i = 1, . . . , r. (36)

Therefore, using (34), (35), (36), we get

sup
PŽ|X :E

[

‖S̃V TX−Ž‖
2
]

≤ρ

inf
g

E

[

∥

∥X − g(Ž)
∥

∥

2
]

≤ sup
PZ̃|X :E

[

‖S̃V TX−Z̃‖
2
]

≤ρ

E

[

|(S̃V TX−Z̃)
i
|
2
]

≤s2i ,

i=1,...,r

inf
g

E

[

∥

∥

∥
X − g(Z̃)

∥

∥

∥

2
]

,

which along with (31) gives (30). �
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APPENDIX C

VERIFICATION THAT Z̃o SATISFIES (13)

For i = 1, . . . , r,

E

[

∣

∣

∣

(

S̃V TX − Z̃o

)

i

∣

∣

∣

2
]

= E

[

∣

∣

∣

(

S̃V TX −DaS̃V
TX −DnoN

)

i

∣

∣

∣

2
]

= E

[

∣

∣

∣

(

S̃V TX −DaS̃V
TX
)

i

∣

∣

∣

2
]

+ ρi −
ρ2i
s2i

=
ρ2i
s2i

+ ρi −
ρ2i
s2i

= ρi (37)

≤ s2i .

Next,

E

[

∥

∥

∥
S̃V TX − Z̃o

∥

∥

∥

2
]

=

r
∑

i=1

E

[

∣

∣

∣

(

S̃V TX −DaS̃V
TX −DnoN

)

i

∣

∣

∣

2
]

=

r
∑

i=1

ρi, using (37)

= ρ.

ACKNOWLEDGMENTS

The author thanks Prakash Narayan for the many helpful discussions of this work from [20] and detailed comments

on this manuscript. The author also thanks Shun Watanabe for useful discussions and an anonymous referee [19]

for the observation contained in the Remark after Lemma 2.

REFERENCES

[1] S. Asoodeh, F. Alajaji and T. Linder, “Privacy-aware MMSE estimation,” in IEEE International Symposium on Information Theory

(ISIT), pp. 1989-1993, July 2016.

[2] S. Asoodeh, M. Diaz, F. Alajaji and T. Linder, “Information extraction under privacy constraints,” Information, 2016; 7(1):15.

[3] R. Bassily, A. Groce, J. Katz and A. Smith, “Coupled-world privacy: Exploiting adversarial uncertainty in statistical data privacy,” in

Foundations of Computer Science, pp. 439-448, Oct. 2013.

[4] F. du P. Calmon, A. Makhdoumi, M. Médard, M. Varia, M. Christiansen and K. R. Duffy, “Principal inertia components and applications,”

IEEE Transactions on Information Theory, vol. 63, no. 8, pp. 5011-5038, Aug. 2017.

[5] M. Diaz, P. Kairouz, J. Liao and L. Sankar, “Neural network-based estimation of the MMSE,” in IEEE International Symposium on

Information Theory, pp. 1023-1028, 2021.

[6] C. Dwork, “Differential privacy,” in International Colloquium on Automata, Languages and Programming, pp 1-12, July 2006.

[7] C. Dwork, F. McSherry, K. Nissim and A. Smith, “Calibrating noise to sensitivity in private data analysis,” in Theory of Cryptography

Conference, pp. 265-284, March 2006.

[8] Q. Geng and P. Viswanath, “The optimal noise-adding mechanism in differential privacy,” IEEE Transactions on Information Theory,

vol. 62, no. 2, pp. 925-951, 2016.
[9] Q. Geng, W. Ding, R. Guo and S. Kumar, “Tight analysis of privacy and utility tradeoff in approximate differential privacy,” in

International Conference on Artificial Intelligence and Statistics, pp. 89-99, 2020.

[10] M. Hardt and K. Talwar, “On the geometry of differential privacy,” in ACM Symposium on Theory of Computing, pp. 705-714, 2010.

[11] S. P. Kasiviswanathan and A. Smith, “On the semantics of differential privacy: A Bayesian formulation,” Journal of Privacy and

Confidentiality, vol. 6, no. 1, Aug. 2014.

[12] J. Liao, O. Kosut, L. Sankar and F. du P. Calmon, “Privacy under hard distortion constraints,” in IEEE Information Theory Workshop

(ITW), pp. 1-5, Nov. 2018.

[13] A. Makhdoumi and N. Fawaz, “Privacy-utility tradeoff under statistical uncertainty,” in Allerton Conference on Communication, Control,

and Computing, pp. 1627–1634, Oct. 2013.

[14] F. McSherry and K. Talwar, “Mechanism design via differential privacy,” in Symposium on Foundations of Computer Science, pp.

94-103, Oct. 2007.

[15] I. Mironov, “Rényi differential privacy,” in IEEE Computer Security Foundations Symposium, pp. 263-275, 2017.

[16] A. Nageswaran and P. Narayan, “Data privacy for a ρ-recoverable function,” IEEE Transactions on Information Theory, vol. 65, no. 6,

pp. 3470-3488, June 2019.

[17] A. Nageswaran and P. Narayan, “Predicate privacy and list privacy for a ρ-recoverable function,” in IEEE International Symposium on

Information Theory, pp. 2139-2143, July 2019.



12

[18] A. Nageswaran and P. Narayan, “Distribution privacy under function recoverability,” IEEE Transactions on Information Theory, vol.

68, no. 5, pp. 3317-3339, May 2022.

[19] A. Nageswaran, “Gaussian data privacy under linear function recoverability,” in IEEE International Symposium on Information Theory,

pp. 632-636, June 2022.

[20] A. Nageswaran, “Data and distribution privacy under function recoverability,” Ph. D. Dissertation, University of Maryland, College

Park, 2023.

[21] D. Rebollo-Monedero, J. Forné and J. Domingo-Ferrer, “From t-closeness-like privacy to postrandomization via information theory,”

IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 11, pp. 1623–1636, Nov. 2010.

[22] Y. Wu and S. Vérdu, “Functional properties of minimum mean-square error and mutual information,” IEEE Transactions on Information

Theory, vol. 58, no. 3, pp. 1289-1301, March 2012.

[23] R. Zamir, “A proof of the Fisher information inequality via a data processing argument,” IEEE Transactions on Information Theory,

vol. 44, no. 3, pp. 1246-1250, May 1998.


	Introduction
	Preliminaries
	-Privacy
	Discussion
	Appendix A: Calculation of var(AX) and mmse(X|AX)
	Appendix B: Proofs of Lemmas 2, 3
	Appendix C: Verification that o satisfies (13)
	References

