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We show that entirely quantum Shannon theoretic methods, based on von Neumann en-
tropies and their properties, can be used to derive Singleton bounds on the performance
of entanglement-assisted hybrid classical-quantum (EACQ) error correcting codes. Con-
cretely, we show that the triple-rate region of qubits, cbits and ebits of possible EACQ codes
over arbitrary alphabet sizes is contained in the quantum Shannon theoretic rate region of
an associated memoryless erasure channel, which turns out to be a polytope. We show that
a large part of this region is attainable by certain EACQ codes, whenever the local alpha-
bet size (i.e. Hilbert space dimension) is large enough, in keeping with known facts about
classical and quantum maximum distance separable (MDS) codes: in particular, all of its
extreme points and all but one of its extremal lines. The attainability of the remaining one
extremal line segment is left as an open question.

I. INTRODUCTION

Quantum error correcting codes (QECC) are subject to various universal constraints relating
block length, alphabet size, minimum distance and code rate, very much like classical error cor-
recting codes. In particular, the classical Singleton bound [2] has a satisfying quantum version for
QECC [3–5], which has been extended to entanglement-assisted and catalytic QECC (EAQECC
and CQECC) [6, 7]. Indeed, since their proposal, EAQECC have enjoyed considerable attention
from coding theorists, both in the block coding and the convolutional coding setting [8–14]. Note
that the original EAQECC Singleton bound was found to be erroneous in general [15], which was
put right in the recent paper [16]. Although these bounds all have different forms, they are united
in that they express the ability of the code to correct erasure errors. Classically, the Singleton
bound is attained for MDS codes, which exist for sufficiently large alphabet size. Similarly, at-
taining these quantum Singleton bounds defines suitable quantum MDS (QMDS) codes and their
entanglement-assisted generalisations.

The present paper grew out of an attempt to understand better the results of [16], where
the most complete quantum Singleton bound so far was derived for EAQECC, in the form of
a two-dimensional convex region in the ebit-qubit plane, into which all possible codes necessar-
ily fall (as a function of block length and minimum distance). Investigating the tightness of the
bound exhibited two types of codes attaining the boundary of the allowed region, one a genuinely
entanglement-assisted quantum code dubbed EAQ, the other a classical MDS code piggy-backed
onto a simple teleportation protocol. This suggested that, to obtain a full understanding of the
codes involved, one should extend the investigation to hybrid classical and quantum codes, as-
sisted by entanglement (EACQ codes), which we provide here. As our main result, we prove

a A short version of this work has been presented at ISIT 2022 and is included in its proceedings [1].
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Singleton bounds for such EACQ codes, in the form of a convex triple-tradeoff region in the ebit-
cbit-qubit space (as a function of block length and minimum distance).

Hybrid classical and quantum error correcting codes have been considered in several papers
before, mostly without entanglement-assistance [17–21]; the EACQ codes as considered by us
have been introduced in [22], although we allow additionally catalysis (recycling) of the three
basic resources, making our bounds more general. Classical and quantum hybrid error correcting
codes have been generalised in [23–26] to classical and quantum hybrid subsystem codes in an
operator algebraic setting. We stress that our bounds apply to either kind of code. Importantly for
our approach, the triple tradeoff between ebits, cbits and qubits has been treated repeatedly in the
Shannon-theoretic setting of a given channel (often i.i.d. on the block of n physical systems) and
small errors. A precursor was the breakthrough paper by Devetak and Shor [27], which showed
how to analyse the capacity region of joint classical and quantum information transmission over
a given noisy channel. For us, the paper by Hsieh and Wilde [28] is fundamental, which derives
a multi-letter capacity formula for the triple tradeoff, of which we take the converse proof and
develop it in several directions. We follow essentially the very developed, rigorous exposition of
Wilde [29, Ch. 25].

Results. We give here an overview of our main results, which also serves as a guide to the
paper. In Section II we review the definition of EACQ codes and pose the problem of characteris-
ing all triples of catalytic rates attainable for given block length and minimum distance, and then
discuss preliminaries in Section III. After that:

• We state Hsieh-Wilde’s converse theorem ([28, Thm. 1]) in Section IV and give a complete
proof from first principles, and generalised both to arbitrary (one-shot) channels and the
catalytic setting, in the Appendix A, the latter having previously been accomplished in [29,
Ch. 25].

• We use this general converse to derive the triple-tradeoff rate region for the i.i.d. erasure
channel, correcting a gap in [28], where the erasure probability δ was assumed to be less
than 1

2 , in Section V. (Wilde [29, Ch. 25.5.3] is much more complete, but proves additivity
only for δ ≤ 1

2 .)

• We then use the general one-shot converse for a channel that randomly erases d − 1 of the
n physical systems and with error probability set to 0, to derive the Singleton bound for
EACQ codes, subsuming both classical Singleton bounds and all previously known quan-
tum Singleton bounds; the obtained region is the same as for an i.i.d. erasure channel with
erasure probability δ = d−1

n , in Section VI.

• We analyse the geometric shape of the EACQ Singleton region, determining its extreme
points and extremal lines; we can then show that large parts of the boundary are indeed
attained, whenever the alphabet size is large enough, in Section VII. One line segment re-
mains to be shown to be attainable, to prove our entire region to be optimal, which we leave
as an open question, and which we discuss among other things in the concluding Section
VIII.

II. PROBLEM SETTING

Following [29, Ch. 25], we begin by defining the task of hybrid classical and quantum com-
munication via a noisy channel, i.e. a linear completely positive and trace preserving (cptp) map
N : L(A) → L(B), assisted by entanglement, in the one-shot setting and allowing for a certain
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(small) decoding error. Here, A and B are complex Hilbert spaces associated to the quantum
systems of sender and receiver, which for convenience we will throughout assume to be of finite
dimension; L(A) is the space of all linear operators (matrices) on A, and likewise for B.

FIG. 1. Communication diagramme of the most general catalytic entanglement-assisted classical and quan-
tum code. We discuss four snapshots of the involved systems at different times, at which we wish to analyse
their joint state: at starting time (initial state Γ), after the encoding (Ω), after the action of the noisy
channel (Ω), and after the decoding (Γ). The starting quantum systems X and R constitute Q2 qubits
each, the message M has C2 cbits, and the entangled systems TA and TB carry an equivalent of E1 pure
entangled ebits. The intermediate system W carries Q1 qubits and V carries C1 cbits. The input system
A is passed through a noisy channel N to produce output system B. On decoding, the output quantum
system X̂ contains Q2 qubits, the output classical message M̂ has C2 cbits. Additionally, a system T ′B is
generated that has E2 ebits of entanglement with Alice’s system T ′A.

