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Abstract—Millimeter wave systems suffer from high power
consumption and are constrained to use low resolution quantizers
—digital to analog and analog to digital converters (DACs and
ADCs). However, low resolution quantization leads to reduced
data rate and increased out-of-band emission noise. In this paper,
a multiple-input multiple-output (MIMO) system with linear
transceivers using low resolution DACs and ADCs is considered.
An information-theoretic analysis of the system to model the
effect of quantization on spectrospatial power distribution and
capacity of the system is provided. More precisely, it is shown
that the impact of quantization can be accurately described
via a linear model with additive independent Gaussian noise.
This model in turn leads to simple and intuitive expressions for
spectrospatial power distribution of the transmitter and a lower
bound on the achievable rate of the system. Furthermore, the
derived model is validated through simulations and numerical
evaluations, where it is shown to accurately predict both spectral
and spatial power distributions.

I. INTRODUCTION

Digital to analog and analog to digital converters (DACs and
ADCs) are essential components of any digital communication
system. While sub-6GHz systems use high resolution DACs
and ADCs, millimeter wave (mmWave) rely on communica-
tion across wide bandwidths with large numbers of antennas
thereby making high resolution DACs and ADCs very costly in
terms of the power consumption [1], [2]. Use of low resolution
DACs and ADCs (typically 3-4 bits in I and Q) have been
suggested as energy-efficient approaches for next-generation
mmWave systems [3]–[21]

Unlike its high resolution counterpart, low resolution quanti-
zation leads to high quantization noise reducing the achievable
rate of the system and adding out-of-band (OOB) emission
noise which results in high adjacent carrier leakage ratio
(ACLR). Therefore, it is of great importance to model this
quantization noise and understand its impacts accurately.

There is a large body of work on low resolution DACs and
ADCs [3]–[24]. The most common model used to approximate
the effect of quantization is the additive Gaussian noise (AGN)
model [25], [26]. This model has been rigorously analyzed
in several works in the high rate quantization regime or
under dithered quantization [25], [27]–[30]. For low resolution
mmWave systems, it is observed that the AGN and other Gaus-
sian noise predictions match simulations and therefore provide
an accurate model of quantization; however, the accuracy is
not rigorously justified [15]–[21].
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In [31], we considered a single-input single-output (SISO)
communication system with a linear transceiver and low
resolution quantization, and using information theoretic tools,
proved the validity of the AGN model. In this paper, we extend
the analysis of [31] to multiple-input multiple-output (MIMO)
communications. More precisely, we consider a MIMO system
using hybrid transceivers with low resolution DACs and ADCs
as illustrated in Fig. 1. The transmitter modulates a set of
transmit streams through a unitary transform VH prior to
the DACs. We model the spectrum of the transmitted signal
through the transform r = Vx, where x is the output of
the transmitter. Note that if we set the unitary matrix V to
an FFT-matrix, we would have a MIMO-OFDM system and
can capture filtering and spectral constraints which arise form
practical constraint. The MIMO extension of [31] presented
here requires new results on empirical convergence and mutual
information of two random matrices. In addition, it allows
us to study spatial distribution of power as argued below. A
summary of our contributions are as follows:
• Rigorous linear model: We analyse a certain large random

limit of the system where V ∈ CN×N is selected
uniformly from N × N unitary matrices and provide a
rigorous framework for a linear model of quantization.
This generalizes our result in [31] which considers only
SISO systems (Sec. III).

• Rate and spectrospatial power distribution: We use the
derived linear model and provide a simple asymptotically
exact expression for per sample spectral covariance ma-
trix of the system in Fig. 1. Such covariance matrices
can be computed at both transmitter or receiver leading
to spectrospatial power distributions and lower bounds
on the system’s capacity (Sec. IV). Furthermore, through
simulations and numerical evaluations we show that the
derived linear model accurately predicts ACLR and spa-
tial power distribution (Sec. V).

Notation: x is scalar, x is a column vector whose ith element
is xi, and X is a matrix whose (i, j)th element is xij . We
denote the column i of X with x:i and with a slight abuse of
notation, we denote the transpose of row j with xj:. Also, X
is a random column vector and [N ] is the set {1, 2, . . . N}.

II. SYSTEM MODEL AND PRELIMINARIES

A. Transceiver with Linear Transform

We consider the general transceiver structure with linear
transform modulation and analog precoder and combiner

ar
X

iv
:2

20
2.

