List-decodable Codes for Single-deletion Single-substitution with List-size Two

Wentu Song, Kui Cai, and Tuan Thanh Nguyen Science, Mathematics and Technology Cluster Singapore University of Technology and Design, Singapore 487372 Email: {wentu_song, cai_kui, tuanthanh_nguyen}@sutd.edu.sg

Abstract—In this paper, we present an explicit construction of list-decodable codes for single-deletion and single-substitution with list size two and redundancy $3 \log n+4$, where n is the block length of the code. Our construction has lower redundancy than the best known explicit construction by Gabrys *et al.* (arXiv 2021), whose redundancy is $4 \log n + O(1)$.

I. INTRODUCTION

Codes correcting insertion, deletion and substitution errors (collectively referred to as edit errors) have gone through a long history from the seminal work of Levenshtein [1]. It was shown in [1] that the binary Varshamov-Tenengolts (VT) code [2], which is given by

$$\mathscr{C}_n(a) = \left\{ \boldsymbol{x} \in \{0,1\}^n : \sum_{i=1}^n ix_i \equiv a \pmod{n+1} \right\},$$

can correct a single edit error and is asymptotically optimal in redundancy, given by $\log n + 2$. Order-optimal non-binary single-edit correcting codes were studied in [3], [4].

Constructing optimal multiple-edit error correcting codes is much more challenging, even for binary deletion codes. A generalization of the VT construction for multiple-deletion correcting codes was presented in [5], but this generalized construction has asymptotic rate strictly smaller than 1. Recently, there were many works on explicit construction of lowredundancy t-deletion correcting codes for $t \ge 2$ (e.g., see [6]-[12]). For t = 2, Guruswami and Håstad constructed a family of 2-deletion correcting codes with length n and redundancy $4\log n + O(\log \log n)$ [12], which matches the best known upper bound obtained via the Gilbert-Varshamovtype greedy algorithm [6]. By introducing the higher order VT syndromes and the syndrome compression technique, Sima et al. constructed a family of t-deletion correcting codes with redundancy $8t \log n + o(\log n)$ [10]. Unfortunately, for t > 2, all existential constructions of t-deletion correcting codes have redundancy greater than the Gilbert-Varshamov-type bound.

The best known t-edit correcting codes for $t \ge 2$ were given by Sima *et al.*, which have redundancy $4t \log n + o(\log n)$ [11]. The method in [11] was improved by the authors in [15], which gave a construction of t-deletion s-substitution correcting codes with redundancy $(4t+3s) \log n + o(\log n)$. A family of single-deletion single-substitution correcting binary codes with redundancy $6 \log n + 8$ was constructed in [13]. So far, constructing optimal (with respect to redundancy) multiple-edit correcting codes is still an open problem, even for single-deletion single-substitution correcting codes.

As a relaxation of the decoding requirement, list-decoding for insertions and deletions have been considered by several research teams, mainly focusing on list-decoding for some fraction of deletions/insertions [16]–[20]. Unlike the traditional decoding (also referred to as unique-decoding), listdecoding with list-size ℓ allows to give a set of ℓ codewords from each corrupted sequence. A family of explicit listdecodable codes for two deletions with length n and list-size two was constructed in [12], which has redundancy $3 \log n$. Note that the redundancy of the construction in [12] is lower than the Gilbert-Varshamov-type bound, which is $4 \log n$. The improvement in redundancy is achieved by the relaxation in the decoding requirement.

In this paper, we present an explicit construction of listdecodable codes for single-deletion and single-substitution with list-size two and redundancy $3 \log n + 4$. Our construction improves the recent work by Gabrys *et al.* [4], which constructed such codes with redundancy $4 \log n + O(1)$.

The rest of this paper is organized as follows. In Section II, the basic concepts are introduced and some preliminary properties of the errors are discussed. Our construction of list-decodable codes for single-deletion and single-substitution is presented in Section III. The auxiliary lemma used by our construction is proved in Section IV.

II. PRELIMINARIES

For any positive integers m and n such that $m \leq n$, denote $[m,n] = \{m, m+1, \ldots, n\}$. If m > n, let $[m,n] = \emptyset$. For simplicity, we denote [n] = [1,n] and $\mathbb{Z}_n = [0, n-1]$.

In this work, we consider binary codes. For any sequence (vector) x of length n, we use x_i to denote the *i*th symbol of x, and hence x can be denoted as $x = (x_1, x_2, \ldots, x_n) \in \{0, 1\}^n$ or simply, $x = x_1 x_2 \ldots x_n$. The weight of x, denoted by wt(x), is the number of non-zero symbols (the symbol 1 for binary sequence) in x. Clearly, for binary sequence x, we have wt(x) = $\sum_{i=1}^{n} x_i$.

Given non-negative integers t and s such that t + s < n, for any $x \in \{0,1\}^n$, the *error ball* of x under t-deletion ssubstitution, denoted by $\mathcal{B}_{t,s}(x)$, is the set of all sequences that can be obtained from x by t deletions (i.e., deleting t symbols of x) and at most s substitutions (i.e., substituting at most s symbols of x, each with a different symbol). A code

Cases of error combination	$wt({m x}) - wt({m y})$
$1 \rightarrow \epsilon$, no substitution	1
$1 \rightarrow \epsilon, \ 1 \rightarrow 0$	2
$1 \to \epsilon, \ 0 \to 1$	0
$0 \rightarrow \epsilon$, no substitution	0
$0 \to \epsilon, \ 1 \to 0$	1
$0 \to \epsilon, \ 0 \to 1$	-1

Table 1. The value of wt(x) - wt(y) for different cases of single-deletion single-substitution, where $a \to \epsilon$ means a symbol $a \in \{0, 1\}$ is deleted from x and for $b \in \{0, 1\} \setminus \{a\}, a \to b$ means a symbol a of x is substituted by the symbol b.

 $\mathscr{C} \subseteq \{0,1\}^n$ is *list-decodable* for *t*-deletion *s*-substitution with list size ℓ if any $\boldsymbol{y} \in \{0,1\}^{n-1}$ is contained by the error ball of at most ℓ codewords of \mathscr{C} . In other words, for any $\boldsymbol{y} \in \{0,1\}^{n-1}$, there exist at most ℓ codewords of \mathscr{C} from which \boldsymbol{y} can be obtained by *t* deletions and at most *s* substitutions.

In this work, we consider list-decodable codes for single deletion and single substitution, i.e., t = s = 1. Suppose $\boldsymbol{x} \in \{0,1\}^n$ and $\boldsymbol{y} \in \{0,1\}^{n-1}$ such that \boldsymbol{y} can be obtained from x by deleting one symbol of x and substituting at most one symbol of x with a different symbol in $\{0, 1\}$. We can compute the difference between the weights of x and y for all possible cases (see Table 1). According to Table 1, we have $wt(x) - wt(y) \in \{-1, 0, 1, 2\}$. If $wt(x) - wt(y) \in \{-1, 2\}$, then the values of the deleted and substituted symbols can be determined. If wt(x) - wt(y) = 0, then y can be obtained from x by deleting a 0, or by deleting a 1 and substituting a 0 with a 1. For the case that y is obtained from x by deleting a 0, unless x is the all-zero sequence, y can also be obtained from x by deleting a 1 and substituting a 0 with a 1.¹ Hence, if wt(x) - wt(y) = 0, then y can always be obtained from \boldsymbol{x} by deleting a 1 and substituting a 0 with a 1. Similarly, if wt(x) - wt(y) = 1 and x is not the all-one sequence, then y can always be obtained from x by deleting a 0 and substituting a 1 with a 0. In summary, we have the following remark.

Remark 1: Suppose $x \in \{0,1\}^n \setminus \{1^n,0^n\}$, where 1^n and 0^n are the all-one sequence and the all-zero sequence of length *n* respectively, and $y \in \{0,1\}^{n-1}$ such that y can be obtained from x by deleting one symbol of x and substituting *at most* one symbol of x. Then y can be obtained from x by deleting one symbol of x, and the values of the deleted and substituted symbols can be determined by wt(x) (mod 4) and wt(y).

