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Abstract—We consider the problem of estimating channel
fading coefficients (modeled as a correlated Gaussian vector) via
Downlink (DL) training and Uplink (UL) feedback in wideband
FDD massive MIMO systems. Using rate-distortion theory, we
derive optimal bounds on the achievable channel state estimation
error in terms of the number of training pilots in DL (βtr) and
feedback dimension in UL (βfb) , with random, spatially isotropic
pilots. It is shown that when the number of training pilots exceeds
the channel covariance rank (r), the optimal rate-distortion feed-
back strategy achieves an estimation error decay of ΘpSNR´α

q

in estimating the channel state, where α “ minpβfb{r, 1q is the
so-called quality scaling exponent. We also discuss an “analog”
feedback strategy, showing that it can achieve the optimal quality
scaling exponent for a wide range of training and feedback
dimensions with no channel covariance knowledge and simple
signal processing at the user side. Our findings are supported by
numerical simulations comparing various strategies in terms of
channel state mean squared error and achievable ergodic sum-
rate in DL with zero-forcing precoding.

Index Terms—Wideband FDD massive MIMO, channel state
estimation error, quality scaling exponent, rate-distortion theory,
analog feedback.

I. INTRODUCTION

Massive MIMO consists of employing a large number of
antennas (M ) at the Base Station (BS) to simultaneously mul-
tiplex data over the spatial domain and serve a much smaller
number of User Equipment (UEs) (K) at the same time-
frequency resource in the Downlink (DL) [1, 2]. Achieving the
capacity improvements of massive MIMO requires availability
of accurate channel state information at the multi-antenna BS
transmitter (CSIT). Therefore the BS needs to learn (or train)
the CSIT, namely the fading coefficients associated with each
of its M antennas and those of the K UEs. In the time
division duplexing (TDD) operation mode, the BS learns the
CSIT by receiving pilots from the UEs in Uplink (UL) and,
relying on UL-DL channel reciprocity, extrapolating the DL
channel [3]. In frequency division duplexing (FDD) mode
however, channel reciprocity does not hold and the BS needs
to broadcast training pilots in the DL to the UEs and receive
their estimated channel state via explicit feedback in UL. The
error in estimating the CSIT strongly affects the DL spectral
efficiency. For example, it is well-known that when the error
between true and estimated CSIT decreases as OpSNR´αq in
SNR (equivalently, BS transmission power) for some constant
α P r0, 1s, then zero-forcing (ZF) precoding can achieve only
a fraction α of the optimal degrees of freedom (DoF) per UE

[4, 5]. Therefore the choice of CSIT training and feedback
strategies is crucial in achieving faster estimation error decays.

In this paper, we study the CSIT estimation problem for
wideband massive MIMO systems, in which the channel is
modeled as a spatially correlated, stationary Gaussian random
process that evolves in time according to a block-fading
model [6]. We consider a generic design of random, spatially
isotropic pilots of arbitrary dimension βtr and we derive a
lower bound on the achievable CSIT estimation error using
rate-distortion theory and the idea of remote source coding
at the UE. This lower-bound results in an upper-bound on
the achievable quality scaling exponent as a function of
training and feedback dimension pairs pβtr, βfbq, showing the
fastest rate of error decay among all feedback strategies. If
covariance knowledge is available at the UE, we demonstrate
how one can approach the optimal performance at the price
of small overhead in the number of feedback bits using the
entropy-coded scalar quantization (ECSQ) [7]. We then study a
variation of the well-known analog feedback (AF) strategy [8–
10], in which the training measurements are sent to the BS via
unquantized quadrature amplitude modulation (QAM), using
which the BS computes an MMSE estimate of the channel
(channel covariance knowledge at the BS is assumed). This
variation of AF is an attractive strategy, because it requires no
channel covariance knowledge and no sophisticated processing
(namely, channel estimation and quantization) at the UE side,
both of which come at a high price in the case of wideband
massive MIMO channels. We emphasize this point by deriving
an expression for the achievable quality scaling exponent with
AF, and showing its optimality for a wide range of choices of
training and feedback dimensions (see Fig. 1).

The effect of channel training and feedback on CSIT esti-
mation error and spectral efficiency in FDD MIMO systems
has been studied before in several works [4, 11–14]. In [4]
and [12] lower bounds on the achievable DL rate with ZF
precoding for analog and digital (quantized) feedback are
given, where it is assumed that the number of training pilots
exceeds the channel dimension. In [13] achievable rates of an
FDD massive MIMO system with optimized training pilots and
with channel covariance knowledge at the UE side was studied.
In [15] the authors studied sufficient conditions to achieve full
DoF by considering channel covariance knowledge at the UE
and an error-free channel state feedback to the BS (i.e. an
ideal feedback link). The present work provides the following
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novelties with respect to the above:

1) We consider training and feedback of the channel on
the whole bandwidth of N subcarrier, while most pre-
vious works assume a narrow-band model, neglecting
frequency-domain channel correlation. From a practical
standpoint, the recent releases of the 5G new radio
heavily emphasize on exploiting this frequency-domain
correlation feature of the channel to reduce feedback
overhead [16]. This aspect is captured in our model
and reflected in the rate-distortion bound as well as the
proposed AF strategy.

2) We consider training the channel with an arbitrary
number of pilots (βtr) that can be larger or smaller than
the CSI dimension (MN ). Most previous works have
assumed training with a number of pilots larger than
the channel dimension, which is impractical in massive
MIMO where the CSI dimension potentially exceeds the
dimension of the coherence block.

