
Polar Coded Merkle Tree: Improved Detection of
Data Availability Attacks in Blockchain Systems

Debarnab Mitra, Lev Tauz, and Lara Dolecek
Department of Electrical and Computer Engineering, University of California, Los Angeles, USA

email: debarnabucla@ucla.edu, levtauz@ucla.edu, dolecek@ee.ucla.edu

Abstract—Light nodes in blockchain systems are known to be
vulnerable to data availability (DA) attacks where they accept an
invalid block with unavailable portions. Previous works have used
LDPC and 2-D Reed Solomon (2D-RS) codes with Merkle Trees
to mitigate DA attacks. While these codes have demonstrated
improved performance across a variety of metrics such as DA
detection probability, they are difficult to apply to blockchains
with large blocks due to generally intractable code guarantees
for large codelengths (LDPC), large decoding complexity (2D-
RS), or large coding fraud proof sizes (2D-RS). We address these
issues by proposing the novel Polar Coded Merkle Tree (PCMT)
which is a Merkle Tree built from the encoding graphs of polar
codes and a specialized polar code construction called Sampling-
Efficient Freezing (SEF). We demonstrate that the PCMT with
SEF polar codes performs well in detecting DA attacks for large
block sizes.

I. INTRODUCTION
Decentralization and security properties of blockchains have

led to their applications in a wide variety of fields [1]–[7]. A
blockchain is an immutable ledger of transaction blocks. Full
nodes in a blockchain system store the entire ledger and vali-
date transactions. However, for better scalability, blockchains
also run light nodes who store the header of each block and
cannot validate transactions. Light nodes rely on honest full
nodes for fraud proofs [8] in order to reject invalid blocks.

Blockchains where light nodes are connected to a majority
of malicious full nodes are vulnerable to data availability (DA)
attacks [8], [9]. In this attack, a malicious full node (i.e., an ad-
versary) generates a block with invalid transactions and hides
the invalid portion of the block from other nodes. This action
prevents honest nodes from sending fraud proofs to the light
nodes. Light nodes, in this scenario, randomly request/sample
chunks of the block from the block generator and detect a DA
attack if any request is rejected. To improve the detection of
a DA attack by light nodes, erasure coding has been proposed
to encode the block [8] which forces the adversary to hide a
larger fraction of the encoded block. However, erasure coding
allows the adversary to carry out an incorrect-coding (IC)
attack by incorrectly generating the coded block, in which
case honest full nodes can send an IC proof to the light nodes
to reject the block [8], [9]. Recently, [10] proposed a technique
to mitigate DA attacks without requiring IC-proofs, however
[10] employs complex cryptographic computations. We remark
that channel coding has been considered to mitigate a variety
of issues in blockchains [11]–[25].

The first paper to address DA attacks via coding used 2D
Reed-Solomon (RS) codes to encode each block [8]. Their
method was recently optimized in [26]. While offering a high
probability of detecting DA attacks, 2D-RS codes result in
large IC proof sizes and decoding complexity. Large IC-proof

sizes can be exploited by the adversary to congest the network
and cause issues such as denial of service attacks, reduced
transaction throughput, etc.. To improve upon 2D-RS codes,
authors in [9] proposed the Coded Merkle Tree (CMT): a
Merkle tree [1] where each layer is encoded using a Low-
Density Parity-Check (LDPC) code. LDPC codes reduce the
IC proof size compared to 2D-RS codes due to their sparse
parity check equations. LDPC codes also allow the use of a
low complexity peeling decoder [27] for decoding the CMT
where the probability of failure to detect DA attacks depends
on the minimum stopping set size of the LDPC code [9].

Application of coding has to be carefully considered de-
pending on the size of the transaction blocks in blockchains
which can range from a few MBs (small block size), e.g.,
Bitcoin [28], Bitcoin Cash [29], to hundreds of MBs (large
block size), e.g., Bitcoin SV [30]. For large block sizes, large
code lengths are required since large code lengths allow for
smaller partitioning of the block, thereby reducing the net-
work bandwidth requirement. In regard to the CMT, previous
work in [9] has considered random LDPC codes for large
code lengths. However, due to the random construction, the
approach has a non-negligible probability of generating bad
codes [9] which undermines the security of the system. At the
same time, works in [11], [12] have provided deterministic
LDPC codes with short code lengths based on the PEG algo-
rithm [31] that result in a low probability of failure. However,
the NP-hardness of determining the minimum stopping set
size of LDPC codes [32] makes it difficult to provide an
efficiently computable guarantee on the probability of failure
for large code lengths. As such, designing a CMT with LDPC
codes at large code lengths/block sizes is difficult. To mitigate
these issues, we propose Polar Coded Merkle Tree (PCMT):
a CMT built using the encoding graph of polar codes [33]
(we refer to a CMT built using LDPC codes as an LCMT).
Although polar codes have dense parity check matrices [34],
they have sparse encoding graphs, which result in a small
IC proof size in the PCMT. We provide a specialized polar
code construction called Sampling-Efficient Freezing (SEF)
Algorithm that i) provides a low probability of failure to detect
DA attacks; ii) allows flexibility in designing polar codes of
any lengths. We demonstrate that SEF Polar codes have an
efficiently computable guarantee on the probability of failure
which simplifies system design at large block sizes. We then
demonstrate that for large block sizes, a PCMT built using SEF
Polar codes result in a lower probability of failure compared
to LDPC codes designed by the PEG algorithm.

The rest of this paper is organized as follows. In Section II,

ar
X

iv
:2

20
1.

07
28

7v
2

 [
cs

.I
T

]
 1

6
M

ay
 2

02
2

we provide the preliminaries and the system model. In Section
III, we provide our construction method for the PCMT. We
present the SEF algorithm in Section IV. Finally, we provide
simulation results and performance comparisons in Section V.

II. PRELIMINARIES AND SYSTEM MODEL

Notation: Let F2 =

[
1 0
1 1

]
and T2 =

[
1
2

]
. For a vector a,

let a(i) and min(a; k) denote the ith element and kth smallest
value of a, respectively. Let ⊗n denote the nth Kronecker
power. Let |S| be the cardinality of set S. All logarithms are
with base 2. For integers a and b define [a, b] = {i | a ≤ i ≤
b}, (a, b] = {i | a < i ≤ b}, and [a] = {i | 1 ≤ i ≤ a}, where
elements in the three sets are integers.

1) Coded Merke Tree preliminaries: A CMT, like a regular
Merkle Tree [1], is a cryptographic commitment generator that
is used to check the integrity of transactions in the block
[9]. Additionally, erasure coding allows to check for data
availability via random sampling. In this section, we provide
a general framework for the CMT construction that captures
its key properties. Later in Section III, we present the PCMT
within the general CMT framework.

A CMT parametrized by T = (k,R, q, l) is a coded version
of a Merkle tree [1]. It has (l + 1) layers L0, L1, . . . , Ll
where Ll is the base layer and L0 is the CMT root. Lj
has Nj = Nl

(qR)l−j coded symbols, where Nl = k
R . Let

CodeSym[j] = {Cj [i] | i ∈ [Nj]} be the coded symbols of
Lj , where data[j] = {Cj [i] | i ∈ [RNj]} and parity[j] =
{Cj [i] | i ∈ (RNj , Nj]} are the set of data and parity symbols
of Lj , respectively. The coded symbols in the CMT are formed
as follows: Set the data symbols of the base layer data[l] to
the chunks of the transaction block. For j = l, l − 1, . . . , 1:
a) form the parity symbols parity[j] from the data symbols
data[j] using a rate R systematic linear code via a procedure
parity[j] = encodeParity(data[j]); b) form the data
symbols data[j − 1] from the coded symbols CodeSym[j]
by a procedure data[j − 1] = formParent(CodeSym[j]).