We consider a general entanglement-assisted classical and quantum communication setup as
in Fig. 1. We have communicating agents, a sender Alice and a receiver Bob. Apart from the
channelN , they start with (a) a shared entangled quantum state ϕTATBi of E1 = S(ϕTAi ) ebits, (b) a
quantum channel capable of transmitting Q1 qubits, (c) a classical channel capable of transmitting
C1 cbits. Using encoding and decoding operations, they wish to achieve (a) transfer of Q2 qubits
of quantum information, (b) transfer of C2 cbits of classical information, and (c) regeneration of
E2 = S(ϕ

T ′A
f ) ebits of shared entanglement in the form of a shared state ϕT

′
AT
′
B

f . This results in a
net transfer of Q = Q2 −Q1 qubits, C = C2 −C1 cbits on using up of E = E1 −E2 ebits. The entire
diagram, defined by the maps D and E is called an entanglement-assisted classical and quantum error
correcting code (EACQ code) of error ε for the channel N . We speak simply of an EACQ code if the
error is implied to be ε = 0. Furthermore, for an n-partite input system An = A1 . . . An composed
of Aj that are all q-dimensional Hilbert spaces, we say that an EACQ code has minimum distance
d if it has error ε = 0 for the following block erasure channel, which uniformly randomly erases d−1
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out of n of the system Ai:

Eq,d−1,n(ρ) =
1(
n
d−1

) ∑
J⊂[n],
|J|=d−1

(TrAJ ρ)B[n]\J ⊗ | ⊥〉〈⊥ |BJ , (1)

where Bj = Aj ⊕ C| ⊥〉 and | ⊥〉BJ =
⊗

j∈J | ⊥〉Bj . We adopt the taxonomy of [22] for an EACQ
code of block length n and minimum distance d: it is denoted [[n, k : c, d; e]]q, where k = Q

log q ,
c = C

log q and e = E
log q .

The objective now is to chararacterise the permissible values of C, Q and E for a given block
length n such that a code with small or vanishing error exists. To formalize this, we analyse the
states describing all involved systems at four different times and then define an associated error
term. In the beginning, the initial states are prepared:

γRXTATB = ΦRX ⊗ ϕTATBi ,

ΓMRXTATB =
∑
m∈M

1

|M|
|m〉〈m|M ⊗ γRXTATB . (2)

On encoding using a collection of CPTP maps
(
EXTA→T

′
AAW

v|m

)
v∈V

on classical input m ∈ M, we

have:

pV |M (v|m) = Tr EXTA→T
′
AAW

v|m
(
γRXTATB

)
,

ω
RT ′AAWTB
mv =

1

pV |M (v|m)
EXTA→T

′
AAW

v|m
(
γRXTATB

)
,

ΩMVRT ′AAWTB =
∑
m∈M
v∈V

1

|M|
pV |M (v|m)|mv〉〈mv|MV ⊗ ωRT

′
AAWTB

mv . (3)

After the action of the channel:

ω
RT ′ABWTB
mv = NA→B

(
ω
RT ′AAWTB
mv

)
,

Ω
MVRT ′ABWTB =

∑
m∈M
v∈V

1

|M|
pV |M (v|m)|mv〉〈mv|MV ⊗ ωRT

′
ABWTB

mv . (4)

And finally, after decoding using a collection of CPTP maps
(
DBWTB→X̂T ′B
m′|v

)
m′∈M

on classical

input v ∈ V to the decoder:

p
M̂ |MV

(m′|mv) = TrDBWTB→X̂T ′B
m′|v

(
ω
RT ′ABWTB
mv

)
,

γ
RX̂T ′AT

′
B

mvm′ =
1

p
M̂ |MV

(m′|mv)
DBWTB→X̂T ′B
m′|v

(
ω
RT ′ABWTB
mv

)
,

Γ
MV M̂RX̂T ′AT

′
B =

∑
m∈M
v∈V
m′∈M

1

|M|
pV |M (v|m)p

M̂ |MV
(m′|mv)|mvm′〉〈mvm′|MV M̂ ⊗ γRX̂T

′
AT
′
B

mvm′ . (5)

The ideal output state pertaining to the quantum information is the maximally entangled state
ΦRX̂ = idX→X̂

(
ΦRX

)
, the ideal final entanglement state is arbitrary, but has to be a pure state
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ϕ
T ′AT

′
B

f , and the ideal state pertaining to the classical information is the perfectly correlated classi-

cal state Φ
MM̂

= 1
|M|

∑
m |m〉〈m|M ⊗ |m〉〈m|M̂ . The ideal output is the product state

Γ
MM̂RX̂T ′AT

′
B

ideal = Φ
MM̂ ⊗ ΦRX̂ ⊗ ϕT

′
AT
′
B

f . (6)

We say that the protocol (the code) has error ε, if

1

2

∥∥∥∥Γ
MM̂RX̂T ′AT

′
B − Γ

MM̂RX̂T ′AT
′
B

ideal

∥∥∥∥
1

≤ ε, (7)

where ‖X‖1 = Tr |X| = Tr
√
X†X denotes the trace norm (aka Schatten-1-norm). Note that this

implies, by the contractivity of the trace norm under partial trace and more generally cptp maps,
that

Pr
{
M 6= M̂

}
=

1

2

∥∥∥∥Γ
MM̂ − Φ

MM̂
∥∥∥∥

1

≤ ε,

1

2

∥∥∥∥Γ
RX̂ − ΦRX̂

∥∥∥∥
1

≤ ε,

1

2

∥∥∥Γ
T ′AT

′
B − ϕT

′
AT
′
B

f

∥∥∥
1
≤ ε.

As discussed at the start of this section, the other important parameters of the code are the
initial entanglement E1 = S

(
ϕTAi

)
(where S denotes the von Neumann entropy), the invested

qubit transmission Q1 = log |W | (with |W | denoting the dimension of the Hilbert space W , for
both see the next section), and the invested cbit transmission C1 = log |V |; furthermore the final
generated entanglement E2 = S

(
ϕ
T ′A
f

)
, the effected qubit transmission Q2 = log |X|, and the

effected cbit transmission C2 = log |M |. In the sequel we will derive bounds on the net (also
called amortized) rates E = E1 − E2, Q = Q2 −Q1 and C = C2 − C1. Note the different treatment
of the net entanglement rate, in two ways: first, it is defined in terms of entropies rather than a
logarithmic dimension, so as not to restrict to maximal entanglement as initial or final state (but
if ϕi or ϕf is maximally entangled, then E1 = log |TA|, E2 = log |T ′A|, respectively); secondly,
by prior convention in the treatment of the present problem, E is the net rate of entanglement
consumption, whereas C and Q are net rates of resource production.

III. PRELIMINARIES

Here we collect definitions and facts known from prior work that will be used in the later
sections. As we have already done in the previous section introducing our problem setting, quan-
tum systems are denoted by capital letters, which we use also, without danger of confusion, to
denote the underlying complex Hilbert space. As a rule, our Hilbert spaces, A, B, etc, are finite-
dimensional throughout the paper, the dimension of A, i.e. the cardinality of any basis of A, being
denoted |A|. We use the same notation |M| for the cardinality of a finite setM, justified by the
information-theoretic parallelism that while an alphabet of size n can encode log n classical bits, a
Hilbert space of dimension d can encode log d qubits. The logarithm log is by default the binary
logarithm, unless explicitly specified.

With that, the von Neumann entropy of a state ρ on a system A is defined as S(A)ρ = S(ρ) =
−Tr ρ log ρ, and the conditional entropy of a state ρ on a biparite system AB as S(A|B)ρ =
S(AB)ρ − S(B)ρ, which also equals the negative coherent information I(A〉B)ρ := −S(A|B)ρ.
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The quantum entropy is subject to a number of fundamental relations, principal among them
strong subadditivity I(A : C|B)ρ = S(AB)ρ + S(BC)ρ − S(B)ρ − S(ABC)ρ for any tripartite
state [30], and the equivalent weak monotonicity property S(A|B)ρ + S(A|C)ρ ≥ 0, both for an
arbitrary tripartite state ρ on ABC. Furthermore, the following two uniform continuity bounds.