3) We provide optimal information-theoretic bounds on the
achievable CSIT estimation error and the quality scaling
exponent in terms of training and feedback dimensions.
To the best of our knowledge, such analysis for massive
MIMO channels with spatial correlation has not been
considered before.

4) We show the effectiveness of AF without the need for
either channel covariance knowledge, or sophisticated
estimation and quantization at the UE side.

The rest of the paper is organized as follows. In Section II
we describe the model, training method and error metrics. In
Section III we derive a lower bound on CSIT estimation error
via rate-distortion theory and we explain feedback via ECSQ.
In Section IV we discuss AF and derive an expression for
the quality scaling exponent it can achieve. Finally, Section V
concludes the paper with numerical simulation results.

Notation: We denote scalars, vectors, and matrices by
small, small bold-face and capital bold-face letters x, x,X,
respectively. For a positive integer N , we define rN s fi

t1, . . . , Nu. Superscripts p¨qT and p¨qH denote transpose and
Hermitian transpose, respectively. The function 1X pxq is the
indicator function such that 1X pxq “ 1 if x P X and
1X pxq “ 0 if x R X . For a real-valued functions fp¨q and gp¨q,
defined over all positive reals x ą 0, we say fpxq “ Θpgpxqq
if DA1, A2 ą 0 such that A1gpxq ď fpxq ď A2gpxq for all
x ě x0.

II. CHANNEL TRAINING

We consider a broadcast MIMO OFDM system, consisting
of a BS with an array of M antennas and K ď M single-
antenna user equipment (UEs). The frequency-domain signal
corresponding to subcarrier n received by an arbitrary UE can
be expressed as yrns “ rhHrnsxrns ` zrns, where rhrns P CM

contains the channel fading coefficients between the BS and
the UE at subcarrier n, xrns P CM is the transmit signal satis-
fying the power constraint Er}xrns}2s ď snrdl for all n, where
snrdl denotes SNR in the DL, while z „ CN p0, 1q is additive

white Gaussian noise (AWGN).1 We concatenate the channel
over all subcarriers in a vector h “ rrhr1sT, . . . , rhrN sTsT P
CMN , which we refer to as the channel state information at
the transmitter (CSIT). We assume that h evolves according
to a block-fading model in which it is constant over frames of
length T and changes from frame to frame according to an
ergodic stationary, spatially correlated, zero-mean Gaussian
process, i.e. h „ CN p0,Σh

q where Σh
“ ErhhHs is the

channel covariance of rank r “ rankpΣh
q.

Throughout this work we assume that UEs have perfect
estimates of their channels (perfect CSIR). We then focus on
CSIT acquisition by the BS via the following process. Given
a set Np Ď rN s of Np pilot subcarriers, the BS broadcasts a
sequence of Tp ď T training vectors per pilot subcarrier. The
training measurements received at the UE can be written as

rytrrns “ rhHrnsrXtrrns ` rztrrns, n P Np, (1)

where rXtrrns “
“

rx1rns, . . . , rxTprns
‰

P CMˆTp is a matrix
containing the Tp pilot vectors as its columns. The training
dimension βtr “ TpNp denotes the total number of dimensions
dedicated to training in a time-frequency block of dimension
TN . The βtr training measurements at the UE can be repre-
sented by a single vector ytr “ rryrn1s, . . . , ryrnNpss P C1ˆβtr ,
where using (1) we have

ytr “ hHXtr ` ztr, (2)

where Xtr “ pBn,`q
`PrNps

nPrNs P CMNˆβtr is the training matrix

consisting of M ˆ Tp blocks Bn,`, where Bn,` “ rXtrrn`s
if n` P Np and Bn,` “ 0 if n` R Np. The training matrix
can be designed in several ways, for example by optimizing
various performance criteria based on channel covariance
knowledge [13, 17]. However, we consider a simpler, and
therefore practically more available design, in which pilot
vectors are randomly and independently generated according
to an isotropic Gaussian distribution,

rxtr
i rns „ CN p0, snrdl

M
Iq, i P rTps, n P Np, (3)

where we verify that this design satisfies the transmission
power constraint Er}rxtr

i rns}
2s ď snrdl. In other words, the

elements of Xtr that are not identically zero, are generated as
CN p0, snrdl{Mq Gaussian random variables.

After receiving pilot symbols, the UE computes a message
containing information about the channel state and sends it to
the BS via βfb uses of the UL channel. Given the feedback
channel output, the BS computes an estimate ph of the CSIT.
We consider the mean squared error (MSE)

dph, phq “ E
”

}h´ ph}2
ı

(4)

as the error (distortion) metric between true and estimated
CSIT. For a fixed tuple pβtr, βfb, snrdlq and a given realization
of Xtr, we say that an error D is achievable if dph, phq ď D.
Accordingly, we say that a quality scaling exponent of α
is achievable if dph, phq “ Θpsnr´αdl q, with the exponent
indicating how fast the error decays with SNR [5, 18]. Note

1This definition of transmit power and noise variance simplifies notation,
since we only need the ratio of the two, i.e. the SNR.



that an error decay of Θpsnr´αdl q in estimating the wideband
channel implies an error decay in estimating the channel over
each subcarrier that is at least as fast. In other words, if
dph, phq “ Θpsnr´αdl q, then dprhrns, prhrnsq “ Opsnr´αdl q, where
p

rhrns is the estimate of rhrns (the channel over subcarrier n).
The quality scaling exponent is related to the system DoF as

follows. It is known that for a multi-user system with K ďM
UEs, if for some α P r0, 1s the MSE in estimating the CSIT
decays as Opsnr´αdl q, then ZF precoding achieves a total DoF
of Kα, with α “ 1 corresponding to the full DoF [19]. One
can achieve a slightly improved DoF of 1`pK´1qα with rate-
splitting [18], which is coincidentally also an upper-bound, i.e.
no scheme can achieve a higher DoF. It is therefore apparent
that, when α “ 0, we can achieve a maximum DoF of 1 with
rate-splitting, whereas α “ 1 yields a full DoF of K.