The formParent() procedure has the property that each
data symbol Cj−1[i] in data[j − 1] contains the hashes of
q coded symbols of CodeSym[j]. Finally, data[0] forms the
root Root of the CMT and is the commitment to the block.

Each coded symbol τ in the CMT has a Merkle proof
Proof(τ) which can be used to check the integrity of
the symbol given the Root using Verify-Inclusion(τ ,
Proof(τ), Root). The CMT is decoded using a hash-aware
decoder which decodes the tree from the root to the base layer.
Each layer is decoded using a procedure decodeLayer(Lj)
and the hash of the decoded symbols are matched with their
hash provided in the parent layer of the CMT. Assume that the
decoded CMT symbols τ1, τ2, . . . , τd satisfy a degree d parity
check equation (of the erasure code used for encoding). Of
these symbols, if there exists a symbol τe whose hash does not
match with the hash provided by the parent of τe in the CMT,
an IC attack is detected. In this case, an IC proof consists of the
following: the symbols {τ1, τ2, . . . , τd} \ τe and their Merkle
proofs, and the Merkle proof of τe. The IC proof is verified by
first verifying that each symbol τi, 1 ≤ i ≤ d, i 6= e, satisfies

Fig. 1: Left panel: FG G8 where circles represent VNs and squares represent
CNs. The black (red) VNs and CNs represent a stopping set (stopping tree);
Right panel: G5 obtained by removing the VNs from the last 3 rows of G8.
(removed VNs are shown in low opacity).

Verify-Inclusion(τi, Proof(τi), Root), then decoding
τe from the remaining symbols (as they form a parity check
equation) and then checking that τe does not satisfy Verify-
Inclusion(τe, Proof(τe), Root).

We consider a blockchain system similar to [9], [12] with
full nodes and light nodes where full nodes produce new
blocks. Light nodes only store the CMT root of each block
and use it to verify the Merkle proof of CMT symbols and
IC proofs. Similar to [8], [9], [11], [12], we assume that light
nodes are honest, are connected to at least one honest full node,
but can be connected to a majority of malicious full nodes.
For the purposes of a DA attack, consider one layer of the
CMT having N coded symbols. A malicious full node causes
a DA attack by a) generating an invalid block and producing its
CMT; b) hiding coded symbols (of the N coded symbols) such
that no honest full node is able to decode back all the coded
symbols. Light nodes detect this DA attack by anonymously
and randomly requesting (sampling) a small number of coded
symbols from the block producer and accepting the block if
all the requested samples are returned. A malicious node only
returns coded symbols that it has not hidden [8], [9], [11],
[12]. Let αmin, which we call the undecodable threshold, be
the minimum number of coded symbols that a malicious node
must hide to prevent honest full nodes from decoding all the
coded symbols. Then, the probability of failure for a light
node to detect a DA attack using s random i.i.d. samples is
Pf (s) = (1 − αmin

N)s. Note that we focus on the security
of the system on a per client basis similar to [8], [9]. The
following metrics are of importance for a CMT: i) IC proof
size (must be small in comparison to the original block size
since this proof is communicated to all light nodes and can be
used to congest the network), ii) undecodable threshold, iii)
complexity of computing the undecodable threshold (which
is important at large CMT code length N), and iv) decoding
complexity. In this paper, we will demonstrate a construction
of CMT using polar codes called the PCMT that performs well
on all these metrics when the size of the block b is large.

2) Polar Codes preliminaries: An (N̂ , K̂) polar code of
codelength N̂ = 2n for some integer n and information length
K̂ is defined by a transformation matrix F2n = F⊗n2 . The
generator matrix of the polar code is a submatrix of F2n

having K̂ of its rows corresponding to the data (information)
symbols, while the rest of the rows correspond to frozen
symbols (zero chunks in this paper). The factor graph (FG)

Fig. 2: PCMT T = (k = 4, R = 0.5, q = 4, l = 2). In the PCMT, the
coded symbols corresponding to all the columns of the polar FG are hashed
into the parent layer. The dropped symbols are shown in dotted. The symbols
in L2 are colored according to the column they belong to in FG G8. The
circled symbols in L1 are the Merkle proof of the red symbols in L2. The
data (parity) symbols in the Merkle proofs are shown in solid (dashed) circles.

representation [37] of F23 is shown in Fig. 1 left panel. In
general, the FG of F2n (denoted by G2n) has n + 1 variable
node (VN) and n check node (CN) columns. Let vki (cki)
denote the VN (CN) in the kth column and ith row as shown
in Fig. 1. Note that the CNs have a degree of either 2 or 3.

Systematic encoding of (N̂ , K̂) polar codes [35], [36]
(required for CMT construction), can be performed using the
method described in [36]. Given information and frozen index
sets Â ⊂ [N̂] and F̂ = [N̂] \ Â, such that |Â| = K̂, the
systematic encoder of [36] determines the value of all the
VNs in the FG GN̂ such that i) {v1i |i ∈ F̂} are set to
zero (frozen) symbols; ii) VNs in {v(n+1)i | i ∈ Â} and
{v(n+1)i | i ∈ F̂} are the provided data symbols and resultant
parity symbols in the systematic encoding. Details regarding
systematic encoding can be found in Appendix D.

A polar code can be decoded using a peeling decoder on
the code FG. Similar to LDPC codes, the peeling decoder on
the FG of a polar code fails if all VNs corresponding to a
stopping set (of the FG) are erased. A stopping set is a set of
VNs such that every CN connected to this set is connected to
at least two VNs in the set. Similar to [37], we call the VNs of
a stopping set ψ that are in the rightmost column of the FG as
its leaf set denoted by Leaf-Set(ψ). An important category
of stopping sets in the FG of polar codes is called stopping
trees [37]. A stopping tree is a stopping set that contains only
one VN from the leftmost column of the FG (called its root).
Fig. 1 left panel shows a general stopping set and a stopping
tree in the FG G8. As demonstrated in [37], each VN v1i,
i ∈ [N̂], is root of an unique stopping tree. Let ST 2n

i be the
unique stopping tree with root VN v1i in the FG G2n and let
f2n

i = |Leaf-Set(ST 2n

i)|. It is easy to see (and also proved
in [37]) that f2n

i = T2n(i), ∀i ∈ [N̂], where T2n = T⊗n2 .
III. POLAR CODED MERKLE TREE (PCMT)

In this section, we describe the construction of a PCMT
under the general CMT framework of Section II. Assume
all Nj’s are powers of 2. In Section IV, we remove this
assumption. Let Aj (Fj) be the information (frozen) index
sets of the polar code used in layer j of the PCMT. We have
|Aj | = RNj and |Fj | = (1 − R)Nj . For convenience, we
re-index the row indices in FG Gj such that Aj and Fj are
the indices [1, RNj] and (RNj , Nj], respectively.