III. MAIN RESULTS

In this section, we present our construction of list-decodable codes for single-deletion and single-substitution. Our construction only uses the weight and the first two order VT syndromes for binary sequences.

We adopt the method of [10] to define the higher order VT syndromes. For each positive integer j and each $x \in \{0, 1\}^n$, the *j*th-order VT syndrome of x is defined as

$$f_j(\boldsymbol{x}) = \sum_{i=1}^n \left(\sum_{\ell=1}^i \ell^{j-1} \right) x_i.$$
 (1)

As in [14], we can rearrange the terms and obtain

$$f_j(\boldsymbol{x}) = \sum_{\ell=1}^n \left(\sum_{i=1}^\ell i^{j-1}\right) x_\ell = \sum_{i=1}^n \left(\sum_{\ell=i}^n x_\ell\right) i^{j-1}.$$
 (2)

The code is given by the following definition, where 1^n and 0^n denote the all-one sequence and the all-zero sequence of length n, respectively.

Definition 1: For any fixed values $c_0 \in \mathbb{Z}_4$, $c_1 \in \mathbb{Z}_{2n}$ and $c_2 \in \mathbb{Z}_{2n^2}$, let $\mathscr{C}_n(c_0, c_1, c_2)$ be the set of all sequences $\boldsymbol{x} \in \{0, 1\}^n \setminus \{1^n, 0^n\}$ satisfying the following three conditions:

- (C0) wt(\boldsymbol{x}) $\equiv c_0 \pmod{4}$. (C1) $f_1(\boldsymbol{x}) \equiv c_1 \pmod{2n}$.
- (C2) $f_2(\boldsymbol{x}) \equiv c_2 \pmod{2n^2}$.

Then our main result can be stated as the following theorem. Theorem 1: There exists a $(c_0, c_1, c_2) \in \mathbb{Z}_4 \times \mathbb{Z}_{2n} \times \mathbb{Z}_{2n^2}$ such that the code $\mathscr{C}_n(c_0, c_1, c_2)$ in Definition 1 has redundancy at most $3 \log n + 4$ and is list-decodable from singledeletion and single-substitution with list size 2.

In the rest of this section, we always assume that $(c_0, c_1, c_2) \in \mathbb{Z}_4 \times \mathbb{Z}_{2n} \times \mathbb{Z}_{2n^2}$ and $\mathscr{C}_n(c_0, c_1, c_2)$ is given by Definition 1. For any $x \in \{0, 1\}$ and $\{d, e\} \subseteq [n]$, let E(x, d, e) denote the sequence obtained from x by deleting x_d and substituting x_e with $\bar{x}_e = 1 - x_e$ (i.e., $\bar{x}_e = 1$ if $x_e = 0$ and $\bar{x}_e = 0$ if $x_e = 1$). Clearly, $E(x, d, e) \in \{0, 1\}^{n-1}$ is uniquely determined by x, d and e. We also need the following lemma, which will be proved in Section IV.

Lemma 1: Suppose $\boldsymbol{x}, \, \boldsymbol{x}' \in \mathscr{C}_n(c_0, c_1, c_2)$ and $\{d_1, e_1\}, \{d_2, e_2\} \subseteq [n]$ such that $\boldsymbol{x} \neq \boldsymbol{x}', \, d_1 \leq d_2$ and $E(\boldsymbol{x}, d_1, e_1) = E(\boldsymbol{x}', d_2, e_2)$. We have $d_1 < e_1 \leq d_2$ and $d_1 \leq e_2 < d_2$.

In formally speaking, if there exists a $y \in \{0,1\}^{n-1}$ such that y can be obtained from x and x' by deleting one symbol and substituting one symbol, then the two substituted symbols are both located between the two deleted symbols.

Using Lemma 1, we can prove Theorem 1 as follows.

Proof of Theorem 1: By the pigeonhole principle, there exists a $(c_0, c_1, c_2) \in \mathbb{Z}_4 \times \mathbb{Z}_{2n} \times \mathbb{Z}_{2n^2}$ such that the code $\mathscr{C}_n(c_0, c_1, c_2)$ has size at least $\frac{2^n - 2}{16n^3}$, hence the redundancy of $\mathscr{C}_n(c_0, c_1, c_2)$ is at most $3 \log n + 4$.

It remains to prove that $\mathscr{C}_n(c_0, c_1, c_2)$ is list-decodable from single-deletion and single-substitution with list size 2. We need to prove that for any given $\boldsymbol{y} \in \{0, 1\}^{n-1}$, there exist at most two codewords in $\mathscr{C}_n(c_0, c_1, c_2)$, from which \boldsymbol{y} can be obtained by one deletion and at most one substitution. This can be proved by contradiction as follows.

Suppose x, x' and x'' are three distinct sequences in $\mathscr{C}_n(c_0, c_1, c_2)$ from which y can be obtained by one deletion and at most one substitution. By Remark 1, we can assume

¹For example, let $\boldsymbol{x} = 0110001$ and let $\boldsymbol{y} = 011001$ be obtained from \boldsymbol{x} by deleting $x_5 = 0$. Then \boldsymbol{y} can also be obtained from \boldsymbol{x} by deleting $x_3 = 1$ and substituting $x_4 = 0$ with $\bar{x}_4 = 1$. In general, if \boldsymbol{x} is not the all-zero sequence and \boldsymbol{y} can be obtained from \boldsymbol{x} by deleting a 0, then we can always find a 0 (denoted by $\hat{0}$) in the same run with the deleted 0 that is adjacent to a 1 (denoted by $\hat{1}$). Then \boldsymbol{y} can always be viewed as being obtained from \boldsymbol{x} by deleting the $\hat{1}$ and substituting the $\hat{0}$ with 1.

 $y = E(x, d_1, e_1) = E(x', d_2, e_2) = E(x'', d_3, e_3)$. Without loss of generality, assume $d_1 \le d_2$.

First, consider x and x'. By Lemma 1, we have

$$d_1 < e_1 \le d_2 \tag{3}$$

and

$$d_1 \le e_2 < d_2. \tag{4}$$

For further discussions, we have the following three cases. Case 1: $d_3 \leq d_1$. Considering x and x'', by Lemma 1, we have $d_3 \leq e_1 < d_1$ and $d_3 < e_3 \leq d_1$. Combining with (3), we have $e_1 < d_1 < e_1$, a contradiction.

Case 2: $d_1 < d_3 \leq d_2$. Considering x and x'', by Lemma 1, we have $d_1 < e_1 \leq d_3$ and $d_1 \leq e_3 < d_3$. On the other hand, considering x' and x'', by Lemma 1, we have $d_3 < e_3 \leq d_2$ and $d_3 \leq e_2 < d_2$. Hence, we obtain $e_3 < d_3 < e_3$, a contradiction.

Case 3: $d_2 < d_3$. Considering x' and x'', by Lemma 1, we have $d_2 < e_2 \le d_3$ and $d_2 \le e_3 < d_3$. Combining with (4), we get $e_2 < d_2 < e_2$, a contradiction.

From the above discussions, we can conclude that there exist at most two codewords in $\mathscr{C}_n(c_0, c_1, c_2)$ from which \boldsymbol{y} can be obtained by one deletion and at most one substitution, which proves Theorem 1.

IV. PROOF OF LEMMA 1

In this section, we prove Lemma 1. We always suppose that $x, x' \in \mathcal{C}_n(c_0, c_1, c_2)$, and $\{d_1, e_1\}, \{d_2, e_2\} \subseteq [n]$ such that $d_1 \leq d_2$ and $E(x, d_1, e_1) = E(x', d_2, e_2)$. We first enumerate all the possible cases according to the order of d_1, e_1, d_2, e_2 .

Remark 2: Consider e_1, d_1 and d_2 . Since $d_1 \le d_2$, we have three cases: $e_1 < d_1, d_1 < e_1 \le d_2$ and $d_2 < e_1$. Similarly, for e_2, d_1 and d_2 , we have three cases: $e_2 < d_1, d_1 \le e_2 < d_2$ and $d_2 < e_2$. Combining these two scenarios we have a total of nine cases to consider. However, we can merge some cases and consider the following six cases.