The Feedback Channel

In what follows we model the UL as a MIMO-MAC channel
where all the UEs send their feedback simultaneously to the
BS. We assume for simplicity that the BS has perfect knowl-
edge of the UL channel and we use the high-SNR capacity
formula Cul “ logp1 ` Msnrulq with a so-called diversity-
multiplexing trade-off factor of one [4]. We assume the SNR
in UL to be proportional to the DL SNR as snrul “ κ snrdl,
with κ ą 0 being a positive constant. The modeling of
the feedback link as such was considered in [13] and is
a simplifying assumption that allows for a meaningful and
elegant development of the theory but is not fundamental, in
the sense that one can obtain similar results by considering
other feedback channel models.

III. LOWER BOUND ON CSIT ESTIMATION ERROR VIA
RATE-DISTORTION THEORY

To derive a lower-bound on the MSE in estimating the
channel for given training and feedback dimensions, we think
of the UE as an encoder that aims at encoding a source that
produces channel realizations h, given the training noisy linear
measurements of those realizations as in (2). Since the encoder
does not have direct access to the source output, this problem is
an example of remote source coding [20]. Following standard
information theoretic notation, we can formulate this problem
by modeling the source as a stationary sequence of vector
symbols h∆ “ thpiqu∆i“1 with distribution hpiq „ CN p0,Σh

q,
where hpiq denotes the channel in frame i and ∆ is the
total number of frames. The UE observes a sequence of
measurements of the source as ytr ∆ “ tytr piqu∆i“1, where
from (2) we have ytr piq “ hpiqHXtr ` ztr piq. Because
we seek a lower-bound on the achievable error, we can
assume that the UE knows the channel statistics and encodes
the source given measurements over infinitely many blocks.
Now, a p2∆R,∆q remote rate-distortion code consists of a
sequence of encoding f∆ : ytr ∆ Ñ r2∆Rs, and decoding
g∆ : r2∆Rs Ñ ph∆ functions, where R ě 0 denotes the code
rate and where ph∆ “ tphpiqu∆i“1 is the sequence of channel
estimates. A remote rate-distortion pair pR,Dq is said to be
achievable if there exists a sequence of p2∆R,∆q codes such

that lim
∆Ñ8

1
∆

ř∆
i“1 dph

piq, phpiqq ď D, where dp¨, ¨q is defined in
(4). The closure of all such pairs is the rate-distortion region.

Remark: Note that here the encoder is only required to
yield an average error less than D over all frames. This is
a weaker condition in comparison to the per-frame achiev-
able error defined in the previous section as the condition
dph, phq ď D, in the sense that, if a feedback strategy achieves
the latter, it also achieves the former. It follows that, for
the same training and feedback rates, the achievable error
with these assumptions serves as a strict lower-bound for the
achievable error of all feedback strategies that operate over
finite blocks of the source, in which the UE has no access
to channel statistics, and consider the stronger notion of per-
frame achievable error as defined in the previous section.

The remote rate-distortion function RrhpDq is the infimum
of rates R such that pR,Dq is in the rate-distortion region for
given D, and shows the infimum number of bits needed to
quantize a single channel vector to achieve an error of D. We
derive an expression for the remote rate-distortion function via
the following lemma.

Lemma 1 (remote rate-distortion function): For a fixed
realization of the training matrix Xtr, let Σu

“

ΣhXtr
´

XtrHΣhXtr ` I
¯´1

XtrHΣh denote the covariance
of the posterior mean of the channel given pilot measurements
upiq “ Erhpiq|ytr piqs and denote its eigenvalues by tλu` u

MN
`“1 .

The remote rate-distortion function is given by

RrhpDq “
MN
ÿ

`“1

„

log
λu`
γ



`

, for D ě Dmmse (5)

where γ is chosen such that
řMN
`“1 mintγ, λu` u “ D´Dmmse,

and where Dmmse “ dphpiq,upiqq.
Proof: See Appendix A.

Accordingly, we can define the remote distortion-rate function
Dr

hpRq as the infimum of errors D such that pR,Dq is in
the rate-distortion region for given R and is equivalent to the
inverse of Rrhp¨q [21].

With rate-distortion feedback strategy, the UE remotely en-
codes the channel using RrhpDq bits and sends the quantization
index in the UL via a channel code. A direct application of the
source-channel separation theorem with distortion (see [21],
exercise 10.17) yields that an end-to-end error of D between
the channel vector and its estimate at the BS via feedback
over a channel of capacity Cul is achievable if and only if
βfbC

ul ą RrhpDq. Thereby for a given feedback dimension
βfb, we can achieve an error of

D ą Dr
hpβfbC

ulq (6)
Therefore, for given βfb and βtr, the lower-bound on the
achievable error is Dr

hpβfbC
ulq, where the dependence on βtr

is implicit in the expression for the rate-distortion function
Dr

h. It seems very difficult to make this relation more explicit
in the general case, but we make it explicit for the large SNR
regime via the following theorem.

