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Abstract—In private information delivery (PID) problem, there
are K messages stored across N servers, each capable of storing
M messages and a user. Servers want to convey one of the K
messages to the user without revealing the identity (index) of
the message conveyed. The capacity of PID problem is defined
as maximum number of bits of the desired message that can
be conveyed privately, per bit of total communication, to the
user. For the restricted case of replicated systems, where coded
messages or splitting one message into several servers is not
allowed, the capacity of PID has been characterized by Hua
Sun in “Private Information Delivery, IEEE Transactions on
Information Theory, December 2020” in terms of K,N and M.
In this paper, we study the problem of PID with coded storage
at the servers. For a class of problems called bi-regular PID we
characterize the capacity for N = K/M and for N > K/M
we provide an achievable scheme. In both the cases the rates
achieved are more than the rates achievable with the replicated
systems.

I. INTRODUCTION

The problem of Private Information Delivery (PID) was
introduced in [1], [2]. In PID, a dataset comprised of K
identically distributed messages is stored over N servers. The
servers want to convey one of the K messages to a user but
don’t want the identity of message to be disclosed to the user.
For example, the data stored at the servers could be medical
records of patients from some hospitals. These hospitals want
to send the record of one of the patients externally but want
to preserve the privacy of the patient.

In order to convey a message to the user, without disclosing
the identity of the message, servers may have to transmit more
data than the actual size of the message. Because of this, the
goal in a PID problem is to reduce transmission cost while
keeping the identity of the message private. The rate of PID
is defined as the ratio of the size of the message conveyed to
the user to the amount of data sent to the user via transmissions
to convey that message. Therefore in PID problems, the goal
is to maximize the rate.

A. Private Information Delivery [2]

In this subsection, a brief summary of the problem
setup and results of the PID problem of [2] is described.
Consider a dataset comprised of K independent messages
W1,W2 · · ·WK , comprised of L i.i.d. uniform symbols from
the finite field Fq with q elements for some integer L. There
are N servers, and each stores M out of K messages. The
messages stored can not be coded messages and a message can
not be split into sub-messages and stored in several servers.
This is called a replicated system in [2]. Also, the servers
share a common random variable U , which is independent of
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Fig. 1. Private Information Delivery Problem

the messages. Servers privately generate an integer D between
1 and K and wish to deliver WD to a user while keeping D a
secret from the user. In order to deliver WD to the user, server
n transmits ADn to the user, which is a function of the messages
stored at server n and shared random variable U . The user will
decode WD from all the N transmissions it receives from the
servers and should not be able to get any information about
message index D. The rate for the PID scheme is defined as

R ,
L∑N

n=1 Tn

where Tn is the expected number of symbols sent from the
server n to the user. The supremum of all achievable rates
is called the capacity. For replicated systems, we denote the
capacity by CUS with the subscript standing for Uncoded
Storage. The following results have been presented in [2].

Theorem 1. [2]: For the PID problem with K messages,
N ≥ dK/Me servers and M messages per server, the capacity
satisfies

1/dK/Me ≤ CUS ≤M/K.

A converse of rate M/K and an achievable scheme that
achieves rate 1/dK/Me with L = 1 is provided in [2]. For
K/M ∈ Z Theorem 1 states that CUS = M/K. The next
result is a condition on the number of servers such that the
upper bound in Theorem 1 [2] is tight

Theorem 2. [2]: For the PID problem with K messages, N ≥
dK/Me servers and M messages per server, and K/M /∈ Z,
rate M/K is achievable if

N ≥ K

gcd(K,M)
−
(

M

gcd(K,M)− 1

)(⌊
K

M

⌋
− 1

)
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and rate 1/dK/Me is optimal if N = dK/Me

To prove Theorem 2 a PID scheme that achieve rate M/K
for L = M/ gcd(K,M) and then for N = dK/Me a proof
of optimality of R = 1/dK/Me is given in [2].