(i) $e_1 < d_1 \le d_2$ and $e_2 < d_1 \le d_2$. (ii) $e_1 < d_1 \le e_2 < d_2$ or $e_2 < d_1 < e_1 \le d_2$. (iii) $e_1 < d_1 \le d_2 < e_2$ or $e_2 < d_1 \le d_2 < e_1$. (iv) $d_1 < e_1 \le d_2$ and $d_1 \le e_2 < d_2$. (v) $d_1 < e_1 \le d_2 < e_2$ or $d_1 \le e_2 < d_2 < e_1$. (vi) $d_1 \le d_2 < e_1$ and $d_1 \le d_2 < e_2$.

We will prove that x = x' for all cases in Remark 2 except for Case (iv). Hence, if $x \neq x'$, then it must fall into Case (iv), that is, $d_1 < e_1 \le d_2$ and $d_1 \le e_2 < d_2$.

Denote $\boldsymbol{x} = (x_1, x_2, \dots, x_n)$ and $\boldsymbol{x}' = (x_1', x_2', \dots, x_n')$. For each $i \in [n]$, let

$$u_i \triangleq \sum_{\ell=i}^n x_\ell - \sum_{\ell=i}^n x'_\ell.$$
(5)

To prove x = x', it suffices to prove $u_i = 0$ for all $i \in [n]$.

The following lemma will be used in our discussions. (Recall that for each positive integer j and $x \in \{0,1\}^n$, $f_j(x)$ is the *j*th-order VT syndrome of x defined by (1) or (2).) *Lemma 2:* Let m be a fixed positive integer. Suppose $(f_1(\boldsymbol{x}), \ldots, f_{m+1}(\boldsymbol{x})) = (f_1(\boldsymbol{x}'), \ldots, f_{m+1}(\boldsymbol{x}'))$ and there exist m positive integers, say p_1, p_2, \ldots, p_m , such that $1 \leq p_1 < p_2 < \cdots < p_m \leq n$ and for each $j \in [m+1]$, either $u_i \geq 0$ for all $i \in [p_{j-1} + 1, p_j]$ or $u_i \leq 0$ for all $i \in [p_{j-1} + 1, p_j]$, where $p_0 = 1$ and $p_{m+1} = n$. Then $u_i = 0$ for all $i \in [n]$, and hence we have $\boldsymbol{x} = \boldsymbol{x}'$.

The proof of Lemma 2 is omitted because it is (implicitly) contained in the proof of [10, Proposition 2].

The following simple remark is also useful in our proof.

Remark 3: Since wt(\boldsymbol{x}) \equiv wt(\boldsymbol{x}') $\equiv c_0 \pmod{4}$ (because $\boldsymbol{x}, \boldsymbol{x}' \in \mathscr{C}_n(c_0, c_1, c_2)$) and $E(\boldsymbol{x}, d_1, e_1) = E(\boldsymbol{x}', d_2, e_2)$, then by Remark 1, we have $x_{d_1} = x'_{d_2}$ and wt(\boldsymbol{x}) = wt(\boldsymbol{x}').

In the following five subsections, we will prove that for all cases in Remark 2 except for Case (iv), we have $(f_1(x), f_2(x)) = (f_1(x'), f_2(x'))$, and there exists a $p_1 \in [n]$ such that for each $j \in \{1, 2\}$, either $u_i \ge 0$ for all $i \in [p_{j-1} + 1, p_j]$ or $u_i \le 0$ for all $i \in [p_{j-1} + 1, p_j]$, where $p_0 = 1$ and $p_2 = n$. Then by Lemma 2 (for the special case of m = 1), we have x = x'. Thus, if $x \ne x'$, then it must fall into Case (iv), that is, $d_1 < e_1 \le d_2$ and $d_1 \le e_2 < d_2$.

A. Proof of x = x' for Case (i)

For this case, we have $e_1 < d_1 \le d_2$ and $e_2 < d_1 \le d_2$. If $e_1 = e_2$, then $\boldsymbol{x} = \boldsymbol{x}'$.² Therefore, we assume $e_1 \ne e_2$. To simplify the presentation, let $\lambda_1 = \min\{e_1, e_2\}$ and $\lambda_2 = \max\{e_1, e_2\}$. Then $1 \le \lambda_1 < \lambda_2 < d_1 \le d_2$. Since $E(\boldsymbol{x}, d_1, e_1) = E(\boldsymbol{x}', d_2, e_2)$, we can obtain³

$$x_{i} = \begin{cases} x'_{i}, & \text{for } i \in [1, d_{1} - 1] \setminus \{\lambda_{1}, \lambda_{2}\}; \\ x'_{i-1}, & \text{for } i \in [d_{1} + 1, d_{2}]; \\ x'_{i}, & \text{for } i \in [d_{2} + 1, n]. \end{cases}$$
(6)

Moreover, we have $x_{\lambda_1} \neq x'_{\lambda_1}$ and $x_{\lambda_2} \neq x'_{\lambda_2}$ because of the substitution error. According to (6), this case can be illustrated by Fig. 1.

Fig. 1. Illustration of Case (i): The bits (symbols) of each sequence is denoted by a row of black dots, where each column corresponds to the two symbols at the same position in the respective sequences. Each pair of bits connected by a solid segment are of equal value, while those connected by a dashed segment have different values because of the substitution error.

We can use (6) or Fig. 1 to simplify u_i for each $i \in [n]$ (In fact, Fig. 1 is more intuitive than (6).) as follows.

²If $e_1 = e_2 < d_1 \le d_2$, then there is a $y' \in \{0,1\}^{n-1}$ such that y' can be obtained from x (resp. x') by a single deletion. By (C1) of Definition 1, $\mathscr{C}_n(c_0, c_1, c_2)$ is a single-deletion correcting code, so we can obtain x = x'. ³In fact, let $y = E(x, d_1, e_1) = E(x', d_2, e_2)$, which means that y can be obtained from x by deleting x_{d_1} and substituting x_{e_1} with $\bar{x}_{e_1} = 1 - x_{e_1}$, and y can also be obtained from x' by deleting x'_{d_2} and substituting x'_{e_2} with $\bar{x}'_{e_2} = 1 - x'_{e_2}$. Then (6) can be obtained by comparing the elements of x and x' with the elements of y: $x_i = y_i = x'_i$ for $i \in [1, d_1 - 1] \setminus \{\lambda_1, \lambda_2\}$; $x_i = y_{i-1} = x'_{i-1}$ for $i \in [d_1 + 1, d_2]$; and $x_i = y_i = x'_i$ for $i \in [d_2 + 1, n]$.

First, we simplify $u_i = \sum_{\ell=i}^n x_\ell - \sum_{\ell=i}^n x'_\ell$ for $i \in [1, \lambda_1]$. From Fig. 1 we can see that all terms in $\sum_{\ell=i}^{n} x_{\ell}$ can be cancelled by their corresponding terms in $\sum_{\ell=i}^{n} x_{\ell}'$ except for $x_{\lambda_1}, x_{\lambda_2}$ and x_{d_1} , and all terms in $\sum_{\ell=i}^{n} x_{\ell}'$ can be cancelled except for $x'_{\lambda_1}, x'_{\lambda_2}$ and x'_{d_2} , so we have

$$u_{i} = \sum_{\ell=i}^{n} x_{\ell} - \sum_{\ell=i}^{n} x_{\ell}'$$

= $x_{\lambda_{1}} + x_{\lambda_{2}} + x_{d_{1}} - x_{\lambda_{1}}' - x_{\lambda_{2}}' - x_{d_{2}}'$ (7)