Lemma 1 (Fannes inequality [31–33]) For any two states ρ and σ on a system A with 1
2‖ρ

A− σA‖1 ≤
ε ≤ 1,

|S(A)ρ − S(A)σ| ≤ ε log |A|+H2(ε),

where H2(ε) = −ε log ε− (1− ε) log(1− ε) is the binary entropy. �

Lemma 2 (Alicki-Fannes inequality [33, 34]) For any two states ρ and σ on a composite system AB
with 1

2‖ρ
AB − σAB‖1 ≤ ε ≤ 1,

|S(A|B)ρ − S(A|B)σ| = |I(A〉B)ρ − I(A〉B)σ| ≤ 2ε log |A|+ g(ε),

where g(x) = (1 +x)H2

(
x

1+x

)
= (x+ 1) log(x+ 1)−x log x. Note that g is a monotonically increasing,

concave function with g(x) ≥ H2(x). �

Lemma 3 (Cf. [16, Lemmas 2 and 3]) Consider the (n + 1)-party system AnZ = A1A2 . . . AnZ, and
for a subset I ⊂ [n] of the ground set denote AI =

⊗
i∈I Ai. Let 1 ≤ µ ≤ m ≤ n. Then, with respect to

any state ρ on AnZ,

sm :=
1

m
E I⊂[n],
|I|=m

S(AI)ρ ≤
1

µ
EJ⊂[n],
|J|=µ

S(AJ)ρ =: sµ, (8)

1

m
E I⊂[n],
|I|=m

S(AI |Z)ρ ≤
1

µ
EJ⊂[n],
|J|=µ

S(AJ |Z)ρ. (9)

where the expectation values in both bounds are with respect to uniformly random subsets I, J ⊂ [n] of the
ground set, of cardinality |I| = m, |J | = µ, respectively. �

The following Lemma comes from [16], but its proof is buried inside the proof of Theorem 6 of
that paper, and uses a different notation, so we reproduce it here in full.

Lemma 4 (Cf. [16, Proof of Theorem 6]) Consider an n-party system An of n q-dimensional Hilbert
spaces A1A2 . . . An. For a subset I ⊂ [n] of the ground set denote AI =

⊗
i∈I Ai. Then, with respect to

any state ρ on An, and any d > n
2 + 1,

nsn = S(An) ≤ E|J |=n−d+1S(AJ) + (d− 1)t = (n− d+ 1)sn−d+1 + (d− 1)t, (10)

where t is defined by the relation

(n− 2d+ 2)t := (n− d+ 1)sn−d+1 − (d− 1)sd−1 = E|J |=n−d+1S(AJ)− E|I|=d−1S(AI).

It satisfies 0 ≤ t ≤ sd−1 ≤ log q.

Proof We start with the bounds on t. To prove its non-negativity, observing n − 2d + 2 < 0, we
have to show E|J |=n−d+1S(AJ) ≤ E|I|=d−1S(AI). To this end, consider uniformly random subsets
I , J and J ′ such that |I| = d − 1, |J | = |J ′| = n − d + 1, jointly distributed in such a way that
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I
.
∪ J = [n] and J ′ ⊂ I . Let K =: I \ J ′ and I ′ := K ∪ J , which allows us to note that K and I ′ are

uniformly random subsets such that |K| = 2d− 2− n and |I ′| = d− 1. Now,

2
(
E|I|=d−1S(AI)− E|J |=n−d+1S(AJ)

)
=
(
E|I|=d−1S(AI)− E|J ′|=n−d+1S(AJ ′)

)
+
(
E|I′|=d−1S(AI′)− E|J |=n−d+1S(AJ)

)
= E (S(AK |AJ ′) + S(AK |AJ)) ≥ 0,

where the first line holds because I and I ′ have the same distribution, and likewise J and J ′; the
second line is by definition of the conditional von Neumann entropy; the final inequality follows
from strong subadditivity (in the form of weak monotonicity) [30] for each term of the expectation.

To prove t ≤ log q, we start from Lemma 3, Equation (8), which tells us sd−1 ≤ sn−d+1, or
equivalently (n− d+ 1)sd−1 ≤ (n− d+ 1)sn−d+1. Thus, subtracting (d− 1)sd−1 from both sides,
by definition of t we get (n− 2d+ 2)sd−1 ≤ (n− 2d+ 2)t, yielding the desired t ≤ sd−1 ≤ log q.

Finally, we address the inequality (10): consider a fixed J ⊂ [n] with |J | = n − d + 1, and
I := [n] \ J with |I| = d − 1. With a uniformly random K ⊂ I with |K| = 2d − 2 − n, Lemma 3,
Equation (9) tells us

S(An)− S(AJ) = S(AI |AJ) ≤ d− 1

2d− 2− n
E|K|=2d−2−nS(AK |AJ).

Taking the average over J (and hence I) as well, and noting that I ′ := K∪J is a uniformly random
subset with |I ′| = d− 1, we arrive at

S(An) ≤ E|J |=n−d+1S(AJ) +
d− 1

2d− 2− n
E |J|=n−d+1
|K|=2d−2−n

S(AK |AJ)

= E|J |=n−d+1S(AJ) +
d− 1

2d− 2− n
(
E|I′|=d−1S(AI′)− E|J |=n−d+1S(AJ)

)
= (n− d+ 1)sn−d+1 + (d− 1)t,

the last line by definition. �

IV. INTERLUDE: INFORMATION THEORETIC CONVERSE

Here we re-derive the converse part of [28, Thm. 1], for the amortized (net) rates E, Q and
C, and using somewhat more standard arguments compared to the proof in the cited paper, as
indeed shown in [29, Ch. 25].

Theorem 5 (Capacity region one-shot converse bound) For an EACQ error correcting code with er-
ror ε that uses E1 ebits, Q1 qubits, C1 cbits to generate E2 ebits and transmits Q2 qubits, C2 cbits over
a quantum channel N , there exists a quantum state

σUAB =
∑
u

p(u)|u〉〈u|U ⊗NA′→B
(
ϕAA

′
u

)
, (11)

where the p(u) ≥ 0 are probabilities and the ϕAA′u are pure states with |A| = |A′|, such that

C + 2Q ≤ I(UA : B)σ + 2ε(C2 +Q2) + g(ε), (12)
Q− E ≤ I(A〉BU)σ + 2ε(Q2 + log |T ′A|) + g(ε), (13)

C +Q− E ≤ I(U : B)σ + I(A〉BU)σ + 2ε(C2 +Q2 + log |T ′A|) + 2g(ε), (14)

holds for the net communication resource productions Q = Q2 −Q1 and C = C2 −C1, and net entangle-
ment consumption E = E1 − E2.
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The full proof of the theorem is reproduced in Appendix A.

The terms containing the error in Theorem 5, Eqs. (12), (13) and (14), vanish in the limit ε→ 0,
and indeed for ε = 0, so we introduce a notation for the information theoretic (weak converse)
rate region:

R(1)(N ) :=
{

(C,Q,E) ∈ R3 s.t. ∃ σUAB as in Equation (11) with C + 2Q ≤ I(UA : B)σ,

Q− E ≤ I(A〉BU)σ, C +Q− E ≤ I(U : B)σ + I(A〉BU)σ

}
.

(15)

Remark We stress that the region described in Theorem 5 and in Equation (15) is only a converse
bound, inasmuch it is not necessarily tight. We call it one-shot, because it does not require any
product or other structure of the channel. In fact, Wakakuwa, Nakata and collaborators [35–37]
have derived one-shot achievability and converse bounds using the more familiar smooth min-
entropies, which in general have to be considered tighter. We do not use them because of the
difficulty of evaluating the min-entropy expressions in general and in particular in the case of
erasure channels that is of interest to us here. As a side note, the achievability bounds of [35–
37] always carry positive error terms, due to the random coding technique, which make them
unsuitable for the present objective of error correcting codes (i.e. zero error). On the other hand,
by Hsieh and Wilde [28, 29] the regularisation of the region R(1)(N ) is asymptotically achieved
for product channels. And, as we shall see below, for certain channels with appropriate structure,
such as the block erasure channel, which latter is indeed permutation covariant.