B. Contributions

In the PID problems in [2] reviewed in the previous subsec-
tion whole messages are stored at the servers without coding
or splitting. In this work, we consider the case of distributed
systems, where a message can be accessed by a proper subset
of servers and messages which are available to the servers can
be split and coded before storing them at the servers. By using
coded storage at the servers, we establish in the later sections
that the message can be delivered privately to the user while
requiring less storage and transmitting less data. Specifically,
for a class of problems called bi-regular PID we characterize
the capacity for N = K/M and for N > K/M we provide
an achievable scheme. In both the cases the rates achieved are
more than the rates achievable with the replicated systems.

C. A motivating example

The following motivating example illustrates the advantages
of keeping coded messages at the servers.

Example 1. Consider K = 3 messages uniformly distributed
over F2

5, N = 3 servers, all privately sharing (i.e. without
the user knowing about it) a random variable u uniformly
distributed over F5, and each server can store 2 more symbols
of F5, which means M = 1. Let Wn = (Wn,1,Wn,2), n ∈
{1, 2, 3} be the messages. We say that server n is associated
to message Wk (and message Wk is associated to server n)
if server n can store some information corresponding to Wk

in its storage. Let each message be associated to two servers.
W1 is associated to server 1 and server 2, W2 is associated
to server 2 and server 3 and W3 is associated to server 3 and
server 1. After storing two F5 symbols corresponding to two
messages, servers will collectively choose a message index D
at random and wish to deliver WD to a user. The goal of the
servers is to convey WD to the user privately and correctly i.e.
the user should know the contents of the message but should
not know the index of the message.

Now for this setup, we briefly describe a privacy preserving
strategy that does not disclose any information about the index
of the delivered message. Below we show a storage design
in which parts of messages are not stored as such but first
encoded as follows:

C1,1 = 2W1,1 + 4W1,2 C1,2 = 4W1,1 +W1,2

C2,1 = 3W2,1 + 4W2,2 C2,2 = 3W2,1 +W2,2

C3,1 = 4W3,1 + 2W3,2 C3,2 = 2W3,1 + 3W3,2

Following table enumerate the storage Zn at server n.

Z1 Z2 Z3

C1,1 C1,2 u
u C2,1 C2,2

C3,1 u C3,2

Each server is storing two symbols from F5 corresponding
to two messages and a random F5 element. After storing
these symbols, servers will collectively decide to transmit
one of the message to the user. The table below enumerate
what transmissions will be done by which server in order to
convey message WD to the user where AD1 , A

D
2 and AD3 are

transmission from server S1, S2 and S3 respectively.

For D = AD1 AD2 AD3
1 C1,1 + u C1,2, + 3u u
2 u C2,1 + 3u C2,2 + u
3 C3,1 + u 3u C3,2 + u

Note that in order to convey one message, each server is
transmitting one element of F5.

Now to decode the message from these transmissions, the
user will perform following computation:

WD,1 = AD1 +AD2 +AD3

WD,2 = AD1 + 2AD2 + 3AD3

It can be easily verified that the computation above can
correctly convey any message to the user. It can also be easily
seen that the message index D is unknown to the user. That’s
because the user is receiving 3 uniformly distributed symbols
from F5 without any knowledge of to which message these
symbols correspond to. And the user is performing the same
computation, irrespective of the message index, to decode
the message from the computation. Here we also note that
decoding strategy is independent of message index D. And
the user could not get information about the message index
from the decoding strategy.

The rate achieved for the PID problem in this example is 1
2

whereas the capacity CUS is 1
3 .

D. Fully Distributed System with message splitting

The problem of PID is trivial when every server can store
a part of each message. As the minimum required memory is
M = K

N messages, the following scheme can achieve rate 1
while using minimum possible memory. First, partition each
message into N sub-messages.

Wk = {Wk,n|n ∈ [N ]}

Then server n will store Wk,n∀n ∈ [N ]. As each server
is storing 1

N fraction of each message, we have M = K
N .

