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Abstract—We study the robust quickest change detection
under unknown pre- and post-change distributions. To deal with
uncertainties in the data-generating distributions, we formulate
two data-driven ambiguity sets based on the Wasserstein distance,
without any parametric assumptions. The minimax robust test
is constructed as the CUSUM test under least favorable distri-
butions, a representative pair of distributions in the ambiguity
sets. We show that the minimax robust test can be obtained in a
tractable way and is asymptotically optimal. We investigate the
effectiveness of the proposed robust test over existing methods,
including the generalized likelihood ratio test and the robust test
under KL divergence based ambiguity sets.

Index Terms—CUSUM test, Least favorable distributions,
Robust change detection, Wasserstein metric

I. INTRODUCTION

Quickest change detection aims to detect a potential change-
point from sequential data and is widely applicable in sig-
nal processing and statistical problems [1]–[3]. Classical ap-
proaches, such as the well-known cumulative sum (CUSUM)
test [4], are usually designed for cases where the pre- and post-
change distributions are exactly known. When the post-change
distribution is unknown, the generalized likelihood ratio (GLR)
test [5] is commonly used, in which the post-change distribu-
tions are sequentially estimated based on maximum likelihood.

However, the maximum likelihood estimate may deviate
significantly from the true parameter if we only have limited
data samples or the observations are contaminated [6], [7].
We aim to overcome this limitation by considering a robust
quickest change detection problem by constructing ambiguity
sets for the distribution estimates. The goal is to find the
minimax robust test that minimizes the worst-case detection
delay over the ambiguity sets [8]. In [6], it is proved that an
exact minimax robust optimal test does not hold for the robust
sequential detection problem in general. Therefore, most work
focus on finding the asymptotically optimal test [9], [10].

The minimax robust change detection has been studied in
[10] and [11] with two ambiguity sets that are given in a
priori, for the pre- and post-change distributions, respectively.
In [11], it is proved that under the joint stochastic boundedness
condition on the pre- and post-change distributional ambiguity
sets, the detection rule based on least favorable distributions
(LFDs) are minimax robust under several performance metrics.
Although the joint stochastic boundedness condition can be
satisfied and verified for several classical types of ambiguity

sets, it is difficult to verify for modern types of ambiguity
sets, e.g., the KL ambiguity sets. Later in [10], the problem is
solved by proving a weaker condition on the ambiguity sets,
and asymptotic optimal solutions are proposed. A recent work
[12] studies the change detection with uncertain distributions
from the Bayesian perspective by applying the uncertain
likelihood ratio [13] test. However, the posterior prediction
distribution cannot be calculated when the parametric model
is unknown or insufficient to model the data distribution.

The main contribution of this work is a non-parametric
method for minimax robust quickest change detection based on
Wasserstein ambiguity sets [14]. The key advantage is that the
proposed method does not require complete knowledge about
pre- and post-change distributions and parametric assumptions.
Moreover, the resulting LFDs from the Wasserstein ambiguity
sets are proved to be efficiently solvable, and thus the proposed
test can be applied to a wide range of applications.

The remainder of this paper is organized as follows. Sec-
tion II details the problem set-up, including the performance
criteria and the construction of the ambiguity sets. Section
III derives a tractable formulation to find the LFDs and the
minimax optimal test. Section IV demonstrates the proposed
detection procedure using synthetic data. Section V concludes
the paper with possible future directions.

II. PROBLEM SETUP

The quickest change detection problem can be formulated as
follows. Given observations {xt, t = 1, 2, . . .} in the sample
space X , we aim to detect the change-point τ at which the
data-generating distribution changes from µ to ν:

xt
iid∼ µ, t = 1, 2, . . . , τ − 1,

xt
iid∼ ν, t = τ, τ + 1, . . .

(1)

We consider the case where τ is unknown but is a deterministic
value. An important quantity for the detection problem (1) is
the Kullback-Leibler (KL) divergence defined as follows.

Definition 1 (KL divergence [15]). The KL divergence be-
tween two probability distributions ν and µ is:

KL(ν||µ) =

∫
{log(dν(x)/dµ(x))}dν(x).

Let P(X ) denote the family of all probability distributions
supported on the sample space X . Assume there exists a
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probability space (X ,F ,Pµ,ντ ) where Pµ,ντ denotes the prob-
ability measure when the change-point equals to τ and the
pre- and post-change probability measures being µ and ν,
respectively. In particular, Pµ∞ and Eµ∞ denote the probability
and expectation when there is no change-point (i.e., τ = ∞)
and the pre-change distribution being µ. Similarly, Pν0 and Eν0
denote the probability and expectation when all samples are
generated from the post-change distribution ν.