In particular, we have $\operatorname{wt}(\boldsymbol{x}) - \operatorname{wt}(\boldsymbol{x}') = \sum_{\ell=1}^{n} x_{\ell} - \sum_{\ell=1}^{n} x'_{\ell} = u_1 = x_{\lambda_1} + x_{\lambda_2} + x_{d_1} - x'_{\lambda_1} - x'_{\lambda_2} - x'_{d_2}$. Note that by Remark 3, $\operatorname{wt}(\boldsymbol{x}) = \operatorname{wt}(\boldsymbol{x}')$ and $x_{d_1} = x'_{d_2}$. Therefore, by (7), we have

$$0 = \mathsf{wt}(\boldsymbol{x}) - \mathsf{wt}(\boldsymbol{x}') = x_{\lambda_1} + x_{\lambda_2} + x_{d_1} - x'_{\lambda_1} - x'_{\lambda_2} - x'_{d_2} = x_{\lambda_1} + x_{\lambda_2} - x'_{\lambda_1} - x'_{\lambda_2}$$
(8)

and

$$u_i = x_{\lambda_1} + x_{\lambda_2} - x'_{\lambda_1} - x'_{\lambda_2} = 0, \ \forall i \in [1, \lambda_1].$$

Similarly, from Fig. 1, by cancelling the corresponding equivalent terms in $\sum_{\ell=i}^{n} x_{\ell}$ and $\sum_{\ell=i}^{n} x'_{\ell}$, we can obtain:

- $u_i = x_{\lambda_2} + x_{d_1} x'_{\lambda_2} x'_{d_2} = x_{\lambda_2} x'_{\lambda_2}$ for each $i \in [\lambda_1 + 1, \lambda_2]$, where the second equality holds because $x_{d_1} = x'_{d_2}$ (according to Remark 3).
- $u_i = x_{d_1} x'_{d_2} = 0$ for each $i \in [\lambda_2 + 1, d_1]$.
- $u_i = x_i x'_{d_2}$ for each $i \in [d_1 + 1, d_2]$.
- $u_i = 0$ for each $i \in [d_2 + 1, n]$.

Collectively, we have

$$u_{i} = \begin{cases} 0, & \text{for } i \in [1, \lambda_{1}]; \\ x_{\lambda_{2}} - x'_{\lambda_{2}}, & \text{for } i \in [\lambda_{1} + 1, \lambda_{2}]; \\ 0, & \text{for } i \in [\lambda_{2} + 1, d_{1}]; \\ x_{i} - x'_{d_{2}}, & \text{for } i \in [d_{1} + 1, d_{2}]; \\ 0, & \text{for } i \in [d_{2} + 1, n]. \end{cases}$$
(9)

Moreover, we have the following claim.

Claim 1: Let $p_1 = \lambda_2$. Then for each $j \in \{1, 2\}$, either $u_i \geq 1$ 0 for all $i \in [p_{j-1}+1, p_j]$ or $u_i \le 0$ for all $i \in [p_{j-1}+1, p_j]$, where $p_0 = 1$ and $p_2 = n$. Moreover, $|u_i| \le 1$ for all $i \in [n]$.

Proof of Claim 1: For $i \in [1, \lambda_2]$, by (9), we have $u_i = 0$ or $u_i = x_{\lambda_2} - x'_{\lambda_2}$. If $x'_{\lambda_2} = 0$, then $u_i \in \{0, 1\}$ for all $i \in [\lambda_2 + 1, n]$; if $x'_{\lambda_2} = 1$, then $u_i \in \{-1, 0\}$ for all $i \in [\lambda_2 + 1, n]$.

For $i \in [\lambda_2 + 1, n]$, by (9), we have $u_i = 0$ or $u_i = x_i - x'_{d_2}$. If $x'_{d_2} = 0$, then $u_i \in \{0, 1\}$ for all $i \in [\lambda_2 + 1, n]$; if $x'_{d_2} = 1$, then $u_i \in \{-1, 0\}$ for all $i \in [\lambda_2 + 1, n]$.

Thus, $p_1 = \lambda_2$ satisfies the desired property and $|u_i| \leq 1$ for all $i \in [n]$, which proves Claim 1.

By (2), for j = 1, 2, we have

$$|f_j(\boldsymbol{x}) - f_j(\boldsymbol{x}')| = \left| \sum_{i=1}^n \left(\sum_{\ell=i}^n x_\ell \right) i^{j-1} - \sum_{i=1}^n \left(\sum_{\ell=i}^n x'_\ell \right) i^{j-1} \right|$$
$$= \left| \sum_{i=1}^n u_i i^{j-1} \right|$$
$$\leq \sum_{i=1}^n i^{j-1}$$
$$< n^j, \tag{10}$$

where the first inequality holds because by Claim 1, $|u_i| < 1$ for all $i \in [n]$. Note that by (C1) and (C2) of Definition 1, $f_j(\boldsymbol{x}) \equiv f_j(\boldsymbol{x}') \pmod{2n^j}$, so by (10), we have $f_j(\boldsymbol{x}) =$ $f_j(\mathbf{x}')$. Thus, by Claim 1 and Lemma 2, we have $\mathbf{x} = \mathbf{x}'$.

Example 1: To help the reader to understand the proof, consider an example with

$$\begin{aligned} & \boldsymbol{x} = 1101101000101110, \\ & \boldsymbol{y} = 110111100101110, \\ & \boldsymbol{x}' = 1001111001011010, \end{aligned}$$

where n = 16. We can check that y can be obtained from x by deleting $x_{10} = 0$ and substituting $x_6 = 0$ with $y_6 =$ $\bar{x}_6 = 1$, and \boldsymbol{y} can also be obtained from \boldsymbol{x}' by deleting $x'_{14} = 0$ and substituting $x'_2 = 0$ with $y_2 = \overline{x}'_2 = 1$. Hence, y = E(x, 10, 6) = E(x', 14, 2), that is, $d_1 = 10, e_1 = 6$, $d_2 = 14$ and $e_2 = 2$. Since $e_2 < e_1$, we take $\lambda_1 = e_2 = 2$ and $\lambda_2 = e_1 = 6$. For this example, x and x' can be illustrated by Fig. 2, which is an instance of Fig. 1. It is easy to check that:

- For $i \in [\lambda_1] = \{1, 2\}, u_i = \sum_{\ell=i}^n x_\ell \sum_{\ell=i}^n x'_\ell = x_{\lambda_1} + x_{\lambda_2} + x_{d_1} x'_{\lambda_1} x'_{\lambda_2} x'_{d_2} = 0;$ For $i \in [\lambda_1 + 1, \lambda_2] = \{3, 4, 5, 6\}, u_i = \sum_{\ell=i}^n x_\ell \sum_{\ell=i}$
- $\sum_{\ell=i}^{n} x_{\ell}' = x_{\lambda_2} + x_{d_1} x_{\lambda_2}' x_{d_2}' = x_{\lambda_2} x_{\lambda_2}' = -1;$ For $i \in [\lambda_2 + 1, d_1] = \{7, 8, 9, 10\}, u_i = \sum_{\ell=i}^{n} x_{\ell} 1$
- $\sum_{\ell=i}^{n} x_{\ell}' = x_{d_1} x_{d_2}' = 0;$
- For $i \in [d_1 + 1, d_2] = \{11, 12, 13, 14\}, u_i = \sum_{\ell=i}^n x_\ell \sum_{\ell=i}^n x'_\ell = x_i x'_{d_2} = x_i \in \{0, 1\};$
- For $i \in [d_2 + 1, n] = \{15, 16\}, u_i = \sum_{\ell=i}^n x_\ell$ $\sum_{\ell=i}^{n} x_{\ell}' = 0;$

In summary, we have

$$(u_1, u_2, \cdots, u_n) = (0, 0, -1, -1, -1, -1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0).$$

We can see that $u_i \leq 0$ for all $i \in [1, \lambda_2] = \{1, 2, \dots, 6\}$, and $u_i \ge 0$ for all $i \in [\lambda_2 + 1, n] = \{7, 8, \cdots, 16\}.$

B. Proof of x = x' for Case (ii)

For this case, we have $e_1 < d_1 \le e_2 < d_2$ or $e_2 < d_1 < e_1 \le d_2$. If $e_1 < d_1 \le e_2 < d_2$, let $\lambda_1 = e_1$ and $\lambda_2 = e_2 + 1$; If $e_2 < d_1 < e_1 \le d_2$, let $\lambda_1 = e_2$ and $\lambda_2 = e_1$. Then for both cases, we always have $\lambda_1 < d_1 < \lambda_2 \le d_2$. Since $E(\boldsymbol{x}, d_1, e_1) = E(\boldsymbol{x}', d_2, e_2)$, analogous to (6), we can obtain

$$x_{i} = \begin{cases} x'_{i}, & \text{for } i \in [1, d_{1} - 1] \setminus \{\lambda_{1}\}, \\ x'_{i-1}, & \text{for } i \in [d_{1} + 1, d_{2}] \setminus \{\lambda_{2}\}, \\ x'_{i}, & \text{for } i \in [d_{2} + 1, n]. \end{cases}$$
(11)

Moreover, we have $x_{\lambda_1} \neq x'_{\lambda_1}$ and $x_{\lambda_2} \neq x'_{\lambda_2-1}$ because of the substitution error. According to (11), this case can be illustrated by Fig. 3.