Then, if the servers choose to convey message Wθ to the user,
they’ll broadcast the part of the message they have in their
storage. Specifically, server n will send Wθ,n. After receiving
the transmissions of all the servers, the user will concatenate
the transmissions to get the message, and it will not be able
to get the index θ.

In this setup, the maximum possible rate, R = 1 is achieved,
and minimum possible memory is used. This happens because
each message is accessed by every server. In the rest of the
paper, we consider cases where a message can’t be accessed
by every server. We also consider that the messages can be
encoded before storing them at the servers.



Notations: : For integers a, b, c where a ≤ c, [a : b : c] ,
{a + nb : n ∈ Z+, a + nb ≤ c}. [a : c] is same as [a : 1 : c]
and [c] is same as [1 : c]. For any R × C matrix M and
N ⊆ [C], MN denotes the sub-matrix of M formed using
columns indexed by N and Mr,c denote element of rth row
and cth column. For a set {A1, A2 . . . AN} indexed by integers
between 1 and N , AN ,N ⊆ [N ] denotes subset {An : n ∈
N}.

II. PROBLEM SETUP

Consider one user and K independent messages
{Wk}k∈[K]. These messages are comprised of L i.i.d.
symbols from Fq. In the unit of Fq symbols, we have

H(Wk) = L,∀k ∈ [K]

H({Wk}k∈[K]) =
∑
k∈[K]

H(Wk) = KL (1)

There are N servers. We say that server n is associated to
message Wk (and message Wk is associated to server n) if
server n can store some information corresponding to Wk in
its storage. Every server can store up to M messages. Let Zn
denote the storage of server n. The storage of server n depends
on the messages associated to it and

H(Zn) ≤ML,∀n ∈ [N ]. (2)

Servers also store correlated random variables Un, n ∈ [N ]
which are independent of the messages. Server n stores
random variable Un. Let U = (U1, U2, · · · , Un). Then

H(U, {Wk}k∈[K]) = H(U) +H({Wk}k∈[K]) (3)

Let,Nk denote the indices of the servers associated to message
Wk, k ∈ [K]. We assume that every message is associated to
L ≤ N servers, therefore Nk ⊆ [N ], |Nk| = L.

Let Kn denotes the set of messages, associated to the nth

server where Kn ⊆ [K]. If every server is associated to same
number of messages (i.e. |Kn| = |K1|,∀n ∈ [N ]) then we
call this problem to be (K,N,M,L) bi-regular PID problem.
Note that for bi-regular PID problems KL/N ∈ Z messages
i.e. |Kn| = KL/N, ∀n ∈ [N ].

Servers privately generate D ∈ [K] and want to deliver WD

to the user while keeping D a secret from the user. In order
to convey WD to the user, the nth server, ∀n ∈ [N ], will send
transmission ADn to the user. ADn is completely determined
from Zn and Un i.e.,

H(ADn |Zn, Un, D) = 0. (4)

From {ADn }n∈[N ] the user has to decode WD. So, it is required
that

H(WD|{ADn }n∈[N ]) = 0 (5)

To decode WD without knowledge of D, the decoding strategy
employed by the user should be independent of D (otherwise,
decoding strategy will give information about D).

Now, in order to keep the desired index D private from the
user, it is required that

I(D; {ADn }n∈[N ]) = 0 (6)

TABLE I
RESTRICTIONS ON PARAMETERS OF PID SETUP

Parameters in [2] Parameters in our Setup
N ∈ Z N ∈ Z
K ∈ Z K ∈ Z
M ∈ Z M need not be an integer;

M ≥ K/N
N ≥ dK/Me N ≥ dK/Me

(For L-Biregular PID)
L ∈ [ N

gcd(N,K)
: N
gcd(N,K)

: N ]

Performance of a PID is characterized by rate R which is
defined by the ratio of size of the message delivered to the
user and total size of transmission performed by the serves.
In our setting, the rate is

R ,
L∑

n∈[N ] Tn
.

where Tn is the size of transmission performed by server n to
the user i.e. H(ADn ) = Tn.