V. THE TRIPLE-TRADEOFF CAPACITY REGION FOR THE ERASURE CHANNEL

Now we specialise Theorem 5 to the case of an i.i.d. tensor power of an erasure channel, single-
letterising the bound in the process. This example had been discussed in [28], but using an ad-hoc
argument rather than reduction to the general converse bound. In [29, Thm. 25.5.3], Wilde does
just that, but his technique still only gives the asymptotic capacity region for erasure probability
δ ≤ 1

2 . Here we redo the argument, simplifying the previous ones, and extending the result to
arbitrary erasure probabilities δ ∈ [0, 1] by reducing the analysis to block erasure channels whose
capacity region we prove in Section VI. To account for the asymptotic behaviour of the information
quantities C, Q and E, we introduce associated rates by letting C = nC̃, Q = nQ̃ and E = nẼ.
The main challenge is to get a single-letterised capacity region in terms of C̃, Q̃ and Ẽ.

Theorem 6 (Capacity region for i.i.d. erasure channel) For an i.i.d. erasure channel E⊗nq,δ with prob-
ability of erasure δ, in the limit of n → ∞ and ε → 0, the system of converse inequalities from Theorem
5 for an EACQ code of net cbit rate C̃, net qubit rate nQ̃ and net ebit rate Ẽ, respectively, reduces to the
region of triples (C̃, Q̃, Ẽ) such that there exists a t ∈ [0, log q] with

C̃ + 2Q̃ ≤ (1− δ)(log q + t), (16)

Q̃− Ẽ ≤ (1− 2δ)t, (17)

C̃ + Q̃− Ẽ ≤ (1− δ) log q − δt. (18)

Note that this region is also attainable, by the general coding theorem (cf. [29, Thm. 25.5.3]).
We discuss it below in Section VII for the present concrete case, which is much simpler.
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Proof In the limit n→∞ and ε→ 0, for the case of a general channel N we are talking about

(C̃, Q̃, Ẽ) ∈ R(N ) :=
⋃
n≥1

1

n
R(1) (N⊗n),

the regularisation of the single-letter regionR(N ).
We shall first calculate the single-letter region R(1)(Eq,δ), by simply plugging in ε = 0 and the

erasure channel Eq,δ into Theorem 5. For this, consider a quantum state

σUAA
′

0 =
∑
u∈U

p(u)|u〉〈u|U ⊗ ϕAA′u , (19)

which when passed through the erasure channel Eq,δ becomes

σUAB =
∑
u∈U

p(u)|u〉〈u|U ⊗
(
(1− δ)ϕABu + δϕAu ⊗ | ⊥〉〈⊥ |B

)
(20)

= (1− δ)σUAB1 + δσUAB⊥ , (21)

where σ1 and σ⊥ are defined as

σUAB1 = idA
′→B(σUAA

′
0 ) =

∑
u∈U

p(u)|u〉〈u|U ⊗ ϕABu , (22)

σUAB⊥ =

(∑
u∈U

p(u)|u〉〈u|U ⊗ ϕAu

)
⊗ | ⊥〉〈⊥ |B. (23)

Note that ϕABu is a pure state for every u ∈ U , but ϕAu = TrB ϕ
AB
u may not be. Evaluating the

information quantities in Theorem 5 for σUAB , we have

I(AU : B)σ = I(U : B)σ + I(A : B|U)σ

= S(U)σ − S(U |B)σ + S(A|U)s − S(A|UB)σ (24)

= (1− δ)S(U)σ1 + δS(U)σ⊥ +H2(δ)

− (1− δ)S(U |B)σ1 − δS(U |B)σ⊥ −H2(δ)

+ (1− δ)S(A|U)σ1 + δS(A|U)σ⊥ +H2(δ)

− (1− δ)S(A|UB)σ1 − δS(A|UB)σ⊥ −H2(δ)

(25)

= (1− δ)I(U : A′)σ0 + (1− δ)I(A : A′|U)σ0 (26)
= (1− δ)(S(A′)σ0 + S(A′|U)σ0), (27)

I(A〉BU)σ = S(B|U)σ − S(AB|U)σ

= (1− δ)S(B|U)σ1 + δS(B|U)σ⊥ +H2(δ)

− (1− δ)S(AB|U)σ1 − δS(AB|U)σ⊥ −H2(δ)
(28)

= (1− δ)S(B|U)σ1 − δS(A|U)σ⊥ − δS(B|U)σ⊥ (29)
= (1− δ)S(A′|U)σ0 − δS(A|U)σ0 (30)
= (1− 2δ)S(A′|U)σ0 , (31)

I(U : B)σ + I(A〉BU)σ = (1− δ)I(U : A′)σ0 + (1− 2δ)S(A′|U)σ0

= (1− δ)S(A′)σ0 − δS(A′|U)σ0 , (32)

where H2(δ) = δ log δ + (1 − δ) log(1 − δ) is the binary entropy function. Equation (24) follows
from the definition of quantum mutual information. We get Equation (25) expanding each of the
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entropy expression in terms of δ by the chain rule. All the H2(δ) terms cancel each other. Further-
more, S(U)σ⊥ = S(U |B)σ⊥ , S(A|U)σ⊥ = S(A|UB)σ⊥ because of product states σUAB⊥ = σAU⊥ ⊗σB⊥ .
Applying the definition of mutual information on the remaining terms yields Equation (26) which
simplifies to Equation (27). In a similar fashion, Equation (28) comes from expanding the entropy
expression in terms of δ. The H2(δ) terms cancel out, and S(AB|U)σ1 = 0 because ϕABu is a pure
state and S(B|U)σ⊥ = 0 because σUAB⊥ = σUA⊥ ⊗σB⊥ ; this yields Equation (29). Because of the iden-
tity map from σ0 to σ1 and using the fact that σB⊥ = | ⊥〉〈⊥ | is a pure state and that σAU⊥ = σAU1 ,
we get Equation (30). This further reduced to Equation (31) because of the pure state ϕAA

′
u . We get

Equation (32) by simply expanding the mutual information term. We know that

0 ≤ S(A′|U)σ0 ≤ S(A′)σ0 ≤ log q. (33)

By defining t := S(A′|U)σ0 and combining the Inequalities (27), (31), (32) and (33) we obtain the
claimed form forR(1)(Eq,δ).

It remains to show the additivity of the region when considering tensor powers, i.e.R(1)
(
E⊗nq,δ

)
=

nR(1)(Eq,δ). In [29, Thm. 25.5.3] this is done for δ ≤ 1
2 using a duality approach and exploiting the

degradability of the erasure channel in the said regime; for δ > 1
2 the additivity had been an open

question. Here, we present a different proof, reducing a code for the i.i.d. erasure channel E⊗nq,δ
to one for a suitable block erasure channel as in Section II, and using the converse bounds from
Theorem 8 in Section VI below, which works for all δ. For an error weight 0 ≤ w ≤ n, recall the
definition of the block erasure channel Eq,w,n : An → Bn,

Eq,w,n(ρ) =
1(
n
w

) ∑
J⊂[n],
|J|=w

(TrAJ ρ)B[n]\J ⊗ | ⊥〉〈⊥ |BJ ,

where | ⊥〉BJ =
⊗

j∈J | ⊥〉Bj . Then it can be checked immediately that

E⊗nq,δ =

n∑
v=0

(
n

v

)
δv(1− δ)n−vEq,v,n,

and furthermore that for every w ≤ v, there exists a cptp map Dv|w : Bn → Bn such that Et,v,n =
Dv|w ◦Et,w,n. This map is easily described: it measures which w of the n systemBn are erased, and
takes a uniformly random subset of the v − w non-erased systems to erase them as well. Choose
a λ < δ and let w := bλnc, so that by Hoeffding’s bound,

η =

w−1∑
v=0

(
n

v

)
δv(1− δ)n−v ≤ e−n(δ−λ)2 .