Theorem 1: The rate-distortion feedback strategy achieves
a CSIT estimation error of Θpsnr´αrd

dl q with probability one
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Fig. 1: The quality scaling exponent as a function of pβtr, βfbq, represented as a heat-map. The left figure corresponds to the
optimal rate-distortion feedback αrd, whereas the right figure corresponds to AF αaf . Three regions for training and feedback
dimension parameters are distinguished by R1, R2 and R3. In regions R1 and R3 the quality scaling exponent of AF coincides
with that of the rate-distortion feedback, whereas in region R2 it is strictly sub-optimal (αaf “ 0 vs αrd “ βfb{r).

over the realizations of the training matrix Xtr, where
αrd “ minpβfb{r, 1q1rr,8qpβtrq. (7)

is the quality scaling exponent.
Proof: See Appendix B.

Note that in this theorem r “ rankpΣh
q is the channel

covariance rank. The quality scaling exponent of the rate-
distortion quantizer is an upper-bound on the quality scaling
exponent of all feedback strategies and is illustrated as a heat
map in Fig. 1 (left). The resulting system DoF with rate-
splitting in this case is given by

DoFrd “ 1` 1rr,8qpβtrqminpβfb{r, 1qpK ´ 1q. (8)

Entropy-Coded Scalar Quantization and Feedback

The rate-distortion bound is achieved by vector quantiza-
tion applied to a large block of MMSE channel estimates
tupiqu∆i“1. This is impractical, given the high channel and
block dimensions and the notorious difficulty of designing
optimal vector quantizers. Therefore, given channel covariance
knowledge, to produce the feedback message the UE can em-
ploy a much simpler entropy-coded scalar quantizer (ECSQ)
as follows. Given the training vector, the UE computes the
MMSE channel estimate u “ Erh|ytrs. The Karhunen-Loève
(KL) expansion of u can be written as u “

řMN
`“1 w`g`,

where g` are eigenvectors of the covariance Σu and w` „
CN p0, λu` q are complex Gaussian coefficients with variance
λu` , equivalent to the eigenvalues of Σu. The idea is to
quantize the vector of coefficients w “ rw1, . . . , wMN s

T,
component by component, so as to achieve an error dpu, puq “
Er}u´ pu}2s “ Er}w ´ pw}2s ď D ´Dmmse. Inspired by the
reverse water filling formulation used to derive the remote
rate-distortion function in (5) (see proof of Lemma 1), the
UE only quantizes those coefficients w` for which λu` ě γ,
where γ is chosen such that

řMN
`“1 mintγ, λu` u “ D´Dmmse.

With this choice, the error of quantizing each coefficient is
given by Er|w` ´ pw`|

2s “ minpλu` , γq and the associated

rate is rlog
λu`
γ s` bits. Now, instead of using the optimal rate-

distortion vector quantizer, the UE can use a dithered scalar
quantizer to encode coefficients with variance above γ. Using
a classic result from Ziv [7], one can show that this quantizer
achieves an error γ with a number of bits b` “ log

λu`
γ `1.508.

No bits are assigned to coefficients for which λu` ă γ. Since
both the UE and the BS know the channel covariance, there
is no need to encode the position of quantized coefficients.
Therefore, the total number of feedback bits to achieve an
error D with ECSQ can be computed as

RscalarpDq “
ÿ

`:λu`ěγ

ˆ

log
λu`
γ
` 1.508

˙

. (9)

ECSQ can be seen as a practical quantizer that can have a
performance close to optimal (in the sense of achievable error),
when the UE has access to the channel covariance knowledge
and at the price of higher feedback rate.

IV. ANALOG FEEDBACK

In analog feedback the UE extracts its βtr received DL pilot
symbols ytr from the DL training and feeds them back to the
BS via Quadrature Amplitude Modulation (QAM) symbols
with unquantized I and Q components via βfb “ ζβtr channel
symbols [8, 9]. In particular, the training vector is modulated
by a full-rank matrix Ψ of dimension βtrˆβfb, known to both
UE and BS. The received feedback at the BS is given by

yaf “ ytrΨ` rz “ hHXtrΨ` zaf , (10)
where rz „ CN p0, Iq is the AWGN over the feedback channel
and zaf “ ztrΨ ` rz. The scalar ζ “ βfb{βtr denotes the
number of feedback channel uses per training coefficient. It
is customary to choose ζ ě 1 (so that each training symbol
is fed back at least once) and to select Ψ to be a unitary
“spreading” matrix (ΨΨH

“ I) [4, 10]. However, we allow ζ
to be any positive value to keep the generality of the problem.
Therefore Ψ is only required to be full-rank (not necessarily
unitary), and we nevertheless call it the spreading matrix



for simplicity. Considering the MIMO-MAC capacity formula
Cul “ logp1`Msnrulq and from the feedback model (10), the
feedback channel input has to satisfy the per-symbol average
power constraint Er|x|2s ďMsnrul. Therefore, the i-th column
of the spreading matrix ψi is chosen such that

ψH
i Σytrψi “Msnrul, i P rβfbs, (11)

where Σytr “ ErytrytrHs “ XtrHΣhXtr`I is the covariance
of the training vector. Note that selecting a set of βfb vectors
that satisfy (11) and which contain a subset of minpβtr, βfbq

linearly independent elements is always possible because Σytr

is of rank βtr. The BS computes the minimum MSE (MMSE)
estimate of the full-dimensional channel given the feedback as

ph “ E
“

h|yaf
‰

“ ΣhXtrΨΣ´1
yaf y

af , (12)

where Σyaf “ ΨHXtrHΣhXtrΨ`ΨHΨ`I. Note that unlike
the rate-distortion quantizer and the ECSQ, with AF we do not
assume channel covariance knowledge at the UE. The CSIT
estimation error with AF can be computed as

D “ Er}h´ ph}2s

“ Tr
´

Σh
´ΣhXtrΨΣ´1

yaf Ψ
HXtrHΣh

¯ (13)

where Trp¨q denotes the trace. The following theorem shows
the scaling law of this error for large SNR.