Our goal is to detect the unknown change-point τ as quickly
as possible while at the same time keeping the false alarm rate
below a pre-specified level. Usually, the detection is performed
by designing a stopping time on the data sequence [16]. A
stopping time with respect to the random data sequence {xt}t
is a random variable T such that for any n, the event {T = n}
belongs to the sigma-algebra generated by {x1, . . . , xn}.

A. Performance Criteria

We typically focus on two criteria to measure the perfor-
mance of a stopping time T . One is the average run length
(ARL) used to measure the average time between consecutive
false alarms, defined as Eµ∞[T ]. Usually we impose certain
lower bound γ on the ARL and only consider the stopping
times satisfying Eµ∞[T ] ≥ γ. The other criteria is the detection
delay. There are two main measures for the detection delay,
the Lorden’s measure [17] and the Pollak’s measure [18].

The Lorden’s measure for detection delay is defined as
the worst-case average detection delay (WADD), which is the
supremum of the average delay conditioned on the worst-case
historical data and change-point:

WADDµ,ν(T )=sup
n≥1

ess sup Eµ,νn
[
(T − n)+|X1, . . . , Xn−1

]
.

(2)
A less conservative characterization of detection delay is
proposed by Pollak [18] as the conditional average detection
delay (CADD) conditioned on the event that {T ≥ n}:

CADDµ,ν(T ) = sup
n≥1

Eµ,νn [T − n|T ≥ n]. (3)

B. Uncertainty Model

Consider the case when the pre- and post-change probability
measure µ and ν in (1) are unknown. This typically happens in
real data applications, especially for data with complex struc-
tures or of high-dimensionality. To deal with the uncertainties
in distributions, we construct two ambiguity sets Pµ0

,Pν0 for
pre- and post-change distributions, respectively.

Assume we have a nominal distribution µ0 and ν0 for pre-
and post-change, and the ambiguity sets Pµ0

,Pν0 are the
collection of probabilities measures that are close to µ0, ν0

with respect to certain divergence measures D(·, ·):

Pµ0
= {µ ∈P(X ) : D(µ, µ0) ≤ r1},

Pν0 = {ν ∈P(X ) : D(ν, ν0) ≤ r2},
(4)

where r1, r2 ≥ 0 are the radius parameter controlling the size
of ambiguity sets. Some commonly used divergence measures
D(·, ·) include the KL divergence [19], [20], Total-Variation
distance [6], [21], [22], Wasserstein metric [7], [23], [24], etc.

In this paper, we consider a fully data-driven and non-
parametric setting where (i) the nominal distribution is set
as the empirical distribution from historical data, and (ii) the
ambiguity sets are constructed using the Wasserstein distance.

In the data-driven case, suppose we have a set of training
samples {x1, . . . , xn1

} that are i.i.d. sampled from the pre-
change regime, and {y1, . . . , yn2} that are i.i.d. sampled from
the post-change regime, the nominal distribution is set as the
empirical distribution of those historical samples, i.e., µ0 =
(
∑n1

i=1 δxi)/n1, ν0 = (
∑n2

i=1 δyi)/n2, where δx denotes the
Dirac point mass concentrated on x for each x ∈ X , i.e.,
δx(A) = I{x ∈ A} for any Borel measurable set and I{·} is
the indicator function.

Remark 1. The historical data used here is additional avail-
able data before we start the detection procedure for problem
(1). If we have no access to historical data in post-change
regime beforehand, we may consider construing the post-
change ambiguity sets adaptively with sequential observations,
and the detailed discussion will be left for future work.

Moreover, the Wasserstein metric we use in this paper is
defined as follows. For two given distributions P,Q ∈P(X ),
their Wasserstein distance (of order 1) equals to [14]:

W(P,Q) := min
Γ∈Π(P,Q)

E(ω,ω′)∼Γ [c(ω, ω′)] , (5)

where c(·, ·) : X×X → R+ is a metric, and Π(P,Q) is the set
of all joint probability distributions on X × X with marginal
distributions P and Q.