02
93

4v
1 

 [
cs

.I
T

] 
 7

 F
eb

 2
02

2



Qtx(·)
u:1

Qtx(·)
u:2

Qtx(·)
u:Nst

r:1 r:2 r:Nt

Channel

F (xn:, ξn:)

Qrx(·)
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Fig. 1: System model with linear modulation, demodulation and quantization at both the transmitter and receiver. The linear
modulation is modeled as a multiplication by VH prior to quantization at the transmitter, while a spectrum analyzer and receiver
employ the inverse transform V.

shown in Fig. 1. In this system, the transmitter generates Nst
streams of length N denoted by matrix Z, whose columns
z:i = [z1i, z2i, · · · , zNi]T ∈ CN , i ∈ [Nst] are linearly
modulated as u:i = VHz:i, where V ∈ CN×N is a unitary
matrix. The modulated signals are converted into analog using
a set of DACs Qtx(·), and then passed through a linear analog
precoder determined by the matrix Wtx ∈ CNt×Nst and
transmitted. If V were an FFT matrix, we could consider
the symbols zni, i ∈ [Nst], n ∈ [N ] as the values of the
information carrying signal in frequency domain and uni, i ∈
[Nst], n ∈ [N ] the digital values in time-domain. The modula-
tion can thus be regarded as a simplified version of the OFDM
(where we ignore the cyclic prefix). In addition, if we zero-pad
the input frequency-domain symbols zni, i ∈ [Nst], n ∈ [N ],
the transformed vector u:i = VHz:i can be seen as a linearly
up-sampled version of z:i. The transmitted signal goes through
a general MIMO channel of the form

Y = F(X,Ξ), (1)

where X = [x:1,x:2, · · · ,x:Nt ], Y = [y:1,y:2, · · · ,y:Nr ],
Ξ ∈ CN×Nr with ξni ∼ CN (0, 1), and F(·) is a row-wise
function. This channel can also model certain non-linearites in
the RF front-end [5]. For the case of MIMO AWGN channel,

yn: = Hxn: + ξn:, n ∈ [N ], (2)

where yT
n:,x

T
n:, and ξT

n: are the nth rows of matrices Y, X,
and Ξ, respectively. At the receiver, the channel output is first
passed through a linear analog combiner Wrx ∈ CNsr×Nr ,
and quantized using a set of ADCs Qrx(·), and then the
receiver performs the inverse transform operation to obtain
ẑ:j = Vû:j , j ∈ [Nsr]. Let Ẑ = [ẑ:1, ẑ:2, · · · , ẑ:Nsr

] using
(1), we have

Ẑ = VG(VHZ,Ξ), (3a)

G(U,Ξ) = Qrx

(
F
(
Qtx (U) WT

tx,Ξ
))

WT
rx. (3b)

B. Spectral Covariance and Spectrospatial Power

To derive per sample spectral covariance matrix at the
transmitter, consider r:k = Vx:k, k ∈ [Nt] which is the
transform of the transmitted signal from the kth antenna. The

component |rnk|2, n ∈ [N ] can be regarded as the energy of
the transmit signal from kth antenna at frequency n.

We assume the frequency is divided into M sub-bands.
Let `n ∈ [M ] be the variable that indicates which sub-band
frequency n of the transmitted signals (rows of matrix X)
belong to. We call ` = (`1, . . . , `N ) the sub-band selection
vector and define,

δm(`) :=
1

N

N∑
n=1

1{`n=m}, (4)

which represents the fraction of the frequency components
in sub-band m. We will call δm the bandwidth frac-
tion for sub-band m. Define R = [r:1, r:2, · · · , r:Nt ] =
[r1:, r2:, · · · , rN :]

T. The per sample covariance matrix in sub-
band m is

Sm(N) :=
1

N

N∑
n=1

rn:r
H
n:1{ln=m}, (5)

As a result, for sub-band m, the fraction of spectral power,
νm, and spatial (beamforming) power towards angle ψ ∈
(0, 2π], BFm(ψ), respectively, are

νm =
Tr (Sm(N))

Tr (S(N))
, S(N) =

∑
m

Sm(N), and (6)

BFm(ψ) = e(ψ)HSm(N)e(ψ), (7)

where e(ψ) is the transmit array response. For the case of
uniform linear array (ULA) with half wavelength spacing
e(ψ) = [1, eiπ cos(ψ), . . . , e(Nt−1)iπ cos(ψ)]T. Note that the
analysis can also be applied to two dimensional beamforming.

C. Achievable Rate

An achievable rate for the system can be computed by fixing
the distributions of z:i, i ∈ [Nst] and calculating the mutual
information I(Z; Ẑ) between the transmitted and received
frequency-domain matrices Z, Ẑ. For the input distribution, we
will use an independent complex Gaussian in each frequency
and stream. Specifically, we will assume the components
zn:, n ∈ [N ] ( zT

n: is the nth row of matrix Z) are i.i.d.

zn: ∼ CN (0,Pm), when `n = m, (8)



where Pm is the covariance matrix of the components in sub-
band m. As a result, the average per symbol (row) covariance
matrix for Z is

P =
1

N
E
[
ZTZ*

]
=

1

N

N∑
n=1

E
[
zn:z

H
n:

]
=

M∑
m=1

δmPm, (9)

where δms are the bandwidth fractions (4). We note that using
the Gaussian input distribution is not necessarily optimal in
systems with quantization. Finding the optimal input distribu-
tion is left for future work.