We also define ηn , H(Un)/L as the measure of size of
randomness stored at the server n for all n ∈ [N ]. And a
measure of size of total shared randomness U, is given by
η , H(U)/L. This shared randomness is not counted in server
storage.

Our goal is to construct PID scheme with message splitting
and coded messages that maximize R while satisfying (5)
and (6) under constraints (1), (2) and (3). The maximum
achievable rate with coded storage is called capacity and is
denoted by CCS .

Restrictions on PID Parameters
In (K,N,M,L) bi-regular PID setup described above, we

have already stated that L ≤ N , and KL/N ∈ Z. This will
put a restriction on number of servers associated to a message
that L ∈ [ N

gcd(K,N) : N
gcd(K,N) : N ]. Therefore if K and

N are co-prime, then only possible value for L is N . If N
divides K, for example K = 8 and N = 4, then L can take
all possible values less than N , i.e. L ∈ [N ]. And as every
server is associated to |Kn| = KL/N messages we get |Kn| ∈
[ K
gcd(K,N) : K

gcd(K,N) : K]. In Table I restrictions on PID
parameters are given for our setting and the setting given in [2].
In Table II we have given possible values of L for K ∈ [2 : 24]
and non prime values of N ∈ [24].

III. MAIN RESULTS

In this section we state the optimal rate for (K,N,M,L)
bi-regular PID setup for M = K

N . And for general K,N,M
and L ≤ N such that KL/dK/Me ∈ Z, we give an achievable
rate.

For the optimal rate, we are taking M = K/N , which is the
minimum required memory to store all the messages. As in
bi-regular PID setup, KL/N messages are associated to each
server we have KL/N =ML ∈ Z.

Theorem 3. For (K,N,M,L) bi-regular PID setup with
M = K/N , the PID capacity is given by

CCS =
ML

K



TABLE II
POSSIBLE VALUES OF L AND M ≥ K

N
FOR GIVEN K AND N

K \ N 4 6 8 9 10 12 14 15 16 18 20 21 22 24
2 2,4 3,6 4,8 9 5,10 6,12 7,14 15 8,16 9,18 10,20 21 11,22 12,24
3 4 2,4,6 8 3,6,9 10 4,8,12 14 [5:5:15] 16 6,12,18 20 7,14,21 22 [8:8:24]
4 [4] 3,6 [2:2:8] 9 5,10 [3:3:12] 7,14 15 [4:4:16] 9,18 [5:5:20] 21 11,22 [6:6:24]
5 4 6 8 9 [2:2:10] 12 14 [3:3:15] 16 18 [4:4:20] 21 22 24
6 2,4 [6] 4,8 3,6,9 5,10 [2:2:12] 7,14 [5:5:15] 8,16 [3:3:18] 10,20 7,14,21 11,22 [4:4:24]
7 4 6 8 9 10 12 [2:2:14] 15 16 18 20 [3:3:21] 22 24
8 [4] 3,6 [8] 9 5,10 [3:3:12] 7,14 15 [2:2:16] 9,18 [5:5:20] 21 11,22 [3:3:24]
9 4 2,4,6 8 [9] 10 4,8,12 14 [5:5:15] 16 [2:2:18] 20 7,14,21 22 [8:8:24]