Theorem 2: The analog feedback strategy achieves a CSIT
estimation error of Θpsnr´αaf

dl q with probability one over the
realizations of the training matrix Xtr, where

αaf “ 1rr,8q pminpβtr, βfbqq , (14)
is the quality scaling exponent.

Proof: See Appendix C.
The resulting system DoF with AF is given as

DoFaf “ 1` 1rr,8q pminpβtr, βfbqq pK ´ 1q. (15)

The quality scaling exponent of AF is illustrated as a heat
map in Fig. 1 (right), where a comparison between the right
and left figures shows that the exponent achieved by AF is
the same as that of the rate-distortion quantizer for all training
and feedback dimensions pβtr, βfbq belonging to regions R1

and R3. In region R2, rate-distortion feedback achieves an
exponent of βfb{r ą 0, whereas AF has exponent zero, and is
therefore strictly sub-optimal.

V. NUMERICAL RESULTS

We consider a ULA with M “ 32 antennas at the BS
communicating with K “ 6 UEs over a total of N “ 24
OFDM subcarriers. The channel coherence time is assumed
to be 5 ms, corresponding to T “ 5 ˆ 14 “ 70 OFDM
symbols in LTE [22].2 We consider Np “ 4 pilot subcarriers,
uniformly placed one per 6 subcarriers. Different training
dimensions are considered by varying the number of pilots
sent per pilot subcarrier, i.e. by changing the variable Tp.
With these parameters, the isotropic pilot vectors are generated
according to (3). We produce UE channels according to a

2The coherence time can vary to emulate fast-varying (smaller T ) and
slow-varying (large T ) channels.

multipath model [23, 24], as

hm,n “
L
ÿ

`“1

c`e
jπm 2d

λ sin θ`e´j2πn∆fτ` , (16)

where L denotes the number of paths, θ` P r´π{2, π{2s is the
angle-of-arrival (AoA) of the `-th signal path, τ` P r0, τmaxs

is the path delay where τmax is the maximum delay spread of
the channel which is bounded by the length of the OFDM
cyclic prefix, c` P C is the complex gain of path ` and
∆f is the subcarrier spacing (assumed uniform), λ is the
wavelength corresponding to the central carrier frequency, and
d is the uniform spacing between array elements, taken to be
d “ λ{2 for simplicity. The path AoAs and delays are chosen
uniformly at random and gains are generated as standard
Gaussian random variables. The resulting channel covariance
is normalized such that TrpΣhq “MN . The number of paths
L is the same for all UEs, but the AoAs, delays and gains are
generated independently across UEs. Because the AoAs and
delays are randomly generated, the channel covariance rank is
given, with probability one, by r “ minpL,MNq.

We first study the CSIT estimation MSE performance as a
function of SNR for all the feedback strategies. We generate
10 realizations of training matrices and K random covariances
as above, and for each realization, we generate 100 random
instances of each UE’s channel. Here the covariance rank is
set to r “ 30. The average MSE is computed as

MSEavg “
1

K

ÿ

k

Er}hk ´ phk}
2s,

where the mean Er}hk´ phk}
2s is empirically calculated from

the random realizations of training matrices, covariances and
channels. We plot the the average MSE against DL SNR for
two points in the βtr´βfb plane, namely pβtr, βfbq “ p40, 40q
and p40, 10q. From (7) and (14) we expect that all feedback
methods achieve a quality scaling exponent of α “ 1 since
βtr “ βfb ą r. In the second case however, we expect that the
rate-distortion and ECSQ achieve a quality scaling exponent
of α “ βfb{r “ 1{3, while AF achieves α “ 0 because βtr ą

r ą βfb. These are confirmed by the average MSE vs SNR
curves of Fig. 2, where the slope of the curves in high SNR
is equivalent to the quality scaling exponent. In the first case,
AF achieves the optimal quality scaling exponent because both
training and feedback dimensions exceed the covariance rank.
In the second case, the rate-distortion and ECSQ feedbacks
achieve a non-zero exponent, unlike AF which has a constant
error (α “ 0) even for large SNR. Note also that ECSQ yields
an error close to the optimal, with a performance gap between
the two that widens when the feedback dimension is lower.
This is expected, since when the feedback rate is higher, the
gap between the error achieved by scalar quantization and the
optimal error is lower.

In the second experiment, we compare the performance of
different feedback strategies in terms of achievable Down-
link sum-rate in a multi-user system. Here we consider
ZF precoding in DL, where the transmit data vector over
subcarrier n is given by xdrns “

řK
k“1

?
Pkskrnsvkrns,
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Fig. 2: CSIT estimation MSE vs Downlink SNR for the three
feedback strategies, where M “ 32, N “ 24 and K “ 6.

where Pk “ snrdl{K is the (uniform) transmission power
per UE, skrns P C is the data symbol intended for UE k
such that Er|skrns|2s ď 1, and tvkrnsuKk“1 are the precod-
ing vectors, given by the column-normalized pseudo-inverse
of rHrns “ rrh1rns, . . . , rhKrnss

H. The choice of ZF precoding
(rather than rate-splitting) is for the sake of simplicity and the
fact that it is by far the most practical scheme used in real sys-
tems. Defining the variables gk,k1rns “

?
Pk1prhkrns

Hvk1rnsq,
we can write the achievable ergodic rate3 as [25]

Rubrk, ns “ E

„

log

ˆ

1`
|gk,krns|

2

N0 `
ř

k1‰k |gk,k1rns|
2

˙

. (17)