Fig. 3. Illustration of Case (ii).

By Remark 3, we have wt(\boldsymbol{x}) = wt(\boldsymbol{x}') and $x_{d_1} = x'_{d_2}$. Then by (11) or Fig. 3, and through a cancelling process similar to Case (i), we can obtain $0 = \text{wt}(\boldsymbol{x}) - \text{wt}(\boldsymbol{x}') =$ $\sum_{\ell=1}^{n} x_{\ell} - \sum_{\ell=1}^{n} x'_{\ell} = x_{\lambda_1} + x_{\lambda_2} + x_{d_1} - x'_{\lambda_1} - x'_{\lambda_2-1} - x'_{d_2} =$ $x_{\lambda_1} + x_{\lambda_2} - x'_{\lambda_1} - x'_{\lambda_2-1} \text{ and}$

$$u_{i} = \begin{cases} 0, & \text{for } i \in [1, \lambda_{1}]; \\ x_{\lambda_{2}} - x'_{\lambda_{2}-1}, & \text{for } i \in [\lambda_{1}+1, d_{1}]; \\ x_{i} + x_{\lambda_{2}} - x'_{\lambda_{2}-1} - x'_{d_{2}}, & \text{for } i \in [d_{1}+1, \lambda_{2}-1]; \\ x_{i} - x'_{d_{2}}, & \text{for } i \in [\lambda_{2}, d_{2}]; \\ 0, & \text{for } i \in [d_{2}+1, n]. \end{cases}$$

$$(12)$$

Moreover, we have the following Claim.

Claim 2: Let $p_1 = \lambda_2 - 1$. Then for each $j \in \{1, 2\}$, either $u_i \ge 0$ for all $i \in [p_{j-1} + 1, p_j]$ or $u_i \le 0$ for all $i \in [p_{j-1} + 1, p_j]$, where $p_0 = 1$ and $p_2 = n$. Moreover, we have $|u_i| \le 2$ for all $i \in [n]$.

Proof of Claim 2: First consider $i \in [\lambda_2, n]$. By (12), $u_i = 0$ or $u_i = x_i - x'_{d_2}$. Clearly, if $x'_{d_2} = 0$, then $u_i \ge 0$ for all $i \in [\lambda_2, n]$; if $x'_{d_2} = 1$, then $u_i \le 0$ for all $i \in [\lambda_2, n]$.

Now, consider $i \in [1, \lambda_2 - 1]$. Note that $x_{\lambda_2} \neq x'_{\lambda_2 - 1}$. Then we have $x_{\lambda_2} - x'_{\lambda_2 - 1} \in \{-1, 1\}$. We need to consider the following two subcases.

Case (ii.1): $x_{\lambda_2} - x'_{\lambda_2 - 1} = 1$. By (12), we have

$$u_i = \begin{cases} 0, & \text{for } i \in [1, \lambda_1]; \\ 1, & \text{for } i \in [\lambda_1 + 1, d_1]; \\ x_i + 1 - x'_{d_2}, & \text{for } i \in [d_1 + 1, \lambda_2 - 1]. \end{cases}$$

Note that $x_i \ge 0$ and $1 - x'_{d_2} \ge 0$ (because $x'_{d_2} \in \{0, 1\}$). Then $u_i \ge 0$ for all $i \in [1, \lambda_2 - 1]$.

Case (ii.2): $x_{\lambda_2} - x'_{\lambda_2-1} = -1$.

By (12), we have

$$u_i = \begin{cases} 0, & \text{for } i \in [1, \lambda_1]; \\ -1, & \text{for } i \in [\lambda_1 + 1, d_1]; \\ x_i - 1 - x'_{d_2}, & \text{for } i \in [d_1 + 1, \lambda_2 - 1]. \end{cases}$$

Note that $x_i - 1 \leq 0$ (because $x'_{d_2} \in \{0, 1\}$) and $-x'_{d_2} \leq 0$. Then $u_i \leq 0$ for all $i \in [1, \lambda_2 - 1]$.

Thus, $p_1 = \lambda_2 - 1$ satisfies the desired property.

Finally, note that $|x_{\lambda_2} - x'_{\lambda_2-1}| \le 1$ and $|x_i - x'_{d_2}| \le 1$. Then it is easy to see from (12) that $|u_i| \le 2$ for all $i \in [n]$, which proves Claim 2.

Similar to Case (i), by (2) and Claim 2, for j = 1, 2, we have

$$|f_j(\boldsymbol{x}) - f_j(\boldsymbol{x}')| \le \sum_{i=1}^n |u_i| i^{j-1} \le \sum_{i=1}^n 2i^{j-1} < 2n^j.$$

On the other hand, by (C1) and (C2) of Definition 1, we have $f_j(\boldsymbol{x}) \equiv f_j(\boldsymbol{x}') \pmod{2n^j}$, so $f_j(\boldsymbol{x}) = f_j(\boldsymbol{x}')$. Then by Claim 2 and Lemma 2, we have $\boldsymbol{x} = \boldsymbol{x}'$.

Example 2: Consider an example with

$$\begin{aligned} & \boldsymbol{x} = 1001011101001110, \\ & \boldsymbol{y} = 110111101001110, \\ & \boldsymbol{x}' = 1101111000011010, \end{aligned}$$

where n = 16. We can check that y can be obtained from x by deleting $x_5 = 0$ and substituting $x_2 = 0$ with $y_2 = \bar{x}_2 = 1$, and y can also be obtained from x' by deleting $x'_{14} = 0$ and substituting $x'_9 = 0$ with $y_9 = \bar{x}'_9 = 1$. Hence, we have y = E(x, 5, 2) = E(x', 14, 9), that is, $d_1 = 5$, $e_1 = 2$, $d_2 = 14$ and $e_2 = 9$. Since $e_1 < d_1 < e_2 < d_2$, we take $\lambda_1 = e_1 = 2$ and $\lambda_2 = e_2 + 1 = 10$. For this example, x and x' can be illustrated by Fig. 4, which is an instance of Fig. 3. It is easy to check that:

- For $i \in [\lambda_1] = \{1, 2\}, u_i = \sum_{\ell=i}^n x_\ell \sum_{\ell=i}^n x'_\ell = x_{\lambda_1} + x_{\lambda_2} + x_{d_1} x'_{\lambda_1} x'_{\lambda_2} x'_{d_2} = 0;$
- For $i \in [\lambda_1 + 1, d_1] = \{3, 4, 5\}, u_i = \sum_{\ell=i}^n x_\ell \sum_{\ell=i}^n x'_\ell = x_{d_1} + x_{\lambda_2} x'_{\lambda_2-1} x'_{d_2} = x_{\lambda_2} x'_{\lambda_2-1} = 1;$
- For $i \in [d_1 + 1, \lambda_2 1] = \{6, 7, 8, 9\}, u_i = \sum_{\ell=i}^n x_\ell \sum_{\ell=i}^n x'_\ell = x_i + x_{\lambda_2} x'_{\lambda_2 1} x'_{d_2} = x_i + 1 \in \{1, 2\};$
- For $i \in [\lambda_2, d_2] = \{10, 11, 12, 13, 14\}, u_i = \sum_{\ell=i}^n x_\ell \sum_{\ell=i}^n x'_\ell = x_i x'_{d_2} = x_i \in \{0, 1\};$
- For $i \in [d_2 + 1, n] = \{15, 16\}, u_i = \sum_{\ell=i}^n x_\ell \sum_{\ell=i}^n x'_\ell = 0;$

In summary, we have

$$(u_1, u_2, \cdots, u_n) = (0, 0, 1, 1, 1, 2, 2, 2, 1, 1, 0, 0, 1, 1, 0, 0).$$

We can see that $u_i \ge 0$ for all $i \in [1, \lambda_2 - 1] = \{1, 2, \dots, 9\}$, and $u_i \ge 0$ for all $i \in [\lambda_2, n] = \{10, 11, \dots, 16\}$. Note that in this example, we have $u_i \ge 0$ for all $i \in [n]$, which is stronger than Claim 2. However, this is not the case in general.