D. Assumptions

For tractability of the analysis, we consider a certain large
system limit of random instances of the system indexed by
the dimension N with N → ∞. For each N , We consider
V = V(N) is a random unitary matrix V that is uniformly
distributed on the N × N unitary matrices (i.e. Haar dis-
tributed) instead of considering the deterministic FFT matrix.
We assume that the sub-band selection vectors ` = `(N) are
fixed sequence satisfying,

lim
N→∞

1

N
|{`n(N) = m}| = δm. (10)

This condition ensures that a fraction δm of the components
are in sub-band m.

We consider that the channel F(·) is Lipschitz continuous
and acts as a row-wise separable function. More specifically,

Y = F(X,Ξ)⇐⇒ yn: = F (xn:, ξn:), (11)

where F (·) is a Lipschitz vector-input, vector-output function.
Note that these conditions are satisfied for the MIMO AWGN
channel in (2) as it is performs the same operation on each row
of the pair (X, ξ) and has the Lipschitz constant equal to the
maximum singular value of H. Similarly, we assume that the
DAC and ADC functions, Qx(u), x ∈ {tx, rx} are Lipschitz
continuous and component-wise separable for some scalar-
input, scalar-output function Qx(·), x ∈ {tx, rx}, respectively.
We also assume that these functions are deterministic and
do not change over time. We note that typical quantizers
are not Lipschitz continuous. However, we assume they can
be approximated arbitrarily closely by a Lipschitz function.
Through simulations, we will show that the predictions hold
true even for standard quantizers.

For our proofs, we use results on empirical convergence.
The analysis framework was developed by Bayati and Mon-
tanari [32] and also used in the vector approximate massage
passing (VAMP) analysis [33]. In next section, we will provide
a definition of empirical convergence along with the necessary
result for our proofs.

III. EMPIRICAL CONVERGENCE OF RANDOM VECTORS

For a given p ≥ 1, a mapping Φ : Cdi → Cdo is called
pseudo-Lipschitz of order p if

‖Φ(x1)− Φ(x2)‖≤C‖x1 − x2‖
(
1+‖x1‖p−1+‖x2‖p−1

)
,

for some constant C > 0. Note that when p = 1, we obtain the
standard definition of Lipschitz continuity. Now, suppose that
for each N , X(N) is a matrix X(N) = [x1:, . . . ,xN :]

T
with

rows xT
n: ∈ C1×di for some fixed dimension di. Let X ∈ Cdi

be a random vector. We say that the rows of X(N) converge
empirically to XT with p-th order moments if

lim
N→∞

1

N

N∑
n=1

Φ(xn:(N)) = E [Φ(X)] , (12)

for all pseduo-Lipschitz functions of order p. Loosely speak-
ing, the condition requires that the empirical distribution of
the rows of X(N) converge to that of the random vector XT

which is satisfied when xn:s are i.i.d. with distribution X . We
will denote this by

lim
N→∞

{xn:}
PL(p)

= X. (13)

Next proposition describes the distribution of the matrices
under random unitary transform and generalizes [31, Prop. 1]
which only considers the vector case. Let us consider a
sequence of systems indexed by N , and for each N suppose
that V ∈ CN×N is uniformly distributed on the unitary
matrices. Let X = X(N) be a sequence of matrices with

lim
N→∞

{xn:}
PL(2)

= X. (14)

Proposition 1. Define U = VX. Given (14) and Haar
distributed matrix V, the sequence {un:} converge empirically
to random vector U ∼ CN (0,P), with P = E

[
XXH

]
.

Proof. See Appendix A. �

This proposition shows that random unitary transformation
effectively creates a Gaussian distribution in the sense that
for input matrices whose rows converge empirically, the rows
of the output matrix converge empirically to a Gaussian
distribution. Now, consider a matrix Y generated by,

Y = VΦ(VHX,Ξ), (15)

where Φ(·) is some function that operates row-wise in that

Y = Φ(U,Ξ)⇐⇒ yn: = Φ(un:, ξn:), (16)

where Φ(·) is a pseudo-Lipschitz vector-input, vector-output
function. Assume that rows of Ξ also converge empirically in
that limN→∞{ξn:}

PL(2)
= Ξ, for some random vector Ξ. To

analyze the statistics on Y, we define the quantities:

A := E
[
∂Φ(U,Ξ)

∂U

]
, (17a)

T := E
[
(Φ(U,Ξ)−AU)(Φ(U,Ξ)−AU)H

]
. (17b)

where U ∼ CN (0,P), P := E
[
XXH

]
, and ∂Φ(U,Ξ)/∂U

denotes the Jacobian of Φ(·) with respect to the vector U . To
calculate the matrix A one can use the multivariate extension
of Stein’s lemma provided in [34] i.e.,

PAH = E
[
UΦ(U,Ξ)H

]
. (18)



Proposition 2. Given the relation in (15) and the conditions
(14) and (16), the rows of the matrix pair (Y,X) converge
empirically as,

lim
N→∞

{(yn:,xn:)}
PL(2)

= (Y,X), (19)

and
Y = AX + Θ, Θ ∼ CN (0,T), (20)

with Θ independent of X .