For the PCMT, define intermediate coded symbols (which
are used to form the PCMT) Cj [k][i], j ∈ [l] where k ∈
[logNj + 1], i ∈ [Nj]. Index k (i) is the column (row)
number of the VN that the symbol Cj [k][i] corresponds to,
in the FG GNj

. In the general CMT framework, for j ∈ [l],
we have data[j] = {Cj [logNj + 1][i] | i ∈ [RNj]},
parity[j] = {Cj [logNj + 1][i] | i ∈ (RNj , Nj]} and
CodeSym[j] = data[j] ∪ parity[j].

1) Formation of PCMT symbols: The encodeParity()
procedure for a PCMT is as follows: for the data symbols
data[j], use a systematic polar encoder as described in
Section II to find the parity symbols parity[j], where VNs
corresponding to frozen[j] = {Cj [1][i] | i ∈ (RNj , Nj]}
in GNj

are set as zero chunks. The systematic encoder also
provides the set of symbols dropped[j] = {Cj [k][i] | k ∈
[logNj], i ∈ [Nj]} which are dropped from the PCMT and
are not included in CodeSym[j]. However, before dropping,
we use them to form the parent layer in the PCMT. The
formParent() procedure for a PCMT is as follows. Let
x mod p := (x)p and let Hash and concat represent the
hash and string concatenation functions, respectively. We have

Cj−1[logNj−1 + 1][i] (1)

= concat({Hash(Cj [k][x]) | k ∈ [logNj + 1],

x ∈ [Nj], i = 1 + (x− 1)RNj−1}), ∀i ∈ [RNj−1],

where data[j−1] = {Cj−1[logNj−1 +1][i] | i ∈ [RNj−1]}.
For a PCMT, the root (data[0]) has a size t = N1(logN1+1)
hashes. In Fig. 2, the formation of C1[3][2] is shown.

In the above formParent() procedure, data symbols in
data[j − 1] are formed by taking the hashes of all the
Nj(logNj + 1) intermediate coded symbols of layer j (i.e.,
dropped[j]∪CodeSym[j]) and concatenating q(logNj + 1)
hashes together according to Eqn. (1). The intuition behind
taking the hashes of all the intermediate coded symbols is so
that the symbols in dropped[j] also get committed to the
root (i.e., these symbols also have a Merkle proof). Although
dropped, the symbols in dropped[j] can be decoded back by
a peeling decoder using the available (non-erased) symbols of
CodeSym[j]. Once decoded, they can be used to build small
IC proofs using the degree 2 and 3 CNs in the polar FG GNj .

2) Merkle proof of PCMT symbols: For the above PCMT
construction, symbols in CodeSym[j] and dropped[j] have
Merkle proofs. The Merkle proof of the symbols Cj [k][i], k ∈
[logNj + 1], i ∈ [Nj] consists of a data symbol and parity
symbol from each layer of the PCMT above Lj similar to
LCMT in [12], [24]. Precisely, it is given by the following:

Proof(Cj [k][i]) = {Cj′ [logNj′ + 1][1 + (i− 1)RNj′], (2)

Cj′ [logNj′ + 1][1 +RNj′ + (i− 1)(1−R)Nj′
] | j′ ∈ [j − 1]}.

The Merkle proof for C2[4][4] is shown in Fig. 2. The data
symbols from each layer in Proof(Cj [k][i]) lie on the path
of Cj [k][i] to the PCMT root; this path is used to check the
integrity of Cj [k][i] in a manner similar to an LCMT [9], [24].

3) Hash-aware peeling decoder and IC proofs: The PCMT
is decoded using a hash-aware peeling decoder similar to
LCMT in [9]. The decodeLayer(Lj) procedure for the

decoder is as follows. Its acts on the FG GNj
. It takes as inputs

the frozen symbols frozen[j] and the non hidden symbols
of CodeSym[j]. Using a peeling decoder, it finds all symbols
in dropped[j] ∪ CodeSym[j]. The hash of every decoded
(peeled) symbol is matched with its hash provided by the
parent layer Lj−1. If hashes do not match, an IC attack is
detected. In this case, IC proof is generated using the degree
2 or 3 CN of the FG GNj as per the general CMT framework.
A. DA attacks on PCMT

Consider layer Lj , j ∈ [l], of the PCMT. For a given
information index setAj , let ΨAj denote the set of all stopping
sets in the FG GNj

that do not have any VNs corresponding to
frozen[j]. The hash-aware peeling decoder fails to decode
Lj if coded symbols corresponding to a stopping set in ΨAj

are erased. Since all the coded symbols except the rightmost
column of GNj are dropped, the peeling decoder will fail if
the adversary hides the leaf set of a stopping set in ΨAj .

To prevent a DA attack, light nodes randomly sample sym-
bols from the PCMT base layer, i.e., CodeSym[l]. Randomly
sampling the base layer ensures that the non-dropped symbols
of intermediate layer Lj , j ∈ [l − 1], i.e., CodeSym[j], are
also randomly sampled via the Merkle proofs of the base layer
samples similar to an LCMT in [9]. For subsequent analysis,
we assume (WLOG) that the adversary conducts a DA attack
on the base layer of the PCMT. To find the adversary strategy
that leads to the largest probability of failure when the light
nodes use random sampling, we use the following important
property of stopping sets in polar FGs that was proved in [37]:

min
ψ∈ΨAl

|Leaf-Set(ψ)| = min
i∈Al

fNl
i . (3)

Eqn. (3) implies that, when light nodes use random sam-
pling, the best strategy for the adversary (to maximize the
probability of failure) is to hide the smallest leaf set amongst
all stopping trees with non frozen root. Thus, αmin = min

i∈Al

fNl
i .

IV. SAMPLING-EFFICIENT FREEZING ALGORITHM

For the best adversary strategy, αmin = mini∈Al
fNl
i . Based

on this result, a naïve frozen set selection method would be to
select the indices of RNl VNs from the leftmost column of the
FG Gl with the smallest stopping tree leaf set sizes fNl

i . Note
that for this naïve frozen set selection, the polar code becomes
equivalent to a Reed-Muller (RM) Code [38]. We call the naïve
frozen set selection as Naïve-RM (NRM) algorithm for which
it can be easily shown that αNRMmin = min (TNl

; (1−R)Nl)
(which is the (1−R)Nl-th smallest value of TNl

).
Next, we describe the Sampling-Efficient Freezing (SEF)

algorithm and show that it results in a higher effective unde-
codable threshold compared to the NRM algorithm. Addition-
ally, our algorithm allows for polar codes of any length and
are not limited to powers of two. Assume that in this section,
for all FG GN̂ , the rows in GN̂ are indexed 1 to N̂ from top to
bottom. The SEF algorithm is based on the following lemma.
Lemma 1. Consider FG GN̂ where N̂ is a power of two.
Let F̂ and Â be the frozen and information index sets. For
a parameter µ, define the set of VNs Vµ

N̂
[k] = {vki | i ∈

[N̂ − µ+ 1, N̂]}. If [N̂ − µ+ 1, N̂] ⊂ F̂ , then i) ∀ ψ ∈ ΨÂ,

Algorithm 1 SEF Algorithm

1: Inputs: N , K Output: GN , F , TN

2: Initialize: N̂ = 2dlogNe, FG GN̂ , µ1 = N̂ −N , i = N .
3: GN = FG obtained by removing all VNs in {Vµ1

N̂
[k] | k ∈

[log N̂ + 1]} and their connected edges from GN̂ (also
remove any CNs that have no connected edges)

4: TN = TN̂ with last µ1 entries removed
5: F = {e | e ∈ [N], TN (e) < min(TN ;N −K)}
6: while |F| < N −K do
7: if i 6∈ F then F = F ∪ i end if; i = i− 1

ψ does not have any VNs in Vµ
N̂

[log N̂ + 1]; ii) all VNs in
{Vµ

N̂
[k] | k ∈ [log N̂ + 1]} are zero chunks.