Define now the channel (Note the normalization with 1− η)

E(n)
q,δ :=

1

1− η

n∑
v=w

(
n

v

)
δv(1− δ)n−vEq,v,n

=
n∑

v=w

1

1− η

(
n

v

)
δv(1− δ)n−vDv|w ◦ Eq,w,n

=: D′ ◦ Eq,w,n,

which in other words is a degraded version of Eq,w,n; at the same time, by its definition it satisfies
1
2‖E

(n)
q,δ −E

⊗n
q,δ ‖� ≤ η. Thus, a code for E⊗nq,δ with error ε is one for E(n)

q,δ with error ε+ η, and by using
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the post-processing D′ before the decoding, also for Eq,w,n with the same error and the same rates.
Thus, the converse Theorem 8 for Eq,w,n applies, keeping in mind its error ε + η → 0 as n → ∞,
showing that there exists a t ∈ [0; log q] with

C̃ + 2Q̃ ≤ (1− λ)(log q + t),

Q̃− Ẽ ≤ (1− 2λ)t,

C̃ + Q̃− Ẽ ≤ (1− λ) log q − λt.

As this is true for all λ < δ, the claim follows. �

Using Fourier-Motzkin elimination of t one can rewrite the region of Theorem 6 in terms of
linear inequalities for C̃, Q̃ and Ẽ only, as follows.

Theorem 7 (Capacity region for i.i.d. erasure channel, alternate form) For an i.i.d. erasure chan-
nel E⊗nq,δ with probability of erasure δ, in the limit of n→∞ and ε→ 0, the converse bounds from Theorem
6 for an EACQ code of net nC̃ cbits, nQ̃ qubits, nẼ ebits, respectively, can be expressed as follows. Namely
(C̃, Q̃, Ẽ) ∈ R(Eq,δ) = R(1)(Eq,δ) if and only if

C̃ + 2Q̃ ≤ 2(1− δ) log q, (34)

Q̃− Ẽ ≤ max{0, 1− 2δ} log q, (35)

C̃ + Q̃− Ẽ ≤ (1− δ) log q, (36)

C̃ + (1 + δ)Q̃− (1− δ)Ẽ ≤ (1− δ) log q, (37)
1− 2δ

1− δ
C̃ + Q̃− Ẽ ≤ (1− 2δ) log q if δ ≤ 1

2
,

2δ − 1

1− δ
C̃ +

3δ − 1

1− δ
Q̃− Ẽ ≤ (2δ − 1) log q if δ ≥ 1

2
.

(38)

The proof, which is obtained by Fourier-Motzkin elimination of t from the bound in Theorem 6,
is found in Appendix B.

However, for the subsequent analysis the form of inequalities in Theorem 7 is not particularly
useful. Instead, we use Theorem 6 to understand the geometry of the region defined. Namely, for
fixed t ∈ [0; log q], notice that

St :=
{

(C̃, Q̃, Ẽ) ∈ R3 : C̃ + 2Q̃ ≤ (1− δ)(log q + t),

Q̃− Ẽ ≤ (1− 2δ)t, C̃ + Q̃− Ẽ ≤ (1− δ) log q − δt
}

is a simplicial cone, being defined by three linearly independent inequalities. The region identified
in Theorem 6 is simply the union of the St, 0 ≤ t ≤ log q. We can calculate the apex at of St by
recalling that it is the place where all three inequalities are met with equality, resulting in

at = (C̃t, Q̃t, Ẽt) =
(
(1− δ)(log q − t), (1− δ)t, δt

)
, (39)

and so St = at + S ′, where

S ′ :=
{

(C̃, Q̃, Ẽ) ∈ R3 : C̃ + 2Q̃ ≤ 0, Q̃− Ẽ ≤ 0, C̃ + Q̃− Ẽ ≤ 0
}

(40)

is a simplicial cone rooted at the origin, which crucially is independent of t. As the apexes at form
a straight line connecting

a0 =
(
(1− δ) log q, 0, 0

)
and

alog q =
(
0, (1− δ) log q, δ log q

)
,
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we conclude that the region identified in Theorem 6 is the union of translates of S0 along this line,
or equivalently, the convex hull of S0 ∪ Slog q.

To understand it in more detail, let us look at S ′; its apex clearly is the origin, and its extremal
rays are determined by saturating with equality any two of the three inequalities. This leads to
three infinite half lines,

TP = R≥0(−2, 1, 1), (41)
RC = R≥0(0,−1,−1), (42)
DC = R≥0(2,−1, 1). (43)

Geometrically, we thus have St = at+TP+RC+DC and the entire rate region is simply [a0; alog q]+
TP + RC + DC.

VI. THE TRIPLE-TRADEOFF SINGLETON BOUND FOR EACQ CODES

In this section we prove the EACQ Singleton bound, our main contribution in the present
paper. We do so by specializing Theorem 5 to the case of a block erasure channel, Equation
(1), which on a block An of n systems Ai, uniformly randomly erases d − 1 out of n. The main
challenge again is to obtain a single letter characterization of the allowable values of C, Q and
E. We achieve this by using the permutation symmetry of the channel, entropy inequalities as
habitual in quantum Shannon theory, and in particular crucially the Lemmas 3 and 4 introduced
in Section III. Recall the definition of the quantum block erasure channel,

Eq,d−1,n(ρ) =
1(
n
d−1

) ∑
J⊂[n],
|J|=d−1

(TrAJ ρ)B[n]\J ⊗ | ⊥〉〈⊥ |BJ ,

and that an EACQ code has minimum distance d if and only if it achieves error 0 in transmission
over Eq,d−1,n.

Theorem 8 (EACQ Singleton bound, aka capacity region bound for block erasure channel) For
the block erasure channel Eq,d−1,n and error ε = 0, the system of converse inequalities from Theorem 5 for
an EACQ code of net C cbits, Q qubits and E ebits, respectively, reduces to the region of triples (C,Q,E)
such that there exists a t ∈ [0, log q] with

C + 2Q ≤ (n− d+ 1)(log q + t), (44)
Q− E ≤ (n− 2d+ 2)t, (45)

C +Q− E ≤ (n− d+ 1) log q − (d− 1)t. (46)

Proof According to Theorem 5, there is a quantum state of the form

σUA
nA′n

0 =
∑
u∈U

p(u)|u〉〈u|U ⊗ ϕAnA′
n

u ,

which when passed through Eq,d−1,n becomes

σUA
nBn =

∑
u∈U

p(u)|u〉〈u|U ⊗ EA′n→Bnq,d−1,n (ϕA
nA′n

u ),
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and such that

C + 2Q ≤ I(AnU : Bn)σ = I(U : Bn)σ + I(An : Bn|U)σ,

Q− E ≤ I(An〉BnU)σ,

C +Q− E ≤ I(U : Bn)σ + I(An〉BnU)σ.