Proof. See Appendix B. �

The model (20) shows that transformation of X to produce
Y results in a linearly scaled X plus Gaussian noise. The
scaling matrix A and Gaussian noise covariance matrix T
can be computed from the distributions of the components as
shown in (17). By substituting the quantization function Qtx(·)
in the place of the function Φ(·), we observe that the time-
domain quantization effectively scales the frequency signal z
and adds an independent Gaussian noise.

IV. ACHIEVABLE SPECTRAL ENERGY AND RATE

A. Spectral Covariance

We first compute the asymptotic per sample spectral covari-
ance matrix shown in (5). Given the assumptions in Sec. II-D,
calculate Atx and Ttx using (17) with Φ(U) = WtxQtx(U),
where U ∼ CN (0,P), P =

∑
m δmPm.

Theorem 1. Let R = VX be the frequency-domain represen-
tation of the transmitted signal X. Then the covariance matrix
in each sub-band converges almost surely to

Sm := lim
N→∞

Sm(N) = δm

[
AtxPmAH

tx + Ttx

]
. (21)

In particular, the total covariance matrix per sample converges
almost surely as,

S := lim
N→∞

1

N
XTX* = AtxPAH

tx + Ttx (22)

Proof. See Appendix C. �

Based on Thm. 1, spectrospatial power distribution of the
transmitter can be computed using (6) and (7). Based on (6),
the fraction of power in sub-band m is

νm :=
Tr(Sm)

Tr(S)
=
δmTr

(
AtxPmAH

tx + Ttx

)
Tr
(
AtxPAH

tx + Ttx

) . (23)

As a result, we always have

νm ≥
δmTr (Ttx)

Tr
(
AtxPAH

tx + Ttx

) . (24)

In fact, the converse is also true. More precisely, in the
next proposition we show that for a given pair (Atx,Ttx)
and input covariance matrix P, there exist per sub-band
covariance matrices Pm resulting in a power fraction vector
ν = (ν1, . . . , νM ) if and only if νm ≥ 0,

∑
m νm = 1, and

(24) is satisfied.

Proposition 3. Let Atx ∈ CNt×Nst , Tr(Ttx) > 0, P with
Diag(P) > 0 and δm ≥ 0 with

∑
m δm = 1 be given. For

any ν = (ν1, . . . , νM ), the following are equivalent:
(a) For a set of νms given by (23), there exists Pm with

Diag(Pm) ≥ 0 such that P =
∑
m δmPm.

(b) νm satisfies (24) for all m and
∑
m νm = 1.

Proof. See Appendix D. �

Note that (24) shows that the power in a sub-band cannot
be reduced less than a threshold. This arises from the fact that
the quantization noise of a quantizer is white and places power
across the spectrum. Similar observation was made for the case
of SISO systems in [31]. This suggests that, depending on the
system parameters such as DAC resolution, there is a limit
on how much OOB emission can be reduced. This is of great
importance in practical systems with regulations on the OOB
emission levels.

B. Achievable Rate

We next lower bound the achievable rate of the system

Rlin := lim inf
N→∞

1

N
I(Z; Ẑ), (25)

between the transmitted symbols Z and received symbols
Ẑ. We refer to this as the linear rate since it is achieved
using linear modulation as in Fig. 1. To bound (25), we use
the following result which is a non-trivial extension of [31,
Lemma 1] derived for the vector case.

Lemma 1. Suppose that Z ∈ CNst×d is a random matrix with
i.i.d. columns Z ∼ CN (µz,P). Let Y be another random
matrix and define,

PC := P−1 1

d

d∑
i=1

Ci, (26a)

Ci = E
[
z:iy

H
:i

]
E
[
y:iy

H
:i

]−1

E
[
y:iz

H
:i

]
, (26b)

where Z = Z − E[Z] and Y = Y − E[Y]. Then, the mutual
information between Z and Y is bounded below by,

I(Z; Y) ≥ −d ln(|I−PC |).

Proof. See Appendix E. �

Assume that the rows of the noise matrix ξn: are i.i.d. with
some distribution Ξ where E|Ξ|2 <∞. Then, using (17) calcu-
late Arx and Trx with Φ(U) = WrxQrx(F (WtxQtx(U),Ξ)),
where U ∼ CN (0,P), P =

∑
m δmPm.