Substitute the nominal distribution as the empirical distri-
butions and the divergence measure as the Wasserstein metric,
we construct the ambiguity sets as in (4):

Pµ0
= {µ ∈P(X ) : W(µ, µ0) ≤ r1},

Pν0 = {ν ∈P(X ) : W(ν, ν0) ≤ r2}.
(6)

C. Minimax Robust Change Detection

Under the ambiguity sets (6), we aim to find the robust
optimal stopping time that solves the following problem:

inf
T∈C(γ,Pµ0 )

sup
µ∈Pµ0 ,ν∈Pν0

WADDµ,ν(T ), (7)

where C(γ,Pµ0) is the set containing all stopping times T that
satisfies Eµ∞[T ] ≥ γ,∀µ ∈ Pµ0

. Similarly, the corresponding
problem defined using CADD is:

inf
T∈C(γ,Pµ0 )

sup
µ∈Pµ0 ,ν∈Pν0

CADDµ,ν(T ). (8)

In general, it may be challenging to exactly solve the problems
(7) and (8). Therefore, asymptotically optimal solutions for the
above problems are often investigated in practice. A solution
T0 ∈ C(γ,Pµ0

) is called first-order asymptotic optimal [16]
for (7) (and similarly defined for (8)) if:

lim
γ→∞

supµ∈Pµ0 ,ν∈Pν0 WADDµ,ν(T0)

infT∈C(γ,Pµ0 ) supµ∈Pµ0 ,ν∈Pν0 WADDµ,ν(T )
= 1.

Remark 2. The choice of the radius r1, r2 is crucial for
the minimax detection problem. There is a tradeoff between



model robustness and detection performance. A large radius
will lead to a more robust detection but also a larger detection
delay. Empirically, we can use cross-validation to set the
radius. Theoretically, we may analyze the concentration of the
Wasserstein distance to determine the appropriate radius [25].

III. OPTIMAL STOPPING TIME AND THEORETICAL
GUARANTEE

In this section, we derive the asymptotic optimal stopping
time that solves the problem (7) and (8). Based on previous
results established in [10], the optimal stopping time can be
constructed based on a pair of distributions in the ambiguity
sets (Pµ0 ,Pν0), which are called the least favorable distribu-
tions (LFD). We first list the conditions to find such a pair of
LFDs and show that they can be efficiently solved under the
Wasserstein ambiguity sets (6). Then we construct the optimal
stopping time, which is a CUSUM test [4] based on LFDs.

A. Least Favorable Distributions

There are two types of conditions for finding the LFDs,
which can be viewed as a representative pair of distributions
within (Pµ0

,Pν0) on which the stopping time reaches the
worst-case performance. The first condition, joint stochastic
boundedness, was proposed in [11] as follows.

Definition 2 (Joint stochastic boundedness [11]). A pair of
ambiguity sets (Pµ0 ,Pν0) is jointly stochastically bounded by
the pair of distributions (µ̃, ν̃) if ∀ν ∈ Pν0 ,

Pν̃
(

log
dν̃

dµ̃
(X) ≥ x

)
≤ Pν

(
log

dν̃

dµ̃
(X) ≥ x

)
,∀x ∈ R,

and ∀µ ∈ Pµ0
,

Pµ
(

log
dν̃

dµ̃
(X) ≥ x

)
≤ Pµ̃

(
log

dν̃

dµ̃
(X) ≥ x

)
,∀x ∈ R.

This condition was later relaxed by [10] as follows.

Definition 3 (Weak stochastic boundedness [10]). A pair of
ambiguity sets (Pµ0

,Pν0) is weakly stochastically bounded by
the pair of distributions (µ̃, ν̃) if

KL(ν̃||µ̃) ≤ KL(ν||µ̃)− KL(ν||ν̃),∀ν ∈ Pν0 , (9)

and

Eµ
[
dν̃

dµ̃
(X)

]
≤ Eµ̃

[
dν̃

dµ̃
(X)

]
= 1,∀µ ∈ Pµ0

. (10)

In [10], it was shown that finding the pair of distributions
that satisfies the weak stochastically boundedness condition is
equivalent to finding the pair of distributions that minimizes
the pairwise KL divergence between ambiguity sets. More
specifically, the LFDs (µ̃, ν̃) satisfying (9) is a solution to:

min
µ∈Pµ0 ,ν∈Pν0

KL(ν||µ). (11)

Our main finding is that under the Wasserstein ambiguity
sets (6), the pair of distributions such that the sets are weakly
stochastic bounded can be found through the following con-
vex optimization problem efficiently. Denote n = n1 + n2,

{z1, . . . , zn} as the union of pre- and post-change historical
data in the order of {x1, . . . , xn1 , y1, . . . , yn2}, and 1n as a
n-dimensional column vector with all entries equal to one.