Proof Idea. Assuming that a stopping set ψ ∈ ΨÂ has a VN
from Vµ

N̂
[log N̂ +1], we prove, by incorporating the definition

of stopping sets, that ∃ i, i ∈ [N̂−µ+1, N̂] such that v1i ∈ ψ.
This is a contradiction since ψ ∈ ΨÂ and hence does not have
VNs in Vµ

N̂
[1]. Full proof can be found in Appendix A.

Lemma 1 states that, if the last µ rows (from the bottom) in
the leftmost column of GN̂ are all frozen, then no stopping set
in ΨÂ can have a VN from the last µ rows in the rightmost
column of GN̂ . Thus, for a frozen index set F̂ such that [N̂ −
µ + 1, N̂] ⊂ F̂ , the light nodes do not need to sample the
VNs in Vµ

N̂
[log N̂ + 1]. We leverage the above property to

improve the effective undecodable threshold of polar codes.
Additionally, since all the VNs in {Vµ

N̂
[k] | k ∈ [log N̂ + 1]},

which are all the VNs in the last µ rows of GN̂ , are zero
chunks, these VNs and their associated edges can be removed
from the FG. After this removal, we get the FG GN̂−µ of a
polar code of length N̂ − µ. We use this property to design
polar codes of lengths that are not powers of two. An example
of FG G5 is shown in Fig. 1 right panel. Algorithm 1 provides
the SEF algorithm to design the frozen index set F of an
(N,K) polar code; N is not necessarily a power of two.

In the SEF algorithm, we first remove the VNs from the
last µ1 = N̂ − N rows in FG GN̂ (step 3). This gives us
the FG GN which has N coded symbols and is used for the
construction of the PCMT. Then, in steps 4-7, we select the
frozen index set F of size N −K for the (N,K) polar code.
Note that TN (step 4) stores the stopping tree sizes of the
VNs v1i, i ∈ [N]. For the selection of F , we first select all
the indices e in [N] whose corresponding VNs v1e have their
stopping tree sizes less than min(TN ;N −K) (step 5). Then,
the remaining indices in F are selected as the VN indices from
the bottom row of FG GN that are not already present in F
(steps 6-7). We have the following lemma.
Lemma 2. Let µ2 be the largest µ such that [N−µ+1, N] ⊂
F and let A = [N]\F . For an (N,K) polar code produced by
the SEF algorithm, let the light nodes randomly sample among
the top N−µ2 VNs from the rightmost column of FG GN . For
this sampling strategy, the effective undecodable threshold is
αSEFmin = mini∈ATN (i)∗N

N−µ2
. As such, Pf (s) =

(
1− αSEF

min

N

)s
.

Proof Idea. We prove the lemma by using Lemma 1 and Eqn.
3. The full proof can be found in Appendix B.

Block size b (MB)

IC
pr

oo
f

si
ze

/
bl

oc
k

si
ze

Block size b (MB)

P
f
(s

)

Block size b (MB)

P
f
(s

)

Fig. 3: All figures use b = cRNl. Left panel: Comparison of IC proof size normalized by block size b for different data symbol size c = b
k

. We use
(R, q, l) = (0.5, 4, 4) in the figure. For IC proof size of LCMT, we use the maximum CN degree dc. For PCMT, the maximum CN degree dp = 3; Middle
and Right panel: Pf (s) vs. blocksize b for LCMT and PCMT. The two panels use (R, q, l) = (0.4, 5, 4), (0.5, 4, 4), and (0.75, 4, 3) and a constant data
symbol size c. Sample size s for PCMT and LCMT are selected such that total sample download size is b

3
and b

5
for the middle and right panels, respectively.

2D-RS LCMT PCMT
T1 T2 T1 T2 T1 T2

Root size (KB) 2.05 5.82 0.26 0.51 1.02 2.56

IC proof size (MB) 5.80 16.40 1.54 1.54 0.53 0.54

Total sample download size (MB) 10.76 12.30 43.01 - 33.80 80.10

Decoding complexity O(N1.5
l) O(Nl) O(NldlogNle)

TABLE I: Comparison of various performance metrics for 2D-RS, LCMT
and PCMT. The table uses T1 = (k,R, q, l) = (512, 0.5, 4, 8), T2 =
(4096, 0.5, 4, 10), c = 256KB, and b = cRNl. Sample download size is
calculated such that Pf (s) is 0.01. Due to complexity of finding αmin for
LCMT, we do have a corresponding total sample download size value for T2.

Note that due to step 5 of the SEF algorithm,
mini∈ATN (i) ≥ min(TN ;N − K). Thus, the undecodable
ratio of the SEF algorithm is always as big as the NRM
algorithm. The FG GN output by the SEF algorithm is used for
constructing different layers of the PCMT. GN has dlogNe+1
VN and dlogNe CN columns each with N VNs or CNs. Thus,
for the PCMT construction described in Section III, we replace
all instances of logNj with dlogNje (where Nj’s need not be
powers of two). Rest of the construction remains the same.

V. SIMULATIONS AND PERFORMANCE COMPARISON
In this section, we demonstrate the benefits of a PCMT

with respect to the CMT metrics i)-iv) described in Section II
when the size of the block b is large. We also compare the
performance of a PCMT with an LCMT and 2D-RS codes.
We denote the output size of the Hash function as y and
the size of the data chunk (symbol) in the base layer as c
where block size b = ck = cRNl. We use y = 256 bits.
All PCMTs are built using SEF Polar codes. All LCMTs are
built using LDPC codes constructed using the PEG algorithm
[31] where the degree of all VNs is set to 3. For the PEG
LDPC codes, the undecodable threshold αmin is evaluated by
solving an Integer Linear Program (ILP) as described in [39]
and is computationally infeasible for larger code lengths. In
contrast, SEF Polar codes have an easily computable αmin

using Lemma 2. Due to complexity issues, we compute αmin

for LDPC codes up to a feasible code length (and, thus, up
to a feasible block size). From the description of the PCMT
provided in Section III, derivation of its root size, IC proof
size, and single sample download size (base layer sample and
associated Merkle proof) is straight forward and is provided
in Appendix C (which we use to generate the plots in Fig. 3).

In Fig. 3 left panel, we plot the IC proof size vs. block size
b for an LCMT and a PCMT and different data symbol sizes c.
We see that for c = 256 and 16KB (large block sizes), the IC
proof size is smaller for a PCMT compared to an LCMT and
gets bigger than an LCMT for c = 1KB (small block sizes).
Remark 1. We note that for a PCMT and an LCMT with the
same CMT T parameters, the PCMT incurs an asymptotic
penalty of O(log b) in the IC-proof size over the LCMT due
to collecting the hashes of VNs in all the columns of the FG
(can be seen from the expressions in Appendix C). However for
practical block sizes of interest, the IC-proof size of a PCMT
can be significantly lower compared to an LCMT, as shown
in Fig. 3, due to the low CN degree in the FG of polar codes.