Theorem 2. Under the assumptions in Sec. II-D and given (8)
and (9), the linear rate is almost surely bounded below by,

Rlin ≥
M∑
m=1

δm log
(∣∣∣I + ArxPmAH

rxT−1
rx

∣∣∣) . (27)

Proof. See Appendix E. �

The lower bound can be interpreted as follows. For Gaussian
inputs, the system in Fig. 1 can be equivalently modeled with
a MIMO system with channel matrix gain Arx where the
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Fig. 2: (a) Spatial transmit power, BFm(·), for the transmit sub-band considering different DAC resolutions based on (7) for
φ = π/4. (b) ACLR based on (30) for different DAC resolutions. (c) Achievable rate of the system based on Thm. 2 for
different values of average received SNR per antenna and DACs and ADCs resolutions.

channel outputs are added with a Gaussian noise vector of
covariance Trx. The lower bound is basically the Shannon
capacity of this equivalent linear system when the per sub-
band covariance matrices are fixed. More precisely, for the
case of MIMO channel with one sub-band and no quantization
the lower bound leads to

Rlin ≥ log

(∣∣∣∣I +
1

σ2
HPHH

∣∣∣∣) (28)

which is the Shannon capacity of MIMO channel H with the
transmit covariance matrix P.

V. SIMULATIONS AND NUMERICAL RESULTS

For our simulations, we consider a MIMO system, where
both transmitter and receiver use ULAs with half wavelength
spacing and 16 transmit and eight receive antennas equipped
with low resolution uniform DACs and ADCs, respectively.
Moreover, for each quantizer, its spacing is optimized to
minimize the mean square error distortion between its input
and output according to [35]. We assume that the analog
precoder and combiner are identity matrices. Also, we use a
Rayleigh fading channel whose elements are generated using
i.i.d. symmetric complex Gaussian distribution with variance
one and mean zero (i.e., CN (0, 1)). We consider that there are
two sub-bands, m = 2, and the transmitter is transmitting in
the first sub-band only (i.e., P2 = 0). For evaluating matrices
A and T for Thm. 1 and Thm. 2, we use 1024 point FFT
(i.e., N = 1024). More precisely, we assume that the first 512
samples correspond to the desired transmit band and the rest
correspond to the adjacent band. Furthermore, we average the
simulations over 100 channel realizations.

Spectrospatial power: First, we validate the accuracy of
the per sample power formula in (21) from Thm. 1. Let us
consider that the transmitter performs digital beamforming to
direct its transmit stream towards angle φ. More precisely, to
generate zn:, n ∈ [512], it uses the covariance matrix

P1 =
1

Nt
e(φ)e(φ)H, (29)

where e(φ) = [1, eiπ cos(φ), . . . , e(Nt−1)iπ cos(φ)]T is the array
response of the transmitter’s ULA. In Fig. 2a, we have plotted

the spatial transmit power, BFm(ψ) for ψ ∈ (0, π] using (7)
for φ = π/4 considering different DAC resolutions when
S1 is calculated based on Thm. 1 and when it is evaluated
through simulation. We observe that the theorem accurately
predicts the simulations. Furthermore, as the DAC resolution
decreases the main lobe gain is reduced while side lobes’ gains
are increased, leaking more power into the side-lobes.

To evaluate our model’s accuracy for the spectral power
distribution, let us define the ACLR of this transmitter as ratio
of the transmit power in the first sub-band over the leaked
power in the second sub-band. Based on (23), we have

ACLR =
ν1

ν2
. (30)

In Fig. 2b, we have plotted the ACLR for the covariance
matrix in (29) with φ = π/4 considering different DAC
resolutions when ν1 and ν2 are calculated using Thm. 1 and
when they are evaluated through simulation. As observed, the
theorem accurately predicts the simulations and as expected
the ACLR is an increasing function of the DAC resolution.

Achievable rate of the system: Next, we use Thm. 2 to
plot the achievable rate of the system. For this case we use the
identity matrix for P1. The rate lower bound considering DAC
and ADC resolutions of one, three, and five bits are plotted
based on (27) from Thm. 2 in Fig. 2c. As a performance
benchmark and upper bound, we have also plotted the Shannon
capacity of the system corresponding to infinite resolution
DACs and ADCs. As expected, increasing the resolution of
DACs and ADCs improves the rate. We also observe that the
system performs very close to the upper bound at low SNRs.

VI. CONCLUSION

We have studied quantized MIMO systems with linear
modulation and provided a rigorous, yet simple equivalent
linear model in the limit of large random transformations for
modulation. The provided model accurately captures the effect
of quantization on the spectrospatial power distribution and
achievable rate of the system. We have also validated the
spectrospatial predictions through simulations and numerical
evaluations.
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APPENDIX A
PROOF OF PROPOSITION 1

For the proof of this proposition, we first prove the follow-
ing results on left circularly symmetric matrices and functional
equations.