The average sum-rate is computed by averaging (17) over all
subcarriers, distinguishing between pilot and data subcarriers,
and summing the result over all UEs. Fig. 3 illustrates two
sets of curves, comparing the sum-rate vs training dimension
for the three feedback strategies. In the first set, we have
assumed a high DL SNR value of 50 dBs and we have set
ζ “ βfb{βtr “ 1, so that at each point of the associated curves,
the number of training and feedback dimensions are equal.
This corresponds to a line trajectory in the βtr ´ βfb plane.
From Fig. 1 we expect that, moving along the line βfb “ βtr,
AF achieves the same quality scaling exponent as the optimal
rate-distortion feedback, which implies that in high SNR the
two feedback strategies should have close rate performance.
This is confirmed by the first set of curves in Fig. 3 where we
see that AF achieves a sum-rate that is very close to that of
the rate-distortion feedback.

The second set of curves corresponds to a moderate DL
SNR of 20 dBs, and ζ “ 1{4, which means that for each point
of the curves the feedback dimension is taken to be 1{4 the
training dimension (rounded up when βtr{4 is not an integer).
In this case, we have a noticeable gap between the sum-rate

3This rate can be achieved assuming perfect knowledge of the coefficients
tgk,k1 rnsu at UE k, and is a harmless assumption for our purposes.
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Fig. 3: Achievable sum-rate vs training dimension for the three
feedback strategies, where M “ 32, N “ 24 and K “ 6.

with AF and that of the optimal because the SNR is set to a
moderate value and more importantly, because of the fact that
in this case for training dimension values of βtr P p30, 120q,
we have βfb “ βtr{4 P p7, 30q, which means that for these
points we have pβtr, βfbq P R2 (see Fig. 1). In the region R2,
AF is strictly suboptimal, in the sense that while the optimal
quality scaling exponent is αrd “ βfb{r P p1{4, 1q, for AF it
is αaf “ 0.

Note also the gap between the sum-rate with ECSQ and
the optimal in the two sets of curves in Fig. 3. In the first
set, because we have a large SNR and a large feedback rate
(ζ “ 1 in comparison to ζ “ 1{4), the CSIT error achieved by
ECSQ for the same pair of training and feedback dimensions
is very close to the optimal. However, in the second case we
have a relative shortage of feedback bits, so that the 1.5 bit
per quantized coefficient overhead of ECSQ corresponds to
a noticeable CSIT error and we see a larger gap between the
sum-rates. Nevertheless, ECSQ is still close to the optimal and
performs better than AF, which comes at the price of channel
covariance knowledge at the UE side. Therefore there exists
a decision point where we can choose the ECSQ feedback in
case the channel covariance is available at the UE and the AF
in case it is not.

APPENDIX

A. Proof of Lemma 1

We start by stating a few standard results regarding the
(remote) rate-distortion function. It is well-known that the rate-
distortion function of an i.i.d source represented by the random
variable u with distribution pu can be computed as (see [26]
Theorem 10.2.1)

RupDq “ min
p
su|u:dpsu,uqďD

Ipsu; uq, (18)

where su is the quantization of u, Ipsu; uq is the mutual infor-
mation between u and su, dpsu,uq is the distortion between u



and su (see (4)) and the minimum is taken over all conditional
distributions for which the joint distribution pu,su satisfies the
distortion constraint. It is also known that the remote rate
distortion function of a source represented by the random
variable h, and encoded given its observations denoted by the
random variable ytr is given by (see [20])

RrhpDq “ min
p
sh|ytr :dpsh,hqďD

Ipsh; ytrq (19)

where sh is the quantization of h, Ipsh; ytrq is the mutual infor-
mation between sh and ytr, and the minimum is taken over all
conditional distributions p

sh|ytr for which the joint distribution
ph,sh “ phpytr|hpsh|ytr satisfies the distortion constraint. Note
that since all sources are i.i.d, we have removed realization
index superscripts from the variables (hence h instead of
hpiq). From the premise of the lemma, u is the MMSE
estimate of the channel given the training measurements, i.e.
u “ Erh|ytrs. Using the same technique employed to prove
inequality (15) of [27] (see Appendix A in [27]), we can verify
that the remote rate-distortion function of h is related to the
rate distortion function of u by

RrhpDq “ RupD ´Dmmseq, (20)
for D ě Dmmse, where Dmmse “ E

“

}h´ u}2
‰

is the MMSE
of estimating the channel at the UE.

On the other hand, the rate-distortion function of a cor-
related vector Gaussian source is given by reverse water-
filling over its covariance eigenvalues [21]. If we de-
note the eigenvalues of Σu by tλu` u

MN
`“1 , then we have

RupDq “
řMN
`“1

”

log
λu`
γ

ı

`
, where γ is chosen such that

řMN
`“1 mintγ, λu` u “ D. Plugging this in (20) we get

RrhpDq “
MN
ÿ

`“1

„

log
λu`
γ



`

, (21)

where γ is chosen such that
řMN
`“1 mintγ, λu,`u “ D´Dmmse.

The proof is complete. �

B. Proof of Theorem 1

We divide the proof to two parts. In the first part, we show
that if βtr ă r, then the achievable error behaves as Θp1q
for all realizations of Xtr. In the second part we show that
if βtr ě r, then an error decaying as Θpsnr

´minpβfb{r,1q
dl q

is achievable with probability one over the realizations of Xtr.