In Fig. 3 middle and right panels, we compare the proba-
bility of failure Pf (s) to detect a DA attack conducted on the
base layer. We compare Pf (s) for large and short block sizes in
the middle and right panels, respectively. From Fig. 3, we see
that PCMT has a worse probability of failure compared to an
LCMT for small block sizes. However for large block sizes,
PCMT always has a lower probability of failure compared
to an LCMT across all rates R and block sizes b thanks to
a higher undecodable ratio for the SEF Polar codes and a
negligible penalty in the single sample download size.

In Table I, we provide additional comparison of various
performance metrics for 2D-RS, LCMT, and PCMT. We can
see that PCMT outperforms LCMT w.r.t. IC-proof size and
total sample download size with small increase in root size and
decoding complexity. While PCMT has a O(dlogNle) factor
greater decoding complexity than an LCMT, the decoding
complexity is smaller than for 2D-RS codes which is O(N1.5

l)
[9]. At the same time, PCMT also has a lower IC proof size
and root size compared to 2D-RS codes while having a higher
sample download size. Going from T1 to T2, the IC-proof
size for 2D-RS codes increases 3 fold while the IC-proof size
remains almost constant for LCMT and PCMT. Note that for
2D-RS codes, the IC proof size, decoding complexity, and
header size do not scale well as the block size increases [9].

Overall, when the size of the transaction block b is large, a
PCMT built using SEF Polar codes has good performance w.r.t
metrics i)-iv) described in Section II and offers a new trade-off
in these metrics compared to LCMT and 2D-RS codes.

REFERENCES

[1] S. Nakamato, “Bitcoin: A peer to peer electronic cash system," 2008.
[Online] Available: https://bitcoin.org/bitcoin.pdf.

[2] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger," Ethereum project yellow paper, Apr. 2014.

[3] K. Salah, M. H. U. Rehman, N. Nizamuddin and A. Al-Fuqaha,
“Blockchain for AI: Review and open research challenges," IEEE Access,
vol. 7, pp. 10127-10149, 2019.

[4] K. Huang, X. Zhang, Y. Mu, F. Rezaeibagha, X. Du and N. Guizani,
“Achieving intelligent trust-layer for internet-of-things via self-redactable
blockchain," IEEE Transactions on Industrial Informatics, vol. 16, no. 4,
pp. 2677-2686, Apr. 2020.

[5] M. J. Casey and P. Wong, “Global supply chains are about to get better,
thanks to blockchain,” Harvard Business Review, Mar. 2017. [Online]
Available: https://hbr.org/2017/03/global-supply-chains-are-about-to-get-
better-thanks-to-blockchain.

[6] N. Teslya and I. Ryabchikov, “Blockchain-based platform architecture
for industrial IoT," 21-st Conference of Open Innovations Association
(FRUCT), pp. 321-329, Nov. 2017.

[7] M. Mettler, “Blockchain technology in healthcare: The revolution starts
here,” IEEE 18th International Conference on e-Health Networking,
Applications, and Services (Healthcom), pp. 1-3, Sept. 2016.

[8] M. Al-Bassam, A. Sonnino, V. Buterin, “Fraud and data availability
proofs: Detecting invalid blocks in light clients," International Conference
on Financial Cryptography and Data Security Springer, Mar. 2021.

[9] M. Yu, S. Sahraei, S. Li, S. Avestimehr, S. Kannan, and P. Viswanath,
“Coded merkle tree: Solving data availability attacks in blockchains,"
International Conference on Financial Cryptography and Data Security,
Springer, Cham, pp. 114-134, Feb. 2020.

[10] K. Nazirkhanova, J. Neu, and D. Tse, “Information dispersal with
provable retrievability for rollups," arXiv preprint arXiv:2111.12323 Nov.
2021.

[11] D. Mitra, L. Tauz, and L. Dolecek, “Concentrated stopping set design
for coded merkle tree: Improving security against data availability attacks
in blockchain systems," 2020 IEEE Information Theory Workshop (ITW),
pp. 1-5, Apr. 2021.

[12] D. Mitra, L. Tauz, and L. Dolecek, “Overcoming data availability attacks
in blockchain systems: LDPC code design for coded merkle tree," arXiv
preprint arXiv:2108.13332, Aug. 2021.

[13] S. Cao, S. Kadhe, and K. Ramchandran, “CoVer: Collaborative light-
node-only verification and data availability for blockchains," IEEE Inter-
national Conference on Blockchain (Blockchain), pp. 45-52, Nov. 2020.

[14] D. Perard, J. Lacan, Y. Bachy, and J. Detchart, “Erasure code-based
low storage blockchain node," IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData), pp. 1622-1627, Jul. 2018.

[15] M. Dai, S. Zhang, H. Wang, and S. Jin, “A low storage room requirement
framework for distributed ledger in blockchain," IEEE Access, vol. 6,
pp. 22970-22975, Mar. 2018.

[16] Q. Huang, L. Quan, and S. Zhang, “Downsampling and transparent
coding for blockchain" arXiv preprint arXiv:1911.01778, Nov. 2019.

[17] D. Mitra and L. Dolecek, “Patterned erasure correcting codes for low
storage-overhead blockchain systems,” IEEE Asilomar Conference on
Signals, Systems, and Computers, pp. 1734-1738, Nov. 2019.

[18] S. Kadhe, J. Chung, and K. Ramchandran, “SeF: A secure fountain
architecture for slashing storage costs in blockchains," arXiv preprint
arXiv:1906.12140, Jun. 2019.

[19] A. Tiwari, and V. Lalitha, “Secure raptor encoder and decoder for
low storage blockchain," International Conference on COMmunication
Systems & NETworkS (COMSNETS), pp. 161-165, Jan. 2021.

[20] D. S. Gadiraju, V. Lalitha, and V. Aggarwal, “Secure regenerating codes
for reducing storage and bootstrap costs in sharded blockchains," IEEE
International Conference on Blockchain (Blockchain), pp. 229-236, Nov.
2020.

[21] B. Choi, J. Sohn, D. Han, and J. Moon, “Scalable network-coded PBFT
consensus algorithm," IEEE International Symposium on Information
Theory (ISIT), pp. 857-861, Jul. 2019.

[22] S. Li, M. Yu, C. Yang, A. S. Avestimehr, S. Kannan, and P. Viswanath,
“PolyShard: Coded sharding achieves linearly scaling efficiency and
security simultaneously," IEEE Transactions on Information Forensics
and Security, vol. 16, Jul. 2020.

[23] C. Wang, and N. Raviv, “Low latency cross-shard transactions in coded
blockchain," arXiv preprint arXiv:2011.00087, Oct. 2020.

[24] P. Sheng, B. Xue, S. Kannan, and P. Viswanath, “ACeD: Scalable data
availability oracle," arXiv preprint arXiv:2011.00102, Oct. 2020.

[25] D. Mitra, L. Tauz, and L. Dolecek, “Communication-efficient LDPC
code design for data availability oracle in side blockchains," IEEE
Information Theory Workshop (ITW), pp. 1-6, May 2021.