Lemma 2. Let V ∈ CN×N be a left spherical symmetric
matrix. Then, its characteristic function Φ(T), satisfies the
followings

1) Φ(T) = Φ(VHT) for V ∈ O(N), where O(N) denotes
the set of N ×N orthogonal matrices.

2) Φ(T) is a function of THT.

The proof is a straightforward extension of the proof of [36,
Theorem 2.1].

Lemma 3. Let F(a) = F(b)F(c) ,where F(t) is a mapping
from Cd to C and a function of ttH and aaH = bbH + ccH.
Therefore,

F(a) = e−
1
4aHPa, (31)

where P ∈ Cd×d.

Proof. Since F(a) is a function of aaH, we can write it as
F(t) = G(tHt). Set A = aaH,B = bbH, and C = ccH we
have:

G(A) = G(B)G(C) (32)

where G(T) is a mapping from Cd×d to C. Therefore,

G(T) = eJ(T), (33)

where J(T) is mapping from Cd×d to C and J(A) = J(B)+
J(C). Therefore,

J(T) =
∑
j

pl
T
jTprj

∑
j

Tr
(
pl

T
jTprj

)
=
∑
j

Tr
(
Tprjpl

T
j

)

= Tr

∑
j

Tprjpl
T
j

=Tr

T

∑
j

prjpl
T
j


.

(34)

As a result, we can write

J(T) = −1

4
Tr (PT) , (35)

Where P ∈ Cd×d. Using T = ttH and substituting (35) in
(33), we have

F(t) = e−
1
4 Tr(PttH) = e−

1
4 Tr(tHPt) = e−

1
4 tHPt. (36)

Which concludes the proof. �

To prove the proposition, we use a similar proof as of
the paper [37]. Note that the matrix U is left-spherically
symmetric. Therefore, any rotation of the rows of matrix U

would preserve its distribution. Hence, using Finetti’s theorem,
there is a σ − field,Ψ of events conditional upon which the
un:, n ∈ [N ] are independent and have the same distribution
function F (u). Define,

Φ(t) =

∫
eiRe(Tr(tHu))dF (u) = E

[
eiRe(Tr(tHu))

∣∣∣Ψ],
(37)

where t ∈ Cd.
The conditional independence means that, for matrix T ∈

CN×d,

E
[
eiRe(Tr(THU))

∣∣∣Ψ] =

N∏
n=1

Φ(tr) (38)

E
[
eiRe(Tr(THU))

]
= E

[
N∏
n=1

Φ(tr)

]
(39)

From Lemma 2, we know that the left and therefore the right
side of (39) are function of THT =

∑N
r=1 tH

r tr. Let tHt =
hHh + gHg. Then,

E
[
|Φ(t)− Φ(h)Φ(g)|2

]
= E[Φ(t)Φ(−t)]

+E[Φ(h)Φ(g)Φ(−h)Φ(−g)]− E[Φ(t)Φ(h)Φ(g)]

−E[Φ(−t)Φ(−h)Φ(−g)].

(40)

All four elements in the right hand side of (40) are equal since
each element is in the form of (39) and is function of 2tHt.
Therefore,

Φ(t)
a.s
= Φ(h)Φ(g) (41)

Based on Lemma 3, the solution to this functional equation is

Φ(tH) = e−
1
4 tHPt. (42)

Using (38),

E
[
eiRe(Tr(THU))

∣∣∣P]
= E

[
N∏
n=1

e−
1
4 tH

nPtn
∣∣∣P] =

N∏
n=1

e−
1
4 tH

nPtn
(43)

Therefore, conditioned on P, un: are i.i.d. ∼ CN (0,P).
We can find P as follows

P

(a)
a.s
=

1

N

N∑
n=1

un:u
H
n: =

1

N
UTU*

(b)
=

1

N
XTX* =

1

N

N∑
n=1

xn:x
H
n:

(c)
a.s
= E[XXH],

(44)

where (a) follows from strong law of large number, (b) is
due to equality U = VX, and (c) comes from empirical
convergence of rows of X to random vector XT.



APPENDIX B
PROOF OF PROPOSITION 2

For the proof of this proposition, we use an approach similar
to the proof of [33, Theorem 4]. Consider the following steps:

U = VHZ, (45a)

A =

〈
∂Φ(U,Ξ)

∂U

〉
, (45b)

B = Φ(U,Ξ)−UAT, (45c)
Θ = VB, (45d)

where
〈
∂Φ(U,Ξ)

∂U

〉
is the Jacobian matrix of Φ(·) evaluated

for each row pair of (un:, ξn:) and then averaged over n. The
transpose of rows of matrix Ξ (i.e., ξn:) are i.i.d. CN (0, INr

).
Therefore,

lim
n→∞

{ξn:}
PL(2)

= ξ, ξ ∼ CN (0, INr
) (46)

From Prop. 1, we know that the rows of matrix U converge
empirically to random vector U ∼ CN (0,P). Additionally,
since V and Z are independent of Ξ and the function Φ(·) is
Lipschitz continuous, the sequence (ξn:,Un:,bn:) converges
empirically to (Ξ, U,B). Following same steps of [33, Theo-
rem 4], we have

Θ = Θdet + Θrand, (47)

where Θdet = 0 and the rows of the matrix Θrand,
converge empirically to Θ ∼ CN (0,T) where T =
E
[
(Φ(U,Ξ)−AU)(Φ(U,Ξ)−AU)H

]
.