To evaluate the information quantities occurring on the r.h.s., we write

σUA
nA′n = E J⊂[n],

|J|=d−1

σ(J)UA
nA′n , where

σ(J)UA
nA′n =

∑
u∈U

p(u)|u〉〈u|U ⊗ ϕAnBJcu ⊗ | ⊥〉〈⊥ |BJ .

As the σ(J)UA
nA′n are orthogonal on Bn, we can expand (implicitly fixing J as a uniformly ran-

dom subset of [n] of size d− 1):

I(U : Bn)σ = EJ I(U : Bn)σ(J), where

I(U : Bn)σ(J) = S
(
EU ϕ

A′Jc
u

)
− EU S

(
ϕ
A′Jc
u

)
;

I(An : Bn|U)σ = EJEU I(An : BJc)ϕu , where

I(An : BJc)ϕu = S
(
ϕA

n

u

)
+ S

(
ϕ
A′Jc
u

)
− S

(
ϕ
AnA′Jc
u

)
= S

(
ϕA
′n

u

)
+ S

(
ϕ
A′Jc
u

)
− S

(
ϕ
A′J
u

)
;

I(An〉BnU)σ = EJEU I(An〉BJc)ϕu , where

I(An〉BJc)ϕu = S
(
ϕ
A′Jc
u

)
− S

(
ϕ
AnA′Jc
u

)
= S

(
ϕ
A′Jc
u

)
− S

(
ϕ
A′J
u

)
.

Define two sets of entropy terms, as a function of σUA
nA′n

0 , or rather the ensemble
{
p(u), ϕA

nA′n

u

}
,

for integer 1 ≤ ` ≤ n. Consider U a random variable distributed according to the law p(u), and
let

ŝ` :=
1

`
E I⊂[n],
|I|=`

S
(
EU ϕ

A′I
U

)
=

1

`

1(
n
`

) ∑
I⊂[n],
|I|=`

S(A′I)σ0 , (47)

s` :=
1

`
E I⊂[n],
|I|=`

EU S
(
ϕ
A′I
U

)
=

1

`

1(
n
`

) ∑
I⊂[n],
|I|=`

S(A′I |U)σ0 . (48)

With these definitions we can plug the expanded information quantities into the above, and get

C + 2Q ≤ I(AnU : Bn)σ = (n− d+ 1)ŝn−d+1 + nsn − (d− 1)sd−1,

Q− E ≤ I(An〉BnU)σ = (n− d+ 1)sn−d+1 − (d− 1)sd−1,

C +Q− E ≤ I(U : Bn)σ + I(An〉BnU)σ = (n− d+ 1)ŝn−d+1 − (d− 1)sd−1.

To conclude the proof, we use certain obvious and known relations between the quantities in
Eqs. (47) and (48). To start,

∀` 0 ≤ s` ≤ ŝ` ≤ log q,

∀` ≤ m sm ≤ s`,
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the first chain of inequalities by definition of the quantities and concavity of the entropy, the
second inequality by Lemma 3 ([16, Lemma 2]).

Now, for d− 1 ≤ n
2 , we have by the above sn ≤ sn−d+1 ≤ sd−1, and so we get

C + 2Q ≤ (n− d+ 1) log q + (n− d+ 1)sd−1,

Q− E ≤ (n− 2d+ 2)sd−1,

C +Q− E ≤ (n− d+ 1) log q − (d− 1)sd−1.

With t := sd−1 ∈ [0; log q] we arrive at the form of the region claimed in the theorem.
For d− 1 > n

2 , we have to proceed differently, and define t by the relation (n− d+ 1)sn−d+1 −
(d− 1)sd−1 =: (n− 2d+ 2)t. From Lemma 4, we know 0 ≤ t ≤ sd−1 ≤ log q; the same lemma tells
us

nsn ≤ (n− d+ 1)sn−d+1 + (d− 1)t.

Thus we get

C + 2Q ≤ (n− d+ 1) log q + nsn − (d− 1)sd−1

≤ (n− d+ 1) log q + (n− d+ 1)sn−d+1 + (d− 1)t− (d− 1)sd−1

= (n− d+ 1) log q + (n− 2d+ 2)t+ (d− 1)t

= (n− d+ 1) log q + (n− d+ 1)t,

Q− E ≤ (n− 2d+ 2)t,

C +Q− E ≤ (n− d+ 1) log q − (d− 1)sd−1

≤ (n− d+ 1) log q − (d− 1)t,

concluding the proof. �

VII. ATTAINABILITY OF THE BOUNDS: CONSTRUCTIONS

While the Shannon-theoretic bounds from Theorem 6 are met in the i.i.d. limit by the direct
coding theorem from [28], thus establishing that the region is indeed the capacity region of the
erasure channel for any q and and δ, the analogous statement is far from clear for the zero-error
coding problem via Eq,d−1,n.

However, from our geometric analysis at the end of Section V we can gain significant insight
into this question as we show in Figures 2, 3 and 4 the Singleton bound region and the attainable
portions within it.

To start with, recall that it has two extreme points, a0 =
(
(n − d + 1) log q, 0, 0

)
and alog q =(

0, (n − d + 1) log q, (d − 1) log q
)
, and we do know that for all sufficiently large q, they are both

attained by well-known EACQ codes:

• In fact, a0 corresponds to a classical MDS code, its q-ary symbols encoded into A in an
orthonormal basis; it has Q = E = 0 and transmits C = (n−d+1) log q cbits, the maximum
amount of information for a code capable of correcting d− 1 erasures. It is well-known that
such classical MDS codes exist for all prime powers q ≥ n − 1 (and for some non-prime-
powers, too) [38–40].

• On the other hand, alog q corresponds to a “maximum entanglement EAQECC” as discussed
in [16, Sec. V], where it was linked to the entanglement-assisted quantum capacity of the
i.i.d. erasure channel (EAQ); it has C = 0, transmits Q = (n − d + 1) log q qubits and and
consumes E = (d − 1) log q ebits. In [16, Sec. V], and references therein, it is discussed that
for q ≥ n+ 1 one can always construct EAQECC codes with arbitrary parameters.
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FIG. 2. Singleton bound region when d−1
n < 1

2 . The blue shaded polytope region indicates the Singleton
bound region from Theorem 8. The points a0 and alog q can be attained using classical MDS codes and
EAQMDS codes respectively for large enough q. Using quantum teleportation (TP), resource conversion
(RC) and superdense coding (DC) we can achieve the triangular cones on the boundary of the region.
Attainability of the line segment [a0, alog q] joining the apexes of the cones (in pink) remains an open
question for now. Observe that a0 + TP does not contribute to the extremal edges of the polytope as it is
already contained in the convex hull of the other five rays.

Next, for any point α ∈ R3 realised by a given EACQ code, we can actually attain the whole
set α+S ′ = α+ TP + RC + DC (or at least the points in this set corresponding to log-integer coor-
dinates). Namely, note that the one-shot rate triple (−2, 1, 1) comes from the protocol of quantum
teleportation (2 cbits and 1 ebit are consumed to transmit 1 qubit); the triple (0,−1,−1) represents
the resource conversion of qubits into ebits at unit rate; finally, the triple (2,−1, 1) comes from the
protocol of dense coding (1 qubit and 1 ebit are consumed to transmit 2 cbits). Thus, by concate-
nating the given EACQ code with suitable amounts of teleportation, dense coding and resource
conversion, we can attain every reasonable rate triple of the form α+ x(−2, 1, 1) + y(0,−1,−1) +
z(2,−1, 1) with x, y, z ≥ 0 for large enough q. Depending on whether d−1

n is greater than or less
than 1

2 , we observe that only a particular subset of five from the total six possible combinations of
the three protocols TP, RC and RC acting on a0 and alog q result in extremal rays of the polytope.
When d−1

n = 1
2 , only four of the six combinations result in extremal rays of the polytope. Note that

throughout we needed the alphabet size q large enough so that we are able to construct EACQ
codes attaining a0 and alog q.