10 2,4 3,6 4,8 9 [10] 6,12 7,14 [3:3:15] 8,16 9,18 [2:2:20] 21 11,22 12,24
11 4 6 8 9 10 12 14 15 16 18 20 21 [2:2:22] 24
12 [4] [6] [2:2:8] 3,6,9 5,10 [12] 7,14 [5:5:15] [4:4:16] [3:3:18] [5:5:20] 7,14,21 11,22 [2:2:24]
13 4 6 8 9 10 12 14 15 16 18 20 21 22 24
14 2,4 3,6 4,8 9 5,10 6,12 [14] 15 8,16 9,18 10,20 [3:3:21] 11,22 12,24
15 4 2,4,6 8 3,6,9 [2:2:10] 4,8,12 14 [15] 16 6,12,18 [4:4:20] 7,14,21 22 [8:8:24]
16 [4] 3,6 [8] 9 5,10 [3:3:12] 7,14 15 [16] 9,18 [5:5:20] 21 11,22 [3:3:24]
17 4 6 8 9 10 12 14 15 16 18 20 21 22 24
18 2,4 [6] 4,8 [9] 5,10 [2:2:12] 7,14 [5:5:15] 8,16 [18] 10,20 7,14,21 11,22 [4:4:24]
19 4 6 8 9 10 12 14 15 16 18 20 21 22 24
20 [4] 3,6 [2:2:8] 9 [10] [3:3:12] 7,14 [3:3:15] [4:4:16] 9,18 [20] 21 11,22 [6:6:24]
21 4 2,4,6 8 3,6,9 10 4,8,12 [2:2:14] [5:5:15] 16 6,12,18 20 [21] 22 [8:8:24]
22 2,4 3,6 4,8 9 5,10 6,12 7,14 15 8,16 9,18 10,20 21 [22] 12,24
23 4 6 8 9 10 12 14 15 16 18 20 21 22 24
24 [4] [6] [8] 3,6,9 5,10 [12] 7,14 [5:5:15] [2:2:16] [3:3:18] [5:5:20] 7,14,21 11,22 [24]

Note that if ML = K then KL
N = K or L = N . This

means, each message is associated to all the servers, which is a
fully distributed system, which can achieve rate 1 as discussed
earlier. Also note that as M = K

N the capacity is also given
by CCS = L

N
To prove Theorem 3 we first give an achievable scheme (in

Section V) that achieve rate L/N and then give an information
theoretic proof (Section VI) that rate higher than L/N cannot
be achieved.

Theorem 3 gives PID capacity for bi-regular PID setup if
N = K/M . But for the case when N > K/M , we give an
achievable rate for PID setup with coded storage

Theorem 4. For PID setup with K messages, N servers, M
messages per server, N > K/M and each message associated
to L servers with KL/dK/Me ∈ Z, the following PID rate
can be achieved

R =

{
L

dK/Me if L < dK/Me
1 if L ≥ dK/Me

Proof. As N > K
M , consider any dK/Me servers. If L <

dK/Me then there exist a (K, dK/Me, K
dK/Me , L) bi-regular

PID setup corresponding to dK/Me servers and K messages
that can achieve the rate

R =
K

dK/Me
L

K
=

L

dK/Me

as described in Theorem 3. In this case, any of the dK/Me
servers will store K

dK/Me message each and only these dK/Me
servers transmit to the user, while remaining N − dK/Me
servers won’t transmit.

If L ≥ dK/Me, then there exists a fully distributed system,
corresponding to a subset of dK/Me servers, which are

capable of storing all the messages, and hence the PID rate
R = 1 is achievable.

Remark: If K/M ∈ Z, then in PID setup with K messages,
N servers where N ≥ K/M , M messages per server and
L servers associated to each message such that ML ∈ Z,
the rate R = ML/K can be achieved if L < K/M and
R = 1 is achievable if L ≥ K/M . And this rate is optimal if
N = K/M .

Furthermore, in the achievable scheme (in Section V),
capacity is achieved with η = K

ML −1 and ηn = 1
L ,∀n ∈ [N ].

IV. COMPARISON WITH PREVIOUS WORK

In this section we compare our results with those in [2].
Theorem 1 of [2] states that for N ≥ dKM e, the capacity

CUS satisfies

1/dK/Me ≤ CUS ≤M/K.

To compare our scheme with the scheme given in [2], consider
a setup where N = K/M ∈ Z. For this setup, as seen in
Figure 2, with uncoded storage, the capacity is

CUS =
M

K
.