Fig. 4. An example of Case (ii).

C. Proof of x = x' for Case (iii)

For this case, we have $e_1 < d_1 \leq d_2 < e_2$ or $e_2 < d_1 \leq$ $d_2 < e_1$. Let $\lambda_1 = \min\{e_1, e_2\}$ and $\lambda_2 = \max\{e_1, e_2\}$. Then we have $\lambda_1 < d_1 \leq d_2 < \lambda_2$. Since $E(\boldsymbol{x}, d_1, e_1) =$ $E(\mathbf{x}', d_2, e_2)$, analogous to (6), we can obtain

$$x_{i} = \begin{cases} x'_{i}, & \text{for } i \in [1, d_{1} - 1] \setminus \{\lambda_{1}\}, \\ x'_{i-1}, & \text{for } i \in [d_{1} + 1, d_{2}], \\ x'_{i}, & \text{for } i \in [d_{2} + 1, n] \setminus \{\lambda_{2}\}. \end{cases}$$
(13)

Moreover, we have $x_{\lambda_1} \neq x'_{\lambda_1}$ and $x_{\lambda_2} \neq x'_{\lambda_2}$ because of the substitution error. According to (13), this case can be illustrated by Fig. 5.

By Remark 3, we have wt(x) = wt(x') and $x_{d_1} = x'_{d_2}$. Then by (13) or Fig. 5, and through a cancelling process similar to Case (i), we can obtain 0 = wt(x) - wt(x') = $\sum_{\ell=1}^{n} x_{\ell} - \sum_{\ell=1}^{n} x'_{\ell} = x_{\lambda_1} + x_{\lambda_2} + x_{d_1} - x'_{\lambda_1} - x'_{\lambda_2} - x'_{d_2} = x_{\lambda_1} + x_{\lambda_2} - x'_{\lambda_1} - x'_{\lambda_2} \text{ and }$

$$u_{i} = \begin{cases} 0, & \text{for } i \in [1, \lambda_{1}]; \\ x_{\lambda_{2}} - x'_{\lambda_{2}}, & \text{for } i \in [\lambda_{1} + 1, d_{1}]; \\ x_{i} + x_{\lambda_{2}} - x'_{d_{2}} - x'_{\lambda_{2}}, & \text{for } i \in [d_{1} + 1, d_{2}]; \\ x_{\lambda_{2}} - x'_{\lambda_{2}}, & \text{for } i \in [d_{2} + 1, \lambda_{2}]; \\ 0, & \text{for } i \in [\lambda_{2} + 1, n]. \end{cases}$$
(14)

Then we have the following Claim.

Claim 3: Either $u_i \ge 0$ for all $i \in [n]$ or $u_i \le 0$ for all $i \in [n]$. Moreover, $|u_i| \leq 2$ for all $i \in [n]$.

Proof of Claim 3: Note that $x_{\lambda_2} \neq x'_{\lambda_2}$. Then we have $x_{\lambda_2} - x'_{\lambda_2} \in \{-1, 1\}$. To prove Claim 3, similar to Case (ii), we consider the following two subcases.

Case (iii.1): $x_{\lambda_2} - x'_{\lambda_2} = 1$.

By (14), we can obtain

$$u_{i} = \begin{cases} 0, & \text{for } i \in [1, \lambda_{1}]; \\ 1, & \text{for } i \in [\lambda_{1} + 1, d_{1}]; \\ x_{i} - x'_{d_{2}} + 1, & \text{for } i \in [d_{1} + 1, \lambda_{2} - 1]; \\ 1, & \text{for } i \in [\lambda_{2}, d_{2}]; \\ 0, & \text{for } i \in [d_{2} + 1, n]. \end{cases}$$

Note that $1 - x'_{d_2} \ge 0$ and $x_i \ge 0$ for all $i \in [n]$. Then $u_i \ge 0$ for all $i \in [n]$.

Case (iii.2): $x_{\lambda_2} - x'_{\lambda_2} = -1$.

By (14), we can obtain

$$u_i = \begin{cases} 0, & \text{for } i \in [1, \lambda_1]; \\ -1, & \text{for } i \in [\lambda_1 + 1, d_1]; \\ x_i - x'_{d_2} - 1, & \text{for } i \in [d_1 + 1, \lambda_2 - 1]; \\ -1, & \text{for } i \in [\lambda_2, d_2]; \\ 0, & \text{for } i \in [d_2 + 1, n]. \end{cases}$$

Since $-x'_{d_2} \leq 0$ and $x_i - 1 \leq 0$ for all $i \in [n]$, then $u_i \leq 0$ for all $i \in [n]$.

Thus, either $u_i \ge 0$ for all $i \in [n]$ or $u_i \le 0$ for all $i \in [n]$. Note that $|x_{\lambda_2} - x'_{\lambda_2}| \le 1$ and $|x_i - x'_{d_2}| \le 1$. It is easy to see from (14) that $|u_i| \le 2$ for all $i \in [n]$, which proves Claim 3.

Similar to Case (i), by (2) and by Claim 3, for j = 1, 2,

$$|f_j(\boldsymbol{x}) - f_j(\boldsymbol{x}')| \le \sum_{i=1}^n |u_i| i^{j-1} \le \sum_{i=1}^n 2i^{j-1} < 2n^j.$$

On the other hand, by (C1) and (C2) of Definition 1, we have $f_i(\mathbf{x}) \equiv f_i(\mathbf{x}') \pmod{2n^j}$, so $f_i(\mathbf{x}) = f_i(\mathbf{x}')$. Then by Claim 3 and Lemma 2, we have x = x'.

Example 3: Consider an example with

$$x = 10010101010011111,$$

 $y = 100110101001101,$
 $x' = 110110100001101,$

where n = 16. We can check that y can be obtained from x by deleting $x_5 = 0$ and substituting $x_{15} = 1$ with $y_{14} =$ $\bar{x}_{15} = 0$, and y can also be obtained from x' by deleting $x'_{10} = 0$ and substituting $x'_2 = 1$ with $y_2 = \bar{x}'_2 = 0$. Hence, y = E(x, 5, 15) = E(x', 10, 2), that is, $d_1 = 5, e_1 = 15$, $d_2 = 10$ and $e_2 = 2$. Since $e_2 < e_1$, we take $\lambda_1 = e_2 = 2$ and $\lambda_2 = e_1 = 15$. For this example, \boldsymbol{x} and \boldsymbol{x}' can be illustrated by Fig. 6, which is an instance of Fig. 5. It is easy to check that:

• For $i \in [\lambda_1] = \{1, 2\}, u_i = \sum_{\ell=i}^n x_\ell - \sum_{\ell=i}^n x'_\ell = x_{\lambda_1} + x_{\lambda_2} + x_{d_1} - x'_{\lambda_1} - x'_{\lambda_2} - x'_{d_2} = 0;$

• For
$$i \in [\lambda_1 + 1, d_1] = \{3, 4, 5\}, u_i = \sum_{\ell=i}^n x_\ell - \sum_{\ell=i}^n x'_\ell = x_{d_1} + x_{\lambda_2} - x'_{d_2} - x'_{\lambda_2} = x_{\lambda_2} - x'_{\lambda_2} = 1;$$

- For $i \in [d_1 + 1, d_2] = \{6, 7, 8, 9, 10\}, u_i = \sum_{\ell=i}^n x_\ell \sum_{\ell=i}^n x'_\ell = x_i + x_{\lambda_2} x'_{\lambda_2} = x_i + 1 \in \{1, 2\};$ For $i \in [d_2 + 1, \lambda_2] = \{11, 12, 13, 14, 15\}, u_i = \sum_{\ell=i}^n x_\ell \sum_{\ell=i}^n x'_\ell = x_{\lambda_2} x'_{\lambda_2} = 1;$ For $i \in [\lambda_2 + 1, n] = \{16\}, u_i = \sum_{\ell=i}^n x_\ell \sum_{\ell=i}^n x'_\ell = 0;$

In summary, we have

$$(u_1, u_2, \cdots, u_n) = (0, 0, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 0).$$

We can see that $u_i \ge 0$ for all $i \in [n] = \{1, 2, \dots, 16\}$.