This means that the attainability of the region from Theorem 8 is reduced to that of the line
segment [a0, alog q]. We have to leave this as an open question, but it is curious that if the line
were attained, the realising codes would have to be some kind of interpolation between purely
classical MDS codes and fully quantum EAQ codes. As a somewhat separate, but at the same time
preparatory question to this, we would like to know what we can deduce about codes attaining
the boundary of our region, and in particular necessary conditions for attaining the line segment
[a0, alog q]; cf. [16].

Returning to the i.i.d. channel case E⊗nq,δ with asymptotically large block length and asymp-
totically small error, we note that this is indeed possible. Not only are the points a0 and alog q
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FIG. 3. Singleton bound region when d−1
n > 1

2 . Similar to Figure 2, the convex hull of TP, DC and RC
added to the apex points a0 and alog q constitute the polytope and can be achieved. The segment [a0, alog q]
(in pink) though is currently not known to be achievable. However, unlike the previous case, it is alog q +RC
that does not contribute to the extremal edges of the polytope in this case, as it is contained in the convex
hull of the other five rays.

attainable by capacity-achieving classical codes and entanglement-assisted quantum capacity, re-
spectively, and in fact for arbitrary alphabet size q (not just large enough), the line segment linking
these two points is attained by the time sharing principle, where we subdivide the block of n chan-
nel uses into λn and (1−λ)n uses on which the MDS and the EAQ code are realised, respectively.
This works because in the Shannon-theoretic setting we are happy to make the small error of not
correcting non-typical erasure patterns, rather we focus on ∼ δλn (∼ δ(1 − λ)n) erasures in the
first (second) block, respectively. In the coding-theoretic (zero-error) setting we do not have that
luxury, and the code needs to prepare for any distribution of δn erasure errors.

VIII. CONCLUSION

We have shown that one can adapt the information theoretic converse proofs of Hsieh and
Wilde [28] and of Wilde [29] for the triple-tradeoff region of communication over a general channel
to the one-shot setting. Applying the obtained converse bounds to the one-shot zero-error case of
a block erasure channel, we have derived the Singleton bounds for EACQ codes. By specialising
to the hyperplane C = 0, we recover the region found in [16], and by specialising further to
C = E = 0, we recover the original quantum Singleton bound for QECC, Q ≤ max{0, n− 2d+ 2}.

In [16], the question of attainability of the whole region for sufficiently large alphabet q had
been left open, which boiled down to the line connecting the points EAQ and “MDS” in [16,
Fig. 3(c)]; EAQ there means the same as here, as the protocol for entanglement-assisted quantum
capacity has C = 0, but the “MDS” there is really our MDS here concatenated with teleportation.
Thus, the question of attainability of the line EAQ-“MDS” in [16] is lifted to that of the line seg-
ment connecting alog q (EAQ) with a0 (MDS) in the three-dimensional rate region, which we think
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FIG. 4. Singleton bound region when d−1
n = 1

2 . Similar to Figures 2 and 3, the convex hull of TP, DC and
RC added to the apex points a0 and alog q constitute the polytope and can be achieved. The line segment
[a0, alog q] (in pink) though is currently not known to be achievable. However, unlike the previous two cases,
both a0 + TP and alog q + RC do not contribute to the extremal edges of the polytope in this case, as they
are contained in the convex hull of the other four rays.

might be a much clearer question, as it is about interpolating between an essentially classical code
and a fully quantum code.
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Appendix A: Proof of Theorem 5

This is essentially the converse proof of Wilde in [29, Ch. 25.4], only that we consider a general
(non-i.i.d.) channel and use one-shot rates. To get our error-dependent additive constants, we
use Lemmas 1 and 2. For the sake of self-containedness, we reproduce the argument here in full.
Crucially, we use information theoretic deductions to express the relation among C, Q, E in terms
of the channel output σ. For that, we identify the channel input (u, ϕAA

′
u ) as the encoded state

(mv, ω
RT ′AAWTB
mv ) [cf. Equation (3)] of the problem setup. The σUAB obtained on passing ϕAA

′
u

through noisy channel N would correspond to Ω
MVRT ′ABWTB [cf. Equation (4)]. We identify the

classical component U (of ϕAA
′

u ) ≡MV (of Ω
MVRT ′ABWTB ), the uncorrupted quantum component

A ( of ϕAA
′

u ) ≡ RT ′AWTB (of Ω
MVRT ′ABWTB ) and the corrupted quantum component A′ (of ϕAA

′
u )
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≡ A (of Ω
MVRT ′ABWTB ). We start by examining the information contained in Φ and Φ.

C2 + 2Q2 = I(M : M̂)Φ + I(R : X̂)Φ (A1)

= I(MR : M̂X̂)Γideal
(A2)

≤ I(MR : M̂X̂)Γ + ε′ (A3)

≤ I(MR : BWTBV )Ω + ε′ (A4)
= I(MR : TB)Ω + I(MR : BVW |TB)Ω + ε′ (A5)

≤ 0 + I(MRTB : BWV )Ω + ε′ (A6)

≤ I(MRT ′ATB : BWV )Ω + ε′ (A7)
= I(MRT ′ATB : B)Ω + I(MRT ′ATB : V |B)Ω + I(MRT ′ATB : W |V B)Ω + ε′ (A8)

≤ I(MVRT ′ATBW : B)Ω + I(MRT ′ATBB : V )Ω + I(MRT ′ATBB : W |V )Ω + ε′ (A9)

≤ I(UA : B)σ + S(V )σ + 2S(W )σ + ε′ (A10)
= I(UA : B)σ + C1 + 2Q1 + ε′. (A11)

Here, Equation (A1) follows by evaluating quantum mutual information of the perfectly corre-

lated classical state Φ
MM̂ and the maximally entangled quantum state ΦRX̂ . In Equation (A2),

we reduce the right hand side using the fact that Γ
MM̂RX̂
ideal from its definition [cf. Equation (6)] is

a product state of Φ
MM̂ and ΦRX̂ . The given error ε of this EACQ code, from its definition in

Equation (7), corresponds to the upper bound on distance between Γ
MM̂RX̂ and Γ

MM̂RX̂
ideal . Invok-

ing Lemma 2, we get Inequality (A3) with ε′ := 2ε(C2 + Q2) + g(ε). Inequality (A4) follows from
quantum data processing. We get Equation (A5) using the chain rule for mutual information.
In Inequality (A6), the first term evaluates to zero due to the independence of the starting states
M , R and TB in the problem setup; the second term is relaxed by adding a non-negative term
I(TB : BWV ))̄. Inequality (A7) is from quantum data processing. Equation (A8) again comes
from the chain rule for mutual information. In Inequality (A9), we use the quantum data process-
ing inequality in the first term and add non-negative quantities I(B : V )Ω, I(B : W |V )Ω to the
second and third terms. Inequality (A10) follows from identifying U ≡MV ,A (of σ) ≡ RT ′AWTB ,
B (of σ) ≡ B and applying information theoretic deductions. We then evaluate the information
content of the noiselessly transmitted classical message V and the quantum message W .