Part I. To prove part I, we first bound the minimum mean
squared error (MMSE) of estimating the channel given the
training measurements at the UE, namely the variable Dmmse.
From u “ Erh|ytrs we have
Dmmse “ Tr

`

ErhhHs ´ ErhytrsErytrHytrs´1ErhytrsH
˘

,
(22)

where ErhhHs “ Σh, Erhytrs “ ΣhXtr, and ErytrHytrs “

XtrHΣhXtr`I. The eigendecomposition of Σh can be written
as Σh

“ UhΛhU
H
h , where Uh P CMNˆr is a tall unitary ma-

trix and Λh “ diagpλq P Rrˆr is a diagonal matrix of positive
eigenvalues represented by the vector λ “ rλ1, . . . , λrs

T. Us-
ing this decomposition and applying the Sherman-Morrison-

Woodbury matrix identity to
´

XtrHΣhXtr ` I
¯´1

, we have

ErhytrsErytrHytrs´1ErhytrsH “ UhΛ
1{2
h GΛ

1{2
h UH

h

´UhΛ
1{2
h G pI`Gq

´1
GΛ

1{2
h UH

h ,
(23)

where we have defined

G “ Λ
1{2
h UH

hXtrXtrHUhΛ
1{2
h . (24)

Plugging this into (22) we have
Dmmse “ Tr

`

Λh

`

I´G`GpI`Gq´1G
˘˘

. (25)
Using a simple trace inequality, one can show that

λmin gpsnrdlq ď Dmmse ď λmax gpsnrdlq, (26)
where λmin and λmax are minimum and maximum channel
covariance eigenvalues, respectively, and we have defined
gpsnrdlq “ Tr

`

I´G`GpI`Gq´1G
˘

, where we have
made the dependency of gp¨q on snrdl explicit. We now demon-
strate this dependency. For a given realization of the training
matrix Xtr, denote the eigenvalues of G by µi, i “ 1, . . . , r.
We can write

gpsnrdlq “ r ´
ÿ

i

µi `
ÿ

i

µ2
i

µi ` 1

“ r ´
r
ÿ

i“1

µi
µi ` 1

(27)

Also note that we can represent the training matrix as
Xtr “

?
snrdlX

tr
0 , where Xtr

0 is randomly generated and
independent from snrdl. From this and the definition (24),
it follows that µi “ Θpsnrdlq for all µi ‰ 0. Using this
and (27), we deduce that if G is full-rank (µi ‰ 0 for
all i) then gpsnrdlq “ Θpsnr´1

dl q and using (26) we have
Dmmse “ Θpsnr´1

dl q. Conversely, if G has at least one zero
eigenvalue (µi “ 0 for some i) then from (27) we have
gpsnrdlq ą 1 and from (41) we have Dmmse “ Θp1q.

Now, the rank of G depends on the specific realization of
Xtr. When βtr ě r and Xtr consists of Gaussian isotropic
pilot vectors, G is full-rank with probability one because of
the following. The product UH

hXtr consists of βtr independent
Gaussian columns, each of dimension r. The event that these
vectors span a space of dimension less than r has probability
zero. Therefore, UH

hXtrXtrHUh has rank r with probability
one, and since Λ

1{2
h has positive diagonal elements, by defini-

tion (24) G also has rank r with probability one and µi ‰ 0
for all i. Conversely, if βtr ă r, G has rank at most equal to
βtr for any realization of the training matrix, leading to µi “ 0
for some i. This results in Dmmse “ Θp1q. In short, we have
proved

Dmmse “

#

Θpsnr´1
dl q, βtr ě r,

Θp1q, βtr ă r.
(28)

In addition, Lemma 1 states that only errors D ě Dmmse

are achievable. It follows that, if βtr ă r, then the minimum
achievable error in estimating the CSIT behaves as Θp1q.

Part II. To prove the second part, first note that if βtr ě r,
then the covariance of the MMSE channel estimate u at the



UE, given as

Σu
“ ΣhXtr

´

XtrHΣhXtr ` I
¯´1

XtrHΣh (29)

has rank r with probability one over the realizations of Xtr.
Without loss of generality assume the eigenvalues of Σu to
be ordered as λu1 ě . . . ě λur ą 0. Next, consider the remote
rate-distortion function in Lemma 1, given as

RrhpDq “
MN
ÿ

`“1

„

log
λu`
γ



`

, for D ě Dmmse (30)

where γ is chosen such that
řMN
`“1 mintγ, λu` u “ D ´

Dmmse. Consider an interval of error values D for which
D ´ Dmmse ă ε for some ε. If ε is sufficiently small, then
γ “ pD ´ Dmmseq{r and the remote rate-distortion function
is given by

RrhpDq “ fprq ´ r logpD ´Dmmseq, (31)
where fprq “

řr
`“1 log λu` ` r log r is a value independent of

D. Therefore, we can write the remote distortion-rate function
as

Dr
hpRq “ 2

fprq´R
r `Dmmse. (32)

for all R ą Rε, for a sufficiently large Rε ą 0. Now let
R “ βfbC

ul. Replacing the MIMO-MAC capacity formula
Cul “ logp1`Mκsnrdlq, we notice that there exists some snrεdl

such that βfb logp1 `Mκsnrdlq ą Rε for all snrdl ą snrεdl.
For these snrdl values we have we have

logpDr
hpβfbC

ulq ´Dmmseq “ log r `
r
ÿ

`“1

log λu` {r

´
βfb

r
logp1`Mκsnrdlq.