[26] P. Santini,G. Rafaiani, M. Battaglioni, F. Chiaraluce, M. Baldi, et al.,
“Optimization of a Reed-Solomon code-based protocol against blockchain
data availability attacks", arXiv preprint arXiv:2201.08261v1, Jan. 2022.

[27] T. Richardson, and R. Urbanke, “Modern coding theory," Cambridge:
Cambridge University Press, 2008.

[28] Online: https://www.blockchain.com/charts/avg-block-size, accessed
11th Jan. 2022.

[29] Online: https://bitinfocharts.com/comparison/bitcoin%20cash-size.html#
3y, accessed 11th Jan. 2022.

[30] Online: https://bitinfocharts.com/comparison/bitcoin%20sv-size.html#
3y, accessed 11th Jan. 2022.

[31] X.Y. Hu, E. Eleftheriou and D.M. Arnold, “Regular and irregular pro-
gressive edge-growth tanner graphs," IEEE Transactions on Information
Theory, vol. 51, no. 1, pp. 386-398, Jan. 2005.

[32] K. M. Krishnan, and P. Shankar, “Computing the stopping distance of
a Tanner graph is NP-hard," IEEE Transactions on Information Theory,
vol. 53, no. 6, pp. 2278-2280, Jun. 2007.

[33] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Transactions on Information Theory, vol. 55, no. 7, pp. 3051-3073,
Jul. 2009.

[34] N. Goela, S. B. Korada, and M. Gastpar, “On LP decoding of polar
codes," IEEE Information Theory Workshop, pp. 1-5, Aug. 2010.

[35] E. Arikan, “Systematic polar coding," IEEE Communications Letters
vol. 15, no. 8, pp. 860-862, Aug. 2011.

[36] L. Li and W. Zhang, “On the encoding complexity of systematic polar
codes," IEEE International System-on-Chip Conference (SOCC), pp. 415-
420, Sept. 2015.

[37] A. Eslami, H. Pishro-Nik, “On finite-length performance of polar codes:
stopping sets, error floor, and concatenated design," IEEE Transactions
on Communications, vol. 61, no. 3, pp. 919-929, Feb. 2013.

[38] D. E. Muller, “Application of boolean algebra to switching circuit design
and to error correction,” Transactions of the I.R.E. Professional Group on
Electronic Computers, vol. EC-3, no. 3, pp. 6–12, Sept. 1954.

[39] A. Sarıduman, A. E. Pusane, Z. C. Taşkın, “An integer programming-
based search technique for error-prone structures of LDPC codes," AEU-
Int. Journal of Electronics and Communications, vol. 8, no. 11, pp. 1097-
1105, Nov. 2014.

APPENDIX A
PROOF OF LEMMA 1

First of all, it is easy to see that when all the VNs in Vµ
N̂

[1]
(i.e., the VNs in the last µ rows from the leftmost column of
FG GN̂) are frozen or set to zero chunks, all the VNs in the
last µ rows from all the columns will be zero chunks. This is
because every CN in row i of the FG is either connected to
VNs in the same row i or to VNs from a row below i (i.e.,
having a row index greater than i) in the FG. This proves the
second claim of the lemma.

For the first claim, let ψ ∈ ΨÂ and let Gψ
N̂

be the induced
subgraph of GN̂ corresponding to the set of VNs ψ. From the
definition of ΨÂ, ψ does not have any frozen VNs from the
leftmost column of the FG GN̂ , i.e., ψ does not have any VNs
in the set {v1i | i ∈ F̂}. Since [N̂ − µ + 1, N̂] ⊂ F̂ , ψ does
not have any VNs in Vµ

N̂
[1].

We prove the first claim of the lemma by contradiction.
Assume that ψ has a VN from Vµ

N̂
[log N̂ + 1]. In particular,

assume that v(n+1)i1 ∈ ψ, where n = log N̂ and i1 ∈ [N̂−µ+

1, N̂]. Now, by the property of stopping sets, cni1 ∈ G
ψ

N̂
. Now,

http://arxiv.org/abs/2111.12323
http://arxiv.org/abs/2108.13332
http://arxiv.org/abs/1911.01778
http://arxiv.org/abs/1906.12140
http://arxiv.org/abs/2011.00087
http://arxiv.org/abs/2011.00102
http://arxiv.org/abs/2201.08261
https://www.blockchain.com/charts/avg-block-size
https://bitinfocharts.com/comparison/bitcoin%20cash-size.html#3y
https://bitinfocharts.com/comparison/bitcoin%20cash-size.html#3y
https://bitinfocharts.com/comparison/bitcoin%20sv-size.html#3y
https://bitinfocharts.com/comparison/bitcoin%20sv-size.html#3y

to satisfy the stopping set property, either vni1 ∈ ψ or vni2 ∈ ψ
where i1 < i2 ≤ N̂ and vni2 and cni1 are connected in GN̂ .
Thus, for the column number n, we have at least one index i,
i ∈ [N̂ −µ+ 1, N̂] such that vni ∈ ψ. Proceeding in a similar
manner as above, for the column number (n − 1), we have
at least one index i, i ∈ [N̂ − µ + 1, N̂] such that v(n−1)i ∈
ψ. Repeating the same process until we reach the leftmost
column, we can find at least one index i, i ∈ [N̂ − µ+ 1, N̂]
such that v1i ∈ ψ. However, this is a contradiction of the fact
that ψ does not have any VNs in set Vµ

N̂
[1] = {v1i | i ∈

[N̂ − µ+ 1, N̂]}.

APPENDIX B
PROOF OF LEMMA 2

The SEF algorithm produces a (N,K) polar code with a
FG GN where the bottom µ2 VNs from the leftmost column
of GN are frozen. Moreover, GN is obtained from freezing
(and hence removing) the last N̂ − N rows of GN̂ , where
N̂ = 2dlogNe. Note that F is the output of the SEF algorithm
and A = [N] \F . Define F̂ = F ∪ [N + 1, N̂], Â = [N̂] \ F̂ .
Clearly, Â and A are the same sets. Thus, the (N,K) polar
code can be seen as a code defined on the FG GN̂ with frozen
index set F̂ , and information index set A, where only the
top N VNs from the rightmost column of GN̂ are the coded
symbols.

Due to Lemma 1, VNs in the last µ2 + N̂ −N rows in the
rightmost column of GN̂ are not part of any stopping set in
ΨA. This implies that VNs in the last µ2 rows in the rightmost
column of GN are not part of any stopping set in ΨA. Thus
in the FG GN , the light nodes do not need to sample the
VNs in the last µ2 rows in the rightmost column of GN and
only randomly sample the top N − µ2 VNs. Moreover, from
Eqn. (3) (applied on FG GN̂), the smallest leaf set size of all
stopping sets in ΨA is given by
min
ψ∈ΨA

|Leaf-Set(ψ)| = min
i∈A

f N̂i = min
i∈A

TN̂ (i) = min
i∈A

TN (i).

Hence, the probability of failure Pf (s) = (1− mini∈ATN (i)
N−µ2

)s

resulting in an effective undecodable threshold of αSEFmin =
mini∈ATN (i)∗N

N−µ2
.