Fig. 6. An example of Case (iii).

D. Proof of x = x' for Case (v)

For this case, we have $d_1 < e_1 \le d_2 < e_2$ or $d_1 \le e_2 < d_2 < e_1$. If $d_1 < e_1 \le d_2 < e_2$, let $\lambda_1 = e_1$ and $\lambda_2 = e_2$; If $d_1 \le e_2 < d_2 < e_1$, let $\lambda_1 = e_2 + 1$ and $\lambda_2 = e_1$. Then for both cases, we always have $d_1 < \lambda_1 \le d_2 < \lambda_2$. Since $E(\boldsymbol{x}, d_1, e_1) = E(\boldsymbol{x}', d_2, e_2)$, analogous to (6), we can obtain

$$x_{i} = \begin{cases} x'_{i}, & \text{for } i \in [1, d_{1} - 1], \\ x'_{i-1}, & \text{for } i \in [d_{1} + 1, d_{2}] \setminus \{\lambda_{1}\}, \\ x'_{i}, & \text{for } i \in [d_{2} + 1, n] \setminus \{\lambda_{2}\}. \end{cases}$$
(15)

Moreover, we have $x_{\lambda_1} \neq x'_{\lambda_1-1}$ and $x_{\lambda_2} \neq x'_{\lambda_2}$ because of the substitution error. According to (15), this case can be illustrated by Fig. 7.

$$\begin{array}{c} x_i: & \dots & d_1 & \dots & \lambda_1 & \dots & d_2 \\ x_i': & \dots & & & & & & & & & & & & & & & & \\ \end{array}$$

Fig. 7. Illustration of Case (v).

By Remark 3, we have wt(x) = wt(x') and $x_{d_1} = x'_{d_2}$. Then by (15) or Fig. 7, and through a cancelling process similar to Case (i), we can obtain $0 = \text{wt}(x) - \text{wt}(x') = \sum_{\ell=1}^{n} x_\ell - \sum_{\ell=1}^{n} x'_\ell = x_{\lambda_1} + x_{\lambda_2} + x_{d_1} - x'_{\lambda_1-1} - x'_{\lambda_2} - x'_{d_2} = x_{\lambda_1} + x_{\lambda_2} - x'_{\lambda_1-1} - x'_{\lambda_2}$ and

$$u_{i} = \begin{cases} 0, & \text{for } i \in [1, d_{1}]; \\ x_{i} - x'_{d_{2}}, & \text{for } i \in [d_{1} + 1, \lambda_{1} - 1]; \\ x_{i} + x_{\lambda_{2}} - x'_{d_{2}} - x'_{\lambda_{2}}, & \text{for } i \in [\lambda_{1}, d_{2}]; \\ x_{\lambda_{2}} - x'_{\lambda_{2}}, & \text{for } i \in [d_{2} + 1, \lambda_{2}]; \\ 0, & \text{for } i \in [\lambda_{2} + 1, n]. \end{cases}$$
(16)

Then we have the following Claim.

Claim 4: Let $p_1 = \lambda_1 - 1$. Then for each $j \in \{1, 2\}$, either $u_i \ge 0$ for all $i \in [p_{j-1} + 1, p_j]$ or $u_i \le 0$ for all $i \in [p_{j-1} + 1, p_j]$, where $p_0 = 1$ and $p_2 = n$. Moreover, we have $|u_i| \le 2$ for all $i \in [n]$.

Proof of Claim 4: For $i \in [1, \lambda_1 - 1]$, by (16), $u_i = 0$ or $u_i = x_i - x'_{d_2}$. Clearly, if $x'_{d_2} = 0$, then $u_i \ge 0$ for all $i \in [1, \lambda_1 - 1]$; if $x'_{d_2} = 1$, then $u_i \le 0$ for all $i \in [1, \lambda_1 - 1]$. For $i \in [\lambda_1, n]$, similar to Case (ii), we need to consider the following two subcases.

Case (v.1): $x_{\lambda_2} - x'_{\lambda_2} = 1$. By (16), we have

$$u_i = \begin{cases} x_i - x'_{d_2} + 1, \text{ for } i \in [\lambda_1, d_2];\\ 1, & \text{ for } i \in [d_2 + 1, \lambda_2];\\ 0, & \text{ for } i \in [\lambda_2 + 1, n]. \end{cases}$$

Note that $1 - x'_{d_2} \ge 0$ and $x_i \ge 0$ for all $i \in [n]$. Then $u_i \ge 0$ for all $i \in [\lambda_1, n]$.

Case (v.2): $x_{\lambda_2} - x'_{\lambda_2} = -1$. By (16), we have

$$u_i = \begin{cases} x_i - x'_{d_2} - 1, \text{ for } i \in [\lambda_1, d_2]; \\ -1, \text{ for } i \in [d_2 + 1, \lambda_2]; \\ 0, \text{ for } i \in [\lambda_2 + 1, n]. \end{cases}$$

Since $-x'_{d_2} \leq 0$ and $x_i - 1 \leq 0$ for all $i \in [n]$, then $u_i \leq 0$ for all $i \in [\lambda_1, n]$.

Thus, $p_1 = \lambda_1 - 1$ satisfies the desired property.

Note that $|x_{\lambda_2} - x'_{\lambda_2}| \le 1$ and $|x_i - x'_{d_2}| \le 1$. It is easy to see from (16) that $|u_i| \le 2$ for all $i \in [n]$, which proves Claim 4.

Similar to Case (i), by (2) and by Claim 4, for j = 1, 2,

$$|f_j(\boldsymbol{x}) - f_j(\boldsymbol{x}')| \le \sum_{i=1}^n |u_i| i^{j-1} \le \sum_{i=1}^n 2i^{j-1} < 2n^j.$$

On the other hand, by (C1) and (C2) of Definition 1, we have $f_j(\boldsymbol{x}) \equiv f_j(\boldsymbol{x}') \pmod{2n^j}$, so $f_j(\boldsymbol{x}) = f_j(\boldsymbol{x}')$. Then by Claim 4 and Lemma 2, we have $\boldsymbol{x} = \boldsymbol{x}'$.

E. Proof of x = x' for Case (vi)

For this case, we have $d_1 \leq d_2 < e_1$ and $d_1 \leq d_2 < e_2$. Similar to Case (i), if $e_1 = e_2$, then $\boldsymbol{x} = \boldsymbol{x}'$. Therefore, we assume $e_1 \neq e_2$. Let $\lambda_1 = \min\{e_1, e_2\}$ and $\lambda_2 = \max\{e_1, e_2\}$. Then we have $d_1 \leq d_2 < \lambda_1 < \lambda_2$. Since $E(\boldsymbol{x}, d_1, e_1) = E(\boldsymbol{x}', d_2, e_2)$, analogous to (6), we can obtain

$$x_{i} = \begin{cases} x'_{i}, & \text{for } i \in [1, d_{1} - 1], \\ x'_{i-1}, & \text{for } i \in [d_{1} + 1, d_{2}], \\ x'_{i}, & \text{for } i \in [d_{2} + 1, n] \setminus \{\lambda_{1}, \lambda_{2}\}. \end{cases}$$
(17)

Moreover, we have $x_{\lambda_1} \neq x'_{\lambda_1}$ and $x_{\lambda_2} \neq x'_{\lambda_2}$ because of the substitution error. According to (17), this case can be illustrated by Fig. 8.