But if we allow splitting and encoding of messages, i.e. in our
setting, where M = K/N messages are stored at the server
and L servers are associated to each message, the PID capacity

CCS =
ML

K

is achieved.
When N > K/M we see that, with coded storage, again,

rate achieved is L times larger than the capacity of PID setup
with uncoded storage.

When K/M 6∈ Z and KL
dK/Me ∈ Z, as shown in Figure 3, we

are achieving rate R = L
dK/Me when N ≥ dKM e with coded
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−
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M
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Fig. 3. Rate R vs number of servers plot for given K,L,M where K/M 6∈
Z and KL

dK/Me ∈ Z. For PID setup with uncoded storage [2] (red curve)
capacity is CUS = M

K
if N ≥ K

gcd(K,M)
−

(
M

gcd(K,M)
− 1

)(
bK
M
− 1c

)
and CUS = 1/dK/Me if N = dK/Me. For smaller number of servers
and N > dK

M
e rate between M/K and 1/dK/Me is achievable. We are

achieving rate L/dK/Me when N ≥ dK/Me.

storage. With uncoded storage [2] maximum achievable rate
is M/K which is less than L

dK/Me for L ≥ 2. Furthermore if
L ≥ dK/Me then rate R = 1 is achievable.

Although for rate calculation, we are only considering server
storage as number of messages stored in a server i.e. M , but
servers are also storing correlated random variables U1 . . . UN .
In achievable scheme given in [1], rate M/K is achieved when
N = K

gcd(K,M) −
(

M
gcd(K,M) − 1

)(
bKM − 1c

)
with η = 1/R−

1 = K/M − 1. Whereas, in achievable scheme presented in
Section V, we have η = H(U)/L = K/ML − 1 and ηn =
1/L,∀n ∈ [N ].

For example, consider the case where N = 6 servers, K =
12 messages, and each server can store M = 2 messages and
L = 4. Then if we choose to store two messages per server
without encoding or splitting, we can achieve rate 2/12 = 1/6,
but if encoding and splitting are allowed, rate 8/12 = 4/6
can be achieved while storing the same number of messages

at each server. Also, the shared randomness required in the
uncoded storage case is five times the size of one individual
message. In contrast, with coded storage, achievable scheme
only requires shared randomness, which is half the size of
an individual message. Furthermore, in coded storage scheme,
each server will store a random variable, which is 1/4th of an
individual message in size.

Now consider the example (explained in details in Sec-
tion V-A) with N = 6 servers and K = 8 messages.
With coded storage and L = 3 servers associated to each
message, the PID rate 0.5 can be achieved with M = 4/3
messages stored per server, while with uncoded storage [2]
the PID capacity is 0.375 which is achieved while storing
M = 3 messages in every server. Thus, by splitting and
coding messages before storing them on the server, we achieve
a higher rate while using lesser memory than the scheme
that uses uncoded storage at the servers. Also, the scheme
with coded storage requires η = 1, which means the size
of shared randomness is equal to the size of one message,
and ηn = 1/3,∀n ∈ [N ] which means every server have to
store extra one-third of a message as randomness besides 4/3
messages they are already storing. Whereas with the uncoded
storage scheme with M = 3, randomness shared amongst
servers is 5/3 times more than the size of a single message.

V. ACHIEVABLE SCHEME

In this section, we present an achievable scheme for the
(K,N,K/N,L) bi-regular PID problem achieving rate L/N .
First we illustrate the scheme with an example.

A. Example

Consider K = 8 messages {Wk}k∈[8], N = 6 servers
{Sn}n∈[6] and L = 3 associated servers per message. Let,
each message consist of 3 symbols of Z11 (integers modulo
11). In this setup, each server can store M = K/N = 4/3
messages i.e. 4 elements of Z11. Let the messages be:

Wk =

Wk,1

Wk,2

Wk,3

 ,∀k ∈ [8].