APPENDIX C
PROOF OF THEOREM 1

The theorem is a direct application of the linear model in
Prop. 2. To use the proposition, first observe that, due to (10)
and the Gaussian distribution on zn: in (8), we have that the
elements of sub-band selection ` and the rows of frequency-
domain inputs Z converge empirically as,

lim
n→∞

{(zn:, `n)} PL(2)
= (Z, `), (48)

where ` ∈ [M ] is a discrete random variable with
Pr(` = m) = δm and Z is the conditional complex Gaussian,

Z ∼ CN (0,Pm) when ` = m.

In particular, the covariance matrix of Z is,

E[ZZH] =

M∑
m=1

δmPm =: P. (49)

Now, the frequency domain components of the transmitted
vectors x:j , j ∈ [Nt] are given by,

R = VX = VQ(VHZ).

Proposition 2 then shows that the components of (r, z, `)
converge empirically as,

lim
N→∞

{(rn:, zn:, `n)} PL(2)
= (R,Z, `),

and
R = AtxZ +Wtx, Wtx ∼ CN (0,Ttx),

where Wtx is independent of Z. The sub-band energies,

Sm := lim
N→∞

1

N

N∑
n=1

rn:r
H
n:1{`n=m} = E

[
RRH

1{`=m}

]
= E

[
(AtxZ +Wtx)(AtxZ +Wtx)H|` = m

]
Pr(` = m)

=
[
AtxPmAH

tx + Ttx

]
δm.

This proves (21). To prove (22),

S =

M∑
m=1

Sm =

M∑
m=1

[
AtxPmAH

tx + Ttx

]
δm

= AtxPAH
tx + Ttx,

(50)

where the last step used (49) and the fact that
∑
m δm = 1.

APPENDIX D
THE LINEAR RATE REGION

(a)⇒ (b): Suppose there exists Pm as in (a) and let νm be
given by (23). Since P =

∑
m δmPm, we have

∑
m νm = 1.

Also, since Diag(Pm) ≥ 0, we have νm in (23) satisfies the
lower bound (24).

(b) ⇒ (a): Conversely, suppose we are given ν satisfying
(24) with

∑
m νm = 1. Set,

Pm =
P

Tr
(
AtxPAH

tx

) [νm
δm

Tr
(
AtxPAH

tx + Ttx

)
− Tr(Ttx)

]
.

(51)

Therefore, νm satisfies (23). Since νm satisfies (24), Pm in
(51) satisfies Pm ≥ 0. Also,∑
m

δmPm =
P

Tr
(
AtxPAH

tx

) [∑
m

νmTr
(
AtxPAH

tx + Ttx

)
−
∑
m

δmTr(Ttx)

]
=

P

Tr
(
AtxPAH

tx

) [Tr
(
AtxPAH

tx + Ttx −Ttx

)]
= P,

where we have used the fact that
∑
m νm =

∑
m δm = 1.



APPENDIX E
PROOF OF THEOREM 2

We need two basic mutual information lemmas. For m ∈
[M ], let Z[m] and Ẑ[m] denote the sub-matrices of Z and Ẑ
with components in sub-band m.

Lemma 4. The mutual information is bounded below by,

I(Z; Ẑ) ≥
M∑
m=1

I(Z[m]; Ẑ[m]). (52)

The proof follows using the same steps as of the proof of
[31, Lemma 1].

Lemma 5. Suppose that Z ∈ CNt×d is a random matrix with
i.i.d. columns Z ∼ CN (µz,P). Let Y be another random
matrix and define,

PC := P−1 1

d

d∑
i=1

Ci, (53a)

Ci = E
[
z:iy

H
:i

]
E
[
y:iy

H
:i

]−1

E
[
y:iz

H
:i

]
, (53b)

where Z = Z − E[Z] and Y = Y − E[Y]. Then, the mutual
information between Z and Y is bounded below by,

I(Z; Y) ≥ −d ln(|I−PC |).
Proof. The mutual information is,

I(Z; Y) = H(Z)−H(Z|Y). (54)

Since z̃ = vec(Z) = [zT
:1, z

T
:2, ..., z

T
:d]

T is distributed as
CN (vec(µz), Id ⊗P),

H(Z) = d ln(|2πeP|). (55)

Define ỹ = vec(Y) = [yT
:1,y

T
:2, ...,y

T
:d]