Theorem 1 (LFD). The pair of LFD solving (11) can be found
by the following finite-dimensional convex program

min
p1,p2∈Rn+

Γ1,Γ2∈Rn×n+

n∑
l=1

pl2 log(pl2/p
l
1)

subject to
n∑
l=1

n∑
m=1

Γk,l,mc(zl, zm) ≤ rk, k = 1, 2;

Γ1,l,m1n = µ0, Γ2,l,m1n = ν0;

Γᵀ
1,l,m1n = p1, Γᵀ

2,l,m1n = p2.
(12)

Proof. See the Appendix.

Note that the optimization problem in (12) is the problem
(11) for discrete distributions supported on the joint empirical
samples {z1, . . . , zn}. The variables Γ1,Γ2 are two matrices
representing how the probability mass is transported between
the empirical distributino µ0, ν0 and the desired LFD p1, p2.
Instead of solving the infinite-dimensional problem (11), we
can now solve the finite-dimensional optimization problems
(12) which can be solved efficiently using off-the-shelf solvers.
It is a linear program when c is `1 or `∞ norms, and a conic
program when c is `2 norm, and the complexity quadratically
depends on n. It is worth mentioning that the equivalence
between (12) and (11) is not obvious and depends on the
properties of the objective function and ambiguity sets.

B. Optimal Stopping Time

Once we find (µ̃, ν̃) by which the ambiguity sets are weakly
stochastically bounded, the optimal stopping time that solves
the problem (7) asymptocially can be constructed as the
CUSUM procedure [4] based on (µ̃, ν̃). The detection statistic
can be computed recursively as

St = (St−1)+ + log
dν̃

dµ̃
(xt), S0 = 0, (13)

and stopping time is therefore defined as

T := inf{t : St ≥ b}, (14)

where b is a pre-specified threshold such that the average run
length meets the desired lower bound γ.

Theorem 2 (Asymptotical Optimality). Consider the ambigu-
ity sets Pµ0

,Pν0 in (6), and suppose the pair of distributions
(µ̃, ν̃) found through (12) satisfies the condition (10). Then the
CUSUM test (13)-(14) under (µ̃, ν̃) with threshold b = | log γ|
solves (7) and (8) asymptotically as γ →∞.

Proof. From Theorem 1, the pair (µ̃, ν̃) is a solution to (11),
which is equivalent to (9). If (µ̃, ν̃) also satisfies (10), then the
ambiguity sets Pµ0

,Pν0 are weakly stochastically bounded by
(µ̃, ν̃). From Theorem 3 in [10], we have the desired results.



Note that the CUSUM procedure as in (13) with threshold
b = | log γ| is asymptotically optimal for both Lorden’s and
Pollak’s formulations when the true distribution is µ̃ and ν̃.
The results in Theorem 2 means that when we have two
ambiguity sets, the CUSUM test based on the LFDs are
minimax robust asymptotically optimal for the robust Lorden’s
(7) and Pollak’s formulations (8). When the true distributions
differ from the LFDs, the price we pay in performance loss is
due to the robustness that we would like to guarantee.

C. Extensions and Modifications

We note that the LFDs found through (12) is only supported
on the historical data used to construct the empirical distribu-
tions. When applied to new observations that are outside the
support of those empirical distributions, we need to modify
the algorithm to make it applicable in real scenarios. Here we
mention two possible methods.

1) Kernel convolution: Firstly, we may interpolate the
discrete LFDs within the entire sample space X , through,
for example, kernel convolution. And then apply the modified
LFDs to calculate the detection statistics for new observations.
A simple example is to convolve with the Gaussian kernel
Kh(x, y) = exp{−(x− y)2/(2h2)}/

√
2πh2, with a carefully

chosen kernal bandwidth. More specifically, the smoothed
LFDs after convolution are

ν̃′(x) =

∫
ν̃(y)Kh(x, y)dy, µ̃′(x) =

∫
µ̃(y)Kh(x, y)dy.

Thus the detection statistic in (13) becomes St = (St−1)+ +
log{dν̃′(xt)/dµ̃′(xt)}.

2) Binning approach: Second is a binning approach, which
has been used previously in change-point detection problems
but for different purposes [26]. In detail, we could partition
the sample space X into L exclusive and exhaustive regions,
X1, . . . ,XL, satisfying Xi ∩Xj = ∅ and ∪Li=1Xi = X . In this
way, we convert any continuous distribution into discrete ones
and the LFDs can then be used naturally for new observations.