Fig. 8. Illustration of Case (vi).

By Remark 3, we have wt(\boldsymbol{x}) = wt(\boldsymbol{x}') and $x_{d_1} = x'_{d_2}$. Then by (17) or Fig. 8, and through a cancelling process similar to Case (i), we can obtain $0 = \text{wt}(\boldsymbol{x}) - \text{wt}(\boldsymbol{x}') =$ $\sum_{\ell=1}^{n} x_{\ell} - \sum_{\ell=1}^{n} x'_{\ell} = x_{\lambda_1} + x_{\lambda_2} + x_{d_1} - x'_{\lambda_1} - x'_{\lambda_2} - x'_{d_2} =$ $x_{\lambda_1} + x_{\lambda_2} - x'_{\lambda_1} - x'_{\lambda_2} \text{ and}$

$$u_{i} = \begin{cases} 0, & \text{for } i \in [1, d_{1}]; \\ x_{i} - x'_{d_{2}}, & \text{for } i \in [d_{1} + 1, d_{2}]; \\ 0, & \text{for } i \in [d_{2} + 1, \lambda_{1}]; \\ x_{\lambda_{2}} - x'_{\lambda_{2}}, & \text{for } i \in [\lambda_{1} + 1, \lambda_{2}]; \\ 0, & \text{for } i \in [\lambda_{2} + 1, n]. \end{cases}$$
(18)

Then we have the following Claim.

Claim 5: Let $p_1 = d_2$. Then for each $j \in \{1, 2\}$, either $u_i \geq d_2$ 0 for all $i \in [p_{j-1}+1, p_j]$ or $u_i \leq 0$ for all $i \in [p_{j-1}+1, p_j]$, where $p_0 = 1$ and $p_2 = n$. Moreover, $|u_i| \le 1$ for all $i \in [n]$.

Proof of Claim 5: For $i \in [1, d_2]$, by (18), we have $u_i = 0$ or $u_i = x_i - x'_{d_2}$. If $x'_{d_2} = 0$, then $u_i \ge 0$ for all $i \in [1, d_2]$; if $x'_{d_2} = 1$, then $u_i \le 0$ for all $i \in [1, d_2]$.

For $i \in [d_2 + 1, n]$, by (18), we have $u_i = 0$ or $u_i =$ $x_{\lambda_2} - x'_{\lambda_2}$. If $x'_{\lambda_2} = 0$, then $u_i \ge 0$ for all $i \in [d_2 + 1, n]$; if $x'_{\lambda_2} = 1$, then $u_i \le 0$ for all $i \in [d_2 + 1, n]$. Thus, $p_1 = d_2$ satisfies the desired property.

Note that $|x_{\lambda_2} - x'_{\lambda_2}| \leq 1$ and $|x_i - x'_{d_2}| \leq 1$. It is easy to see from (18) that $|u_i| \leq 1$ for all $i \in [n]$, which proves Claim 5.

Similar to Case (i), by (2) and by Claim 5, for j = 1, 2,

$$|f_j(\boldsymbol{x}) - f_j(\boldsymbol{x}')| \le \sum_{i=1}^n |u_i| i^{j-1} \le \sum_{i=1}^n i^{j-1} < n^j.$$

On the other hand, by (C1) and (C2) of Definition 1, we have $f_i(\boldsymbol{x}) \equiv f_i(\boldsymbol{x}') \pmod{2n^j}$, so $f_i(\boldsymbol{x}) = f_i(\boldsymbol{x}')$. Then by Claim 5 and Lemma 2, we have x = x'.

REFERENCES

- [1] V. I. Levenshtein, "Binary codes capable of correcting deletions, insertions and reversals (in Russian)," Doklady Akademii Nauk SSR, vol. 163, no. 4, pp. 845-848, 1965.
- [2] R. R. Varshamov and G. M. Tenengolts, "Codes which correct single asymmetric errors (in Russian)," Automatika i Telemkhanika, vol. 161, no. 3, pp. 288-292, 1965.
- [3] K. Cai, Y. M. Chee, R. Gabrys, H. M. Kiah, and T. T. Nguyen, "Correcting a Single Indel/Edit for DNA-Based Data Storage: Linear-Time Encoders and Order-Optimality," IEEE Trans. Inform. Theory, vol. 67, no. 6, pp. 3438-3451, June 2021.
- [4] R. Gabrys, V. Guruswami, J. Ribeiro, and K. Wu, "Beyond Single-Deletion Correcting Codes: Substitutions and Transpositions," 2021, Available online at: https://arxiv.org/abs/2112.09971
- [5] A. S. Helberg and H. C. Ferreira, "On multiple insertion/deletion correcting codes," IEEE Trans. Inform. Theory, vol. 48, no. 1, pp. 305-308, Jan. 2002
- [6] J. Brakensiek, V. Guruswami, and S. Zbarsky, "Efficient low-redundancy codes for correcting multiple deletions," IEEE Trans. Inform. Theory, vol. 64, no. 5, pp. 3403-3410, 2018.
- [7] R. Gabrys and F. Sala, "Codes correcting two deletions," IEEE Trans. Inform. Theory, vol. 65, no. 2, pp. 965-974, Feb 2019.
- [8] J. Sima, N. Raviv, and J. Bruck, "Two deletion correcting codes from indicator vectors," IEEE Trans. Inform. Theory, vol. 66, no. 4, pp. 2375-2391, April 2020.
- [9] J. Sima and J. Bruck, "Optimal k-Deletion Correcting Codes," in Proc. ISIT, 2019.
- [10] J. Sima and J. Bruck, "On Optimal k-Deletion Correcting Codes," IEEE Trans. Inform. Theory, vol. 67, no. 6, pp. 3360-3375, June 2021.
- [11] J. Sima, R. Gabrys, and J. Bruck, "Optimal Systematic t-Deletion Correcting Codes," in Proc. ISIT, 2020.
- [12] V. Guruswami and Johan Håstad, "Explicit two-deletion codes with redundancy matching the existential bound," IEEE Trans. Inform. Theory, vol. 67, no. 10, pp. 6384-6393, October 2021.
- [13] I. Smagloy, L. Welter, A. Wachter-Zeh, and E. Yaakobi, "Single-Deletion Single-Substitution Correcting Codes," in Proc. ISIT, 2020.
- [14] W. Song, N. Polyanskii, K. Cai, and X. He, "Systematic Single-Deletion Multiple-Substitution Correcting Codes," 2020, Available online at: https://arxiv.org/abs/2006.11516
- [15] W. Song, N. Polyanskii, K. Cai, and X. He, "On multiple-deletion multiple-substitution correcting codes," in Proc. ISIT, 2021.
- [16] V. Guruswami and C. Wang, "Deletion codes in the high-noise and highrate regimes," IEEE Trans. Inform. Theory, vol. 63, no. 4, pp. 1961-1970, April 2017,
- [17] A. Wachter-Zeh, "List decoding of insertions and deletions," IEEE Trans. Inform. Theory, vol. 64, no. 9, pp. 6297-6304, September 2018.

- [18] T. Hayashi and K. Yasunaga, "On the list decodability of insertions and deletions," IEEE Trans. Inform. Theory, vol. 66, no. 9, pp. 5335-5343, September 2020.
- [19] B. Haeupler, A. Shahrasbi, and M. Sudan, "Synchronization strings: List decoding for insertions and deletions," in Proc. 45th Int. Colloq. Automata, Lang. Program. (ICALP), 2018.
- [20] S. Liu, I. Tjuawinata, and C. Xing, "Efficiently list-decodable insertion and deletion codes via concatenation," *IEEE Trans. Inform. Theory*, vol. 67, no. 9, pp. 5778-5790, September 2021.