T. Now, given Y, we
can get a estimate of z̃, ̂̃z which leads to the error covariance
matrix,

Σe := E
[
(z̃− ̂̃z(ỹ))(z̃− ̂̃z(ỹ))H

]
, (56)

where ̂̃z(ỹ) is the estimate of z̃ given ỹ. So, the conditional
entropy H(Z|Y) is bounded below by the entropy of a
Gaussian random vector with the covariance Σe. Consider
linear minimum mean square estimation and we have

H(Z|Y) ≤ ln
(
(2πe)dNt |Σe|

)
(57)

(a)

≤ ln

(
(2πe)dNt

d∏
i=1

|Cei|

)
(58)

= d ln
(
(2πe)Nt

)
+Nt ln

(
d∏
i=1

|Cei|
1

Nt

)
(59)

(b)

≤ d ln
(
(2πe)Nt

)
+ dNt ln

(
1

d

d∑
i=1

|Cei|
1

Nt

)
(60)

(c)

≤ d ln
(
(2πe)Nt

)
+ dNt ln

1

d

∣∣∣∣∣
d∑
i=1

Cei

∣∣∣∣∣
1

Nt

 (61)

= d ln

(
(2πe)Nt

∣∣∣∣∣1d
d∑
i=1

Cei

∣∣∣∣∣
)

(62)

where Cei = E
[
z̄:iz

H
:i

]
−E

[
z:iy

H
:i

]
E
[
y:iy

H
:i

]−1 E
[
y:iz

H
:i

]
,

(a) uses Fischer’s inequality [38], (b) uses Jensen’s inequality,
and (c) uses an extended version of the Hadamard’s inequality
[39, Prop. 2.7]. Therefore, we have

H(Z|Y) ≤ d ln

(∣∣∣∣∣2πe
(

P− 1

d

d∑
i=1

Ci

)∣∣∣∣∣
)
. (63)

Substituting (55) and (63) into (54), we get

I(Z; Y) ≥

d ln(|2πeP|)− d ln

(∣∣∣∣∣2πe
(

P− 1

d

d∑
i=1

Ci

)∣∣∣∣∣
)

(64)

= −d ln(|I−PC |), (65)

which concludes the proof. �

To prove the theorem, we use these lemmas as follows.
In each sub-band m, the rows of Z[m] are i.i.d. complex
Gaussians with zero mean and covariance matrix Pm. So, by
Lemma 5,

I(Z[m]; Ẑ[m]) ≥ −Nm ln(|I−PCm|), (66)

where Nm is the number of coefficients in sub-band m and
PCm is the correlation coefficient matrix,

PCm :=P−1
m

1

Nm

Nm∑
i=1

E
[
z[m]:iẑ[m]H:i

]
×

E
[
ẑ[m]:iẑ[m]H:i

]−1

E
[
ẑ[m]:iz[m]H:i

]
. (67)

Now, (10) shows that Nm/N → δm. So, if we divide (66) by
N and take the limit we get,

lim inf
N→∞

1

N
I(Z[m]; Ẑ[m]) ≥ −δm ln

(
|I−PCm|

)
. (68)

where PCm is the limiting correlation,

PCm := lim
N→∞

PCm (69)

To compute the limit in (69), we use a similar calculation
to the proof of Theorem 1. Specifically, the received symbols
are given by,

Ẑ = VG(VHZ,W). (70)

Proposition 2 then shows that the rows of (Ẑ,Z, `) converge
empirically as,

lim
N→∞

{(Ẑn:, Zn:, `n)} PL(2)
= (Ẑ, Z, L), (71)

and
Ẑ = ArxZ +Wrx, Wrx ∼ CN(0,Trx), (72)



where Wrx is independent of Z. Now, we have that,

lim
N→∞

PCm =
lim

Nm→∞
P−1
m

1

Nm

Nm∑
i=1

E
[
z[m]:iẑ[m]H:i

]
×

E
[
ẑ[m]:iẑ[m]H:i

]−1

E
[
ẑ[m]:iz[m]H:i

] (73)

=
P−1
m E

[
ZẐH|L = m

]
E
[
ẐẐH|L = m

]−1

×

E
[
ẐZ|L = m

] (74)

=
[
AH

rx(ArxPmAH
rx + Trx)−1Arx

]
PH
m (75)

Hence,

(I−P
(m)

C )−1

(a)
= I + AH

rx

(
Arx(Pm −PH

m)AH
rx + Trx

)−1

ArxPH
m (76)

(b)
= I + AH

rxT−1
rx ArxPm, (77)

where (a) follows from Woodbury inversion lemma and (b)
uses the fact that Pm is a covariance matrix. As a result, from
(68), we obtain

lim inf
N→∞

1

N
I(Z[m]; Ẑ[m]) ≥

δm log
(
|I + AH

rxT−1
rx ArxPm|

)
.

(78)

Substituting (78) into the sum (52) and using Sylvester’s
determinant identity proves (27).
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