Next,

Q2 + E2 = I(R〉X̂)Φ + I(T ′A〉T ′B)ϕ (A12)

= I(RT ′A〉X̂T ′BMM̂)Γideal
(A13)

≤ I(RT ′A〉X̂T ′BMM̂)Γ + ε′′ (A14)

≤ I(RT ′A〉X̂T ′BMV M̂)Γ + ε′′ (A15)

≤ I(RT ′A〉BWTBMV )Ω + ε′′ (A16)
= I(RT ′AWTB〉BMV )Ω + S(WTB|BMV )Ω + ε′′ (A17)
= I(RT ′AWTB〉BMV )Ω + S(TB|BMV )Ω + S(W |TBBMV )Ω + ε′′ (A18)

≤ I(RT ′AWTB〉BMV )Ω + S(TB)Ω + S(W )Ω + ε′′ (A19)
= I(A〉BU)σ + E1 +Q1 + ε′′. (A20)

In Equation (A12), we express the coherent information of the pure states Φ and ϕ. Equality (A13)
comes from the definition of Γideal [cf. Equation (6)], which is a product of the earlier states. In
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Inequality (A14) we use a similar technique as in the previous reduction. We employ the er-

ror ε of the EACQ code, which is the upper bound of the distance between Γ
MM̂RX̂T ′AT

′
B and

Γ
MM̂RX̂T ′AT

′
B

ideal and then invoke Lemma 2, with ε′′ := 2ε(Q2 + |T ′A|) + g(ε). Inequality(A15) follows
from strong subadditivity. Then we use quantum data processing in Inequality (A16) and then
expand the resulting terms in Eqs. (A17) and (A18). We add non-negative terms I(TB : BMV )Ω,
I(W : TBBMV )Ω in Equation (A19). We identify the states of Ω as those in σ, U ≡ MV ,
A (of σ) ≡ RT ′AWTB , B (of σ) ≡ B. In the final step, Equation (A20), we substitute the amount of
information that is contained in TB and W .

Finally,

C2 +Q2 + E2 = I(M : M̂)Γideal
+ I(RT ′A〉X̂T ′B)Γideal

(A21)

= I(M : X̂T ′BM̂)Γideal
+ I(RT ′A〉X̂T ′BMM̂)Γideal

(A22)

≤ I(M : X̂T ′BM̂)Γ + I(RT ′A〉X̂T ′BMM̂)Γ + ε′′′ (A23)

≤ I(MV : X̂T ′BM̂)Γ + I(RT ′A〉X̂T ′BMV M̂)Γ + ε′′′ (A24)

≤ I(MV : BWTBV )Ω + I(RT ′A〉BWTBMV )Ω + ε′′′ (A25)
= I(MV : BWTB)Ω + I(MV : V |BWTB)Ω

+ I(RT ′AWTB〉BMV )Ω + S(WTB|BMV )Ω + ε′′′ (A26)

≤ I(MV : B)Ω + I(MV : WTB|B)Ω + I(MVBWTB : V )Ω

+ I(RT ′AWTB〉BMV )Ω + S(WTB|BMV )Ω + ε′′′ (A27)
= I(MV : B)Ω + I(RT ′AWTB〉BMV )Ω + S(MV |B)Ω + S(WTB|B)Ω

− S(WTBMV |B)Ω + C1 + S(WTB|BMV )Ω + ε′′′ (A28)

≤ I(MV : B)Ω + I(RT ′AWTB〉BMV )Ω + S(W )Ω + S(TB)Ω + C1 + ε′′′ (A29)
= I(U : B)σ + I(A〉BU)σ +Q1 + E1 + C1 + ε′′′. (A30)

Here too, we start by expressing the information content of the messages. Equality (A21) follows

from the information content of the correlated classical state Φ
MM̂ and Equation (A13) of the pre-

vious reduction. In Equation (A22), we expand the terms further since Γideal is a product state.
Like previous reductions, we employ Lemma 2 and use the upper bound ε on the trace distance

between Γ
MM̂RX̂T ′AT

′
B and Γ

MM̂RX̂T ′AT
′
B

ideal to get Inequality (A23) with ε′′′ := 2ε(C2 + Q2 + |T ′A|) +
2g(ε). Inequality (A24) comes from the data processing inequality of quantum mutual informa-
tion. Inequality (A25) follows from the quantum data processing property. In Equation (A26) we
expand both the terms using chain rule. Inequality (A27) comes from expanding the first term
again using information theoretic reductions and adding to the second term a non-negative quan-
tity I(V : BWTB)Ω. In the next step, Equation (A28), we rearrange the terms, expand the second
term, and evaluate an upper bound on the third term I(MVBWTB : V )Ω ≤ S(V )Ω ≤ C1. The
third, fifth and seventh terms get cancelled and the fourth term gets relaxed in Inequality (A29).
Finally, we identify the states of Ω as those in σ, U ≡MV , A (of σ) ≡ RT ′AWTB , B (of σ) ≡ B and
evaluate the information quantities of the remaining terms. This completes the proof. �

Appendix B: Proof of Theorem 7

The proof rests on Fourier-Motzkin elimination of the parameter t in the set of constraints from
Theorem 6. We need to distinguish between the cases δ < 1

2 , δ = 1
2 and δ > 1

2 as these determine
the signs of certain coefficients in the inequalities.
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We start by using the Inequalities (16) and (18) to get

C̃ + 2Q̃

1− δ
− log q ≤ t, (B1)

(1− δ) log q

δ
− C̃ + Q̃− Ẽ

δ
≥ t. (B2)

From the range of t we also have

t ≥ 0, (B3)
t ≤ log q. (B4)

Combining Inequalities (B1) and (B4), we get (34). Combining (B2) and (B3) gives (36); and (B1)
and (B2) imply (37). For the remaining inequalities we analyze over two cases when δ < 1

2 or
δ ≥ 1

2 . In the first case, Inequality (17) reduces to

Q̃− Ẽ
1− 2δ

≤ t. (B5)

Combining Inequalities (B2) and (B5) proves the second part of Inequality (35). Combining (B4)
and (B5) proves the first part of Inequality (38). In the case when δ > 1

2 , Inequality (17) reduces to

Q̃− Ẽ
2δ − 1

≥ t. (B6)

Combining Inequalities (B1) and (B6) proves the first part of Inequality (35). Combining (B3) and
(B6) proves the second part of Inequality (38). For the case when δ = 1

2 , Inequality (17) becomes
simply

Q̃− Ẽ ≤ 0. (B7)

This is exactly what both the parts of Inequality (38) and the first part of Inequality (35) reduce
to, as well. This proves all the inequalities in Theorem 7. To see why these inequalities fully
characterize the capacity region, one can check that all other inequality combinations from (B1)
to (B6) only result in bounds that are implied by those we have included above. We omit this
straightforward confirmation. �


	Singleton Bounds for Entanglement-Assisted  Classical and Quantum Error Correcting CodesA short version of this work has been presented at ISIT 2022 and is included in its proceedings EACQ-Singleton-ISIT.
	Abstract
	I Introduction
	II Problem Setting
	III Preliminaries
	IV Interlude: information theoretic converse
	V The triple-tradeoff capacity region for the erasure channel
	VI The triple-tradeoff Singleton bound for EACQ codes
	VII Attainability of the bounds: constructions
	VIII Conclusion
	 Acknowledgments
	 References
	A Proof of Theorem 5
	B Proof of Theorem 7