IV. NUMERICAL RESULTS

In this section, we investigate the performance of the pro-
posed robust test based on Wasserstein ambiguity sets (which
we call Robust-Was CUSUM in this section). For illustrative
purposes, we consider a simple Gaussian mean shift example
where the data distribution changes from µ = N (0, 1) to
νm = N (m, 1) with the post-change mean m takes two
possible values 0.5 and 1, representing different signal-to-noise
ratios. We randomly generate 50 samples from the pre-change
distribution N (0, 1) and 50 samples from the post-change
distribution N (m, 1). Then we construct the ambiguity sets
based on the Wasserstein metric as shown in (6). Then we
solve the convex programming problem (12) to find the LFDs
µ̃ and ν̃. The Robust-Was CUSUM test is constructed based
on the LFDs, according to the definition (13) and (14).

In the first result, we use the convolution approach to extend
the LFDs to the whole sample space and then calculate the
resulting CUSUM statistic. We compare the performance of

the Robust-Was CUSUM test with the exact CUSUM and the
GLR test. In detail, the exact CUSUM test is constructed as-
suming full knowledge of the true distributions, i.e., the exact
CUSUM statistic is defined as in (13) using true distributions
ν and µ. Moreover, the exact CUSUM test is the optimal
test in the sense that it has the smallest detection delay and
thus serves as the information-theoretic lower bound to the
detection delay [17], [27]. The GLR test is designed for the
case when the post-change parameter m is unknown. The
parameter is estimated using maximum likelihood estimate
and plugged into the log-likelihood ratio to calculate the GLR
statistics. Moreover, to increase the efficiency, we adopt the
window-limited GLR approach with the test statistic [5]:

SG
t := max

t−W≤k≤t
max
m∈R

t∑
i=k

log
dνm
dµ

(xi),

where W is the window size and is chosen at 50, the same
as the number of empirical observations used in Robust-Was
CUSUM. The radii parameters r1 and r2 are set to be equal.
We select smaller radii for smaller post-change mean, since
the empirical samples tend to be closer as m decreases and
we need two ambiguity sets to have an empty intersection. The
kernel bandwidth parameter as in Section III-C1 is chosen as
h = 0.25. Moreover, each time after solving the LFDs, we
verify that the condition (10) indeed holds.

We plot the expected detection delay versus average run
length for different methods, averaged over 10000 times, as
shown in Fig. 1. We see that the robust CUSUM derived from
the Wasserstein ambiguity sets has a smaller delay than the
GLR test.
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Fig. 1. The detection delay comparison with exact CUSUM and GLR, under
different signal-to-noise ratios.

We then compare the performance of the proposed method
under the binning approach detailed in Section III-C2, with bin
size L = 20. We select the breakpoints such that the resulting
discretized pre-change distributions is a uniform distribution.
In such case, we can also compare with the robust CUSUM
test based on KL ambiguity sets [10], where the two ambiguity
sets are constructed using the KL divergence and LFDs are
again found through (9) and (10). The detection delay shown
in Fig. 2 shows that the KL robust CUSUM test tends to have a
larger detection delay and the proposed Robust-Was CUSUM
test still has a better performance.

We also compare the performance when the observations
are contaminated. We add a uniform noise (contamination)
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Fig. 2. The detection delay comparison with exact CUSUM, GLR, and the
robust test under KL ambiguity sets, after data binning.

into the observations. The contamination follows the uniform
distributions on the interval [−ε, 0]. We test five values for ε
from 0.1 to 0.5, representing different strength levels of the
contamination. The average detection delay is plotted in Fig.
3. The exact CUSUM algorithm is no longer optimal when
the observations are contaminated, since there is a mismatch
between the distribution used to construct CUSUM statistics
and the true data distribution after contamination. From Fig.
3, we see that the proposed method may even have a smaller
detection delay than the exact CUSUM method.

0.1 0.2 0.3 0.4 0.5
Contamination level

20

25

30

35

40

Ex
pe

ct
ed

 D
et

ec
tio

n 
D

el
ay exact CUSUM

GLR
Robust-Was CUSUM

Fig. 3. The detection delay comparison with exact CUSUM and GLR, after
data binning and for contaminated data. ARL fixed at 50000.