(33)

From (29) one can show that the non-zero eigenvalues of
Σu scale as Θp1q for large snrdl, i.e. λu` “ Θp1q, ` “
1, . . . , r. Therefore, the right-hand-side of (33) behaves as
Θplogpsnr

´βfb{r
dl qq in snrdl. It follows that

Dr
hpβfbC

ulq “ Dmmse `Θpsnr
´βfb{r
dl q

“ Θpsnr´1
dl q `Θpsnr

´βfb{r
dl q

“ Θpsnr
´minpβfb{r,1q
dl q

(34)

Finally, from the source-channel separation with distortion
theorem, we can achieve a CSIT estimation error of D ą

Dr
hpβfbC

ulq if and only if we use the UL channel over βfb

feedback dimensions (see Section III), which combined with
(34) shows that when βtr ě r, we can achieve an error
decay of Θpsnr

´minpβfb{r,1q
dl q with probability one over the

realizations of Xtr with a feedback dimension of βfb. This
completes the proof. �

C. Proof of Theorem 2

The distortion of MMSE estimation of the channel given
the feedback in (10) is given by
dph, phq “ Tr

`

ErhhHs ´ Erhyaf sEryaf Hyaf s´1Erhyaf sH
˘

,
(35)

where Σh
“ ErhhHs, Erhyaf s “ ΣhXtrΨ, and

Eryaf Hyaf s “ ΨHXtrHΣhXtrΨ`ΨHΨ` I, (36)

The eigendecomposition of Σh can be written as Σh
“

UhΛhU
H
h , where Uh P CMNˆr is a tall unitary matrix and

Λh “ diagpλq P Rrˆr is a diagonal matrix of positive
eigenvalues represented by the vector λ “ rλ1, . . . , λrs

T.
Using this decomposition, the expression in (36) and applying
the Sherman-Morrison-Woodbury matrix identity we have

Eryaf Hyaf s´1 “ pΨHΨ` Iq´1

´ pΨHΨ` Iq´1ΨHXtrHUhΛ
1{2
h ˆ

´

I`Λ
1{2
h UH

hXtrΨpΨHΨ` Iq´1ΨHXtrHUhΛ
1{2
h

¯´1

ˆ

Λ
1{2
h UH

hXtrΨpΨHΨ` Iq´1.
(37)

Then we can write the second term appearing within the Trp¨q
in (35) as

Erhyaf sEryaf Hyaf s´1Erhyaf sH “ UhΛ
1{2
h GΛ

1{2
h UH

h

´UhΛ
1{2
h G pI`Gq

´1
GΛ

1{2
h UH

h ,
(38)

where we have defined

G “ Λ
1{2
h UH

hXtrΨpΨHΨ` Iq´1ΨHXtrHUhΛ
1{2
h

(39)
Plugging (38) into (35) we have

dph, phq “ Tr
`

Λh

`

I´G`GpI`Gq´1G
˘˘

. (40)
This formula is exactly the same as (25) except for the
definition of G. Therefore the same trace inequality as in (26)
holds here for the CSI estimation distortion at the BS, i.e. we
have

λmin gpsnrdlq ď dph, phq ď λmax gpsnrdlq, (41)

where gpsnrdlq “ Tr
`

I´G`GpI`Gq´1G
˘

. We now
show how gp¨q behaves as a function of snrdl. For a given
realization of Xtr, denote the eigenvalues of G by µi, i “
1, . . . , r. We can write

gpsnrdlq “ r ´
ÿ

i

µi `
ÿ

i

µ2
i

µi ` 1

“ r ´
ÿ

i

µi
µi ` 1

(42)

From the definition in (39), the constituents of G depend on
snrdl as follows:
(a) We can represent the training matrix as Xtr “

?
snrdlX

tr
0 , where Xtr

0 is generated randomly indepen-
dent from snrdl. Hence, for a single realization the
elements of Xtr scale with snrdl as Θp

?
snrdlq.

(b) From constraint (11), one can show that each column of
Ψ can be written as ψi “

?
aiφi, where ai “ Mκsnrdl

cisnrdl`1

with ci “ φH
i XtrH

0 ΣhX
tr
0 φi. Here φi, i P rβfbs are

a set of unit-norm vectors that contains a subset of
minpβtr, βfbq linearly independent vectors, and are inde-
pendent of snrdl. The existence of this set is guaranteed
because Σytr is full-rank. It follows that

ΨpΨHΨ` Iq´1ΨH
“ ΦpΦHΦ` Sq´1ΦH, (43)

where Φ “ rφ1, . . . ,φβfb
s is independent of snrdl and

S is a diagonal matrix whose pi, iq element is given
by Si,i “

ci
Mκ `

1
Mκsnrdl

. The matrix S is the only
variable dependent on snrdl, and its diagonal elements



are asymptotically scaling as S “ Θp1q.
(c) The matrices Uh and Λh are independent of snrdl.

From these we conclude that the non-zero eigenvalues of G
scale as Θpsnrdlq, i.e. µi “ Θpsnrdlq for all µi ‰ 0.

Now, the rank of G depends on the specific realization
of Xtr. When minpβtr, βfbq ě r and Xtr contains isotropic
Gaussian pilot vectors, G is full-rank with probability one
because of the same argument as used in Part I of the proof
of Theorem 1 and considering the fact that the constituent
matrix ΨpΨHΨ` Iq´1ΨH is positive semi-definite with rank
minpβtr, βfbq. In this case we have dph, phq “ Θpsnr´1

dl q and
therefore an error of Θpsnr´1

dl q is achievable. Conversely, if
r ą βtr or r ą βfb, G has rank at most minpβtr, βfbq ă r
for any design of pilot matrices, leading to µi “ 0 for some
i and from (41), the error is bounded from below and above
by constants, i.e. we have an error of Θp1q. Therefore AF
achieves an error of Θpsnr´αdl q with probability one over the
realizations of Xtr where α “ 1rr,8q pminpβtr, βfbqq. This
completes the proof. �
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