APPENDIX C
PERFORMANCE ANALYSIS AND COMPARISON

Comparison of various performance metrics of an LCMT, a
PCMT and 2D-RS codes is provided in Table I. The metrics
for 2D-RS codes are calculated as described in [8]. Detailed
derivation of the root size, single sample download size, and
IC proof size for an LCMT and PCMT in Table I is as follows.

1) Root size: For an LCMT, the root consists of the hashes
of all the coded symbols in L1. Hence, the root consists of
N1 hashes and, thus, has a size of yN1. For a PCMT, the root
consists of hashes of all the coded and dropped symbols in L1,
i.e., the hashes of all the VNs in FG of the polar code used in
L1. Hence, the root consists of N1(dlogN1e+ 1) hashes and,
thus, has a size of yN1(dlogN1e+ 1).

2) Single sample download size: For an LCMT, as de-
scribed in [9], [12], [24], each sample request consists of a
base layer symbol of the CMT and the Merkle proof of the
base layer symbol. Moreover, the Merkle proof of the base
layer symbol consists of a data symbol and a parity symbol
from each layer above the base layer (i.e., layers Lj , j ∈ [l−1]
). The Merkle proof satisfies the property that the data symbol
in proof from layer Lj consists of the hash of the data symbol
in proof from layer Lj+1, j ∈ [l − 1]. Thus, of the q hashes
present in the data symbol of the Merkle proof from layer
Lj , j ∈ [l− 1], the hash corresponding to the data symbol of
the Merkle proof from layer Lj+1 is not communicated in the
Merkle proof (and it can be calculated by taking a hash of the
data symbol of the Merkle proof from layer Lj+1). Thus, there
are only (q−1) hashes from each layer Lj , j ∈ [l−1] for the
data part in the Merkle proofs. Thus, the size of the Merkle
proof of a base layer symbol is y(2q − 1)(l − 1) (since the
size of each parity symbol is yq). Finally, the overall download
size for a single sample request is b

k +y(2q−1)(l−1), where
b
k is the size of the base layer symbol.

For a PCMT, similar to an LCMT above, a sample request
consists of a base layer symbol of the PCMT and the Merkle
proof of the base layer symbol. The Merkle proof of the base
layer symbol in this case again consists of a data symbol and
a parity symbol from each layer above the base layer. Note
that, here, the data and the parity symbols in layer Lj are the
non-dropped symbols of the polar FG GNj

corresponding to
the information Aj and frozen set Fj indices, respectively. In
contrast to an LCMT, in a PCMT, each data symbol of layer
Lj , j ∈ [l − 1] consists of qj = q(dlogNje+ 1) hashes.

The Merkle proof in a PCMT also satisfies the property that
the data symbol in proof from layer Lj consists of the hash of
the data symbol in proof from layer Lj+1, j ∈ [l − 1]. Thus,
only (qj − 1) hashes from layers Lj , j ∈ [l − 1] are present
in the data part of the Merkle proofs. Thus, for a PCMT, the
size of the Merkle proof of a base layer symbol is

l−1∑
j=1

y(2qj − 1) =

l−1∑
j=1

y(2(q(dlogNje+ 1))− 1)

= y(2q − 1)(l − 1) + 2qy

l−1∑
j=1

dlogNje

Finally, the overall download size for a single sample
request is b

k + y(2q − 1)(l − 1) + 2qy
∑l−1
j=1dlogNje, where

b
k is the size of the base layer symbol in a PCMT. Note the
additional penalty factor of 2qy

∑l−1
j=1dlogNje in the single

sample download size for a PCMT compared to an LCMT.
However, for large block sizes when b

k is large compared to
y, the penalty is small.

3) IC proof size: As described in Section II, the IC proof
for a failed parity check equation with d symbols consists
of d − 1 symbols and the Merkle proofs of the d symbols.
Note that the proof size is largest for a failed parity check
equation in the base layer. Thus, we provide the IC proof
size when the d symbols are base layer symbols. Also note
that, in IC proofs, the Merkle proof of a symbol only consists

2D-RS LCMT PCMT

Root size 2yd
√
Nle yN1 yN1(dlogN1e+ 1)

Single sample
download size

b
k
+ ydlog

√
Nle b

k
+ y(2q − 1)(l − 1) b

k
+y(2q−1)(l−1)+2qy

∑l−1
j=1dlogNje

IC proof size (b
k
+ ydlog

√
Nle)d

√
ke (dc−1)b

k
+ dcy(q − 1)(l − 1)

(dp−1)b

k
+ dpy(q − 1)(l − 1) +

dpqy
∑l−1

j=1dlogNje
Decoding complexity O(N1.5

l) O(Nl) O(NldlogNle)
αmin Analytical expression in [8] NP-hard to compute Lemma 2

TABLE II: Comparison of various performance metrics of 2D-RS codes, an LCMT, and a PCMT. The LCMT and PCMT have the same (k,R, q, l)
parameters. The maximum degree of CNs in the LDPC codes and polar FG are dc and dp = 3, respectively. The size of the block is b. 2D-RS has k data
symbols and dlog

√
Nle layers in the Merkle tree where Nl =

k
R

. For an LCMT, the number of layers l can be calculated such that the root size is some
fixed constant t. The same l is used for the PCMT.

on the data symbols from each layer above the base layer
(the parity symbols included in the Merkle proofs of the
light node samples are only to get additional samples of the
intermediate layers) [9], [24]. Thus, in an LCMT, for a failed
parity check equation with d symbols, the size of the IC proof
is (d−1)b

k + dy(q − 1)(l − 1), where the (q − 1) term arises
due to the same reason as explained in the single sample
download size calculation. Hence, when the maximum CN
degree of the LDPC code is dc, the IC proof size becomes
(dc−1)b

k + dcy(q − 1)(l − 1).
For a PCMT, the IC proof for a failed parity check equation

with d symbols again consists of d−1 symbols and the Merkle
proofs of the d symbols. Note that the symbols here can be
both the dropped or non-dropped symbols of the polar FG.
Also, each data symbol of layer Lj , j ∈ [l − 1] in a PCMT
consists of qj = q(dlogNje + 1) hashes. Thus, for a failed
parity check equation with d symbols, the size of the IC proof
in a PCMT is
(d− 1)b

k
+

l−1∑
j=1

dy(qj − 1)

=
(d− 1)b

k
+

l−1∑
j=1

dy((q(dlogNje+ 1))− 1)

=
(d− 1)b

k
+ dy(q − 1)(l − 1) + dyq

l−1∑
j=1

dlogNje.

For a PCMT, the maximum CN degree for a CN in the FG
of the polar code is dp = 3. In this case, the IC proof size
becomes (dp−1)b

k + dpy(q − 1)(l − 1) + dpyq
∑l−1
j=1dlogNje.

A. Undecodable Threshold

The undecodable threshold αmin for an LCMT with the
LDPC codes described in Section V and a PCMT with SEF
Polar codes is shown in Fig. 4. From the figure, we see that a
PCMT has a higher αmin compared to an LCMT for different
values of rates R and code lengths N . Hence for large block
size b, when the penalty in the single sample download size
for a PCMT is small, they have a lower probability of failure
compared to an LCMT for the same total sample download
size. This result is shown in Fig. 3 right panel.

N

α
m

in

Fig. 4: Left Panel: Undecodable threshold αmin vs N for PEG LDPC codes
(with VN degree 3) and SEF Polar codes. For PEG LDPC codes, we only
list αmin that we were able to find by solving the ILP in [39].