V. CONCLUSIONS AND DISCUSSIONS

We applied Wasserstein ambiguity sets to robust quickest
change detection. This also brought new questions worth
investigating. First, it would be of great importance to study a
data-driven and precise characterization of the radii for future
work. Second, the real data are usually under contamination;
thus it would be interesting to study the theoretical perfor-
mance of the robust test under contaminated data or outliers.
Third, the LFDs solved in this work are discrete distributions,
it would be worthwhile to study the theoretical loss or explore
different ways to better fix such problem.

VI. APPENDIX

Proof of Theorem 1. Denote by L1(µ) the space of all in-
tegrable functions with respect to the measure µ. Using the
Kantorovich duality [28], the Wasserstein distance equals:

W(µ, ν) = sup
(φ,ψ)∈L1(µ)×L1(ν)
φ(x)+ψ(y)≤c(x,y)

∀x,y

(∫
X
φ(x)dµ+

∫
X
ψ(y)dν

)
.

Following [7], we rewrite the problem using the Lagrangian
of the optimization problem (11) and the above equation:

inf
µ,ν∈P(Ω)

sup
λ1,λ2≥0

u1∈Rn1 ,u2∈Rn2

v1∈L1(µ),v2∈L1(ν)

{
KL(ν||µ)− λ1r1 − λ2r2+

1

n1

n1∑
i=1

ui1 +
1

n2

n2∑
i=1

ui2 +

∫
X
v1(x)dµ+

∫
X
v2(x)dν :

ui1 + v1(ξ) ≤ λ1c(ξ, xi), ∀1 ≤ i ≤ n1,∀ξ ∈ X ,

ui2 + v2(ξ) ≤ λ2c(ξ, yi), ∀1 ≤ i ≤ n2,∀ξ ∈ X
}
.

Furthermore, since the objective function is increasing in
v1, v2, we can replace v1 with min1≤i≤n1{λ1c(ξ, xi)−ui1} and
replace v2 with min1≤i≤n2{λ1c(ξ, yi) − ui2}. Interchanging
sup and inf , we have

inf
µ∈Pµ0 ,ν∈Pν0

KL(ν||µ)

≥ sup
λ1,λ2≥0

u1∈Rn1 ,u2∈Rn2

{
− λ1r1 − λ2r2 +

1

n1

n1∑
i=1

ui1 +
1

n2

n2∑
i=1

ui2+

inf
µ,ν∈P(X )

{
KL(ν||µ) +

∫
X

min
1≤i≤n1

{λ1c(ξ, xi)− ui1}dµ(ξ)

+

∫
X

min
1≤i≤n2

{λ2c(ξ, yi)− ui2}dν(ξ)
}}

.

For the inner infimum problem, note that ∀(µ, ν) and ∀ξ ∈
supp(µ) ∪ supp(ν), let i1(ξ) = arg mini{λ1c(ξ, xi) − ui1},
i2(ξ) = arg mini{λ2c(ξ, yi)− ui2} , set

T (ξ) :=

{
xi1(ξ), if λ1dµ(ξ) ≥ λ2dν(ξ),

yi2(ξ), if λ1dµ(ξ) < λ2dν(ξ),

then T (ξ) belongs to the minimum of min1≤i≤n1
{λ1c(ξ, xi)−

ui1}dµ(ξ)+min1≤i≤n2
{λ2c(ξ, yi)−ui2}dν(ξ). Moreover, con-

struct another distributions (µ′, ν′) such that µ′(B) = µ{ξ ∈
X : T (ξ) ∈ B} and ν′(B) = ν{ξ ∈ X : T (ξ) ∈ B} for any
Borel set B ⊂ X̂ := {z1, . . . , zn}. Then it is easy to see that∫

X̂
min

1≤i≤n1

{λ1c(ξ, xi)− ui1}dµ′(ξ)+∫
X̂

min
1≤i≤n2

{λ2c(ξ, yi)− ui2}dν′(ξ)

≤
∫
X

min
1≤i≤n1

{λ1c(ξ, xi)− ui1}dµ(ξ)+∫
X

min
1≤i≤n2

{λ2c(ξ, yi)− ui2}dν(ξ)

In addition, for ν that is absolutely continuous with respect to
µ, we have KL(ν′||µ′) ≤ KL(ν||µ) since the KL divergence
is a convex function.

Hence (µ′, ν′) yields an objective value no worse than (µ, ν)
for the inner infimum problem. This means that it suffices to
only consider (µ, ν) supported on the empirical set X̂ . Fol-
lowing a similar argument as in [7], the optimization problem
can be reduced to a finite-dimensional convex optimization
problem as shown in Theorem 1.
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