APPENDIX D
SYSTEMATIC ENCODING OF POLAR CODES

Systematic encoding of an (N̂ , K̂) polar codes can be
performed using the method described in [36]. It operates on
the FG GN̂ of the code. Let Â ⊂ [N̂] and F̂ = [N̂] \ Â be
the index sets corresponding to the data and frozen symbols of
the (N̂ , K̂) polar code, respectively, where |Â| = K̂. Also, let
N̂ = 2n. The systematic encoding is performed on the FG GN̂
by i) placing the K̂ data symbols at the VNs {v(n+1)i|i ∈ Â}
(in the rightmost column) and setting the VNs at {v1i|i ∈ F̂}
(in leftmost column) to zero symbols; ii) determining the rest
of the VNs using the check constraints of the FG GN̂ in a
two stage reverse and forward encoding on the FG [36]. The
coded symbols are the VNs v(n+1)i, i ∈ [N̂], and are by design
systematic. Systematic encoding can also be performed using
a peeling decoder as the encoder as described next.

In [35], author proposed to perform systematic encoding
of polar codes by using a successive cancellation decoder
on the code FG as the encoder. Inspired by this idea, we
show that systematic encoding of the polar codes can also
be performed using a peeling decoder as the encoder. The
encoder, which we call a peeling encoder for polar codes
(PEPC), works as follows. Consider the data and frozen index
sets Â ⊂ [N̂] and F̂ = [N̂] \ Â of the polar code with

FG GN̂ . Place the data symbols at the VNs {v(n+1)i|i ∈ Â}
(in the rightmost column) and set the VNs at {v1i|i ∈ F̂}
(in leftmost column) to zero symbols. Use a peeling decoder
to find the remaining VNs of the FG. The coded symbols
ci = v(n+1)i, i ∈ [N̂], are by design systematic. We have the
following lemma corresponding to a PEPC.

Lemma 3. Systematic encoding of polar codes using a PEPC
always results in a valid codeword. In other words, the peeling
decoder never encounters a decoding failure when used for
encoding.

We prove Lemma 3 by proving the following important
property of stopping sets in the FG of polar codes produced by
the SEF algorithm. Note that the property holds true for regular
polar FG GN̂ where N̂ is a power of 2. Additionally, the
property also holds true for the FG GN obtained by removing
VNs from the last few rows of FG of the form GN̂ , where N̂
is a power of 2. Thus, let n = dlogNe. The proof provides
insights on important properties of stopping sets in the FG
of polar codes. To our best knowledge, we have not seen the
following result before in literature and, hence, it may be of
independent interest.

Lemma 4. Consider a polar FG GN produced by the SEF
algorithm (this encompasses polar factor graphs GN̂ , where
N̂ is a power of 2). Every stopping set of GN has a full row
of VNs i.e., it has all VNs in the set {vki | k ∈ [dlogNe+1]}
for some i ∈ [N].

Proof. Let ψ be a stopping set of GN . Let GψN be the induced
subgraph of GN corresponding to the set of VNs ψ. Observe
that the FG GN has two types of edges (see Fig. 1 for an
example): horizontal edges and slanted edges (which involves
a connection between a degree 3 VN and a degree 3 CN). We
consider two cases: i) GψN does not have any slanted edges; ii)
GψN has at least one slanted edge.

For case i), it is easy to see that the stopping set ψ must
include a full row of VNs. For case ii), note that it implies
GψN has at least one slanted edge. This implies that ψ has
at least one VN of degree 3. In this situation, define the set
∆ψ = {(i, k) | i ∈ [N], k ∈ [n], vki ∈ ψ, degree of vki = 3}.
Let imax = max({i|(i, k) ∈ ∆ψ for some k, k ∈ [n]}).
∆ψ contains the indices of all the degree 3 VNs of ψ and
imax denotes the largest row index such that ψ has a degree
3 VN from that row. Note that ∆ψ is non empty because
we are considering case ii). Now, we claim that ψ has all
the VNs in the row imax, i.e., ψ contains all the VNs in
{vkimax

| k ∈ [n+ 1]}. To see why this is true, let k, k ∈ [n],
be such that (imax, k) ∈ ∆ψ . This means that vkimax

∈ ψ.
Now by the definition of a stopping set, the CNs to the right
and left of vkimax

must belong to the induced subgraph graph
of the stopping set. In other words, c(k−1)imax

∈ GψN and
ckimax

∈ GψN (unless vkimax
is the rightmost or the left most

VN in which case we will have only one CN neighbour). Now,
to satisfy the stopping set property, for both these CNs, their
corresponding VNs to their left and right in the same row

imax must belong to the stopping set ψ (i.e., v(k−1)imax
∈ ψ,

v(k+1)imax
∈ ψ). If not, then to satisfy the stopping set

property, the CN must be connected to a VN vki ∈ ψ by
a slanted edge. Note that a slanted edge connects a CN
to a degree 3 VN in lower row. In other words, a slanted
edge connects a CN from row imax to a degree 3 VN in a
row with index greater than imax. This condition violates the
definition of imax. Thus, v(k−1)imax

∈ ψ and v(k+1)imax
∈ ψ.

Now, considering v(k−1)imax
and v(k+1)imax

as the starting
VN (similar to vkimax

), we can apply the above logic to
show that v(k−2)imax

∈ ψ and v(k+2)imax
∈ ψ. Repeatedly

applying the same argument, we can show that all the VNs in
{vkimax

| k ∈ [n+ 1]} belong to ψ, where n = dlogNe.

According to the above lemma, every stopping set has at
least one full row of VNs, i.e., it has VNs from all columns
along a single row. We use this property to prove Lemma 3.

Proof of Lemma 3:
Let V be the set of all VNs in the polar FG GN . Also, let
Ve = {v(n+1)i | i ∈ A} ∪ {v1i | i ∈ F} and Ve = V \ Ve.
VNs in Ve are uninitialized or initially erased by the PEPC and
are determined using a peeling decoder (for the purposes of
encoding). Thus, the PEPC can fail if Ve contains a stopping
set of GN . However, since A ∪ F = [N] (i.e., they form a
partition of all the row indices), for all i ∈ [N] either v(n+1)i ∈
Ve or v1i ∈ Ve. Thus, for all i ∈ [N], v(n+1)i and v1i both
cannot simultaneously belong to Ve. Hence, Ve cannot contain
a full row of VNs. Using Lemma 4, we conclude that Ve
cannot contain a stopping set. Thus, the PEPC will always be
successful and will result in a valid codeword.

	I Introduction
	II Preliminaries and System Model
	II-1 Coded Merke Tree preliminaries
	II-2 Polar Codes preliminaries

	III Polar Coded Merkle Tree (PCMT)
	III-1 blackFormation of PCMT symbols
	III-2 Merkle proof of PCMT symbols
	III-3 Hash-aware peeling decoder and IC proofs

	III-A DA attacks on PCMT

	IV Sampling-Efficient Freezing Algorithm
	V Simulations and Performance Comparison
	References
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Lemma 2
	Appendix C: Performance Analysis and Comparison
	C-1 Root size
	C-2 Single sample download size
	C-3 IC proof size

	C-A Undecodable Threshold

	Appendix D: Systematic encoding of Polar codes