Every message is associated to 3 servers and every server is
associated to 4 messages. In the table below we list the indices
of the servers that are associated to a message i.e. Nk.

Message Wk Indices of the associated servers Nk
W1 {1, 2, 3}
W2 {1, 2, 3}
W3 {1, 2, 3}
W4 {1, 2, 3}
W5 {4, 5, 6}
W6 {4, 5, 6}
W7 {4, 5, 6}
W8 {4, 5, 6}

Now consider the MDS code having parity-check matrix

H =

1 1 1 1 1 1
1 2 3 4 5 6
1 4 9 5 3 3





and the generator matrix

G =

3 8 1 7 2 1
3 4 4 0 1 10
6 10 6 5 1 5


both matrices over Z11.

Servers will also store a variable as follows: Consider a
random variable U = (u1, u2, u3)

>, generated privately (i.e.
without the user knowing about it) where the entries are
uniformly chosen from Z11. Let Un = g>n U where gn is the
nth column of G. Then server n will store Un.

Message Wk will be encoded as Ck where

Ck = H−1Nk
Wk

i.e.

Ck =

1 1 1
1 2 3
1 4 9

−1 Wk,1

Wk,2

Wk,3

 =

3Wk,1 + 3Wk,2 − 5Wk,3

−3Wk,1 + 4Wk,2 −Wk,3

Wk,1 + 4Wk,2 − 5Wk,3


for k ∈ {1, 2, 3} and

Ck =

1 1 1
4 5 6
5 3 3

−1 Wk,1

Wk,2

Wk,3

 =

4Wk,1 + 0Wk,2 − 5Wk,3

−2Wk,1 −Wk,2 −Wk,3

−Wk,1 +Wk,2 − 5Wk,3


for k ∈ {4, 5, 6}. Now each server will store one symbol
corresponding to each message it is associated to. Every server
will store four Z11 symbols. The following table enumerate
storage of each server.

Server Storage Zn
Server 1 {Ck,1 : k ∈ [1 : 4]}
Server 2 {Ck,2 : k ∈ [1 : 4]}
Server 3 {Ck,3 : k ∈ [1 : 4]}
Server 4 {Ck,1 : k ∈ [5 : 8]}
Server 5 {Ck,2 : k ∈ [5 : 8]}
Server 6 {Ck,3 : k ∈ [5 : 8]}

After storing these messages, servers choose D ∈ [8] uni-
formly. If D = 1 then the following transmissions are made
by the servers in order to deliver W1 to the user privately.

Server n Transmission A1
n

Server 1 C1,1 + 3u1 + 3u2 − 5u3
Server 2 C1,2 + 8u1 + 4u2 − u3
Server 3 C1,3 + u1 + 4u2 − 5u3
Server 4 7u1 + 0u2 + 5u3
Server 5 21 + u2 + u3
Server 6 u1 − u2 + 5u3

Let AD = [AD1 , A
D
2 . . . A

D
6 ]> denote the transmission vector

where ADn is the transmission by the server n. Then, for D = 1

we have A1 = [A1
1, A

1
2 . . . A

1
6]
> and the user will perform the

following computation:

HA1 =

1 1 1 1 1 1
1 2 3 4 5 6
1 4 9 5 3 3



C1,1 + 3u1 + 3u2 − 5u3
C1,2 + 8u1 + 4u2 − u3
C1,3 + u1 + 4u2 − 5u3

7u1 + 0u2 + 5u3
2u1 + u2 + u3
u1 − u2 + 5u3


=

 C1,1 + C1,2 + C1,3

C1,1 + 2C1,2 + 3C1,3

C1,1 + 4C1,2 − 2C1,3

 =

W1,1

W1,2

W1,3


Note that every server is transmitting only one symbol of

Z11. Therefore the rate achieved in this example is 3/6 = 0.5.

B. General Description

Let the message Wk ∈ FLq be associated to servers indexed
by Nk where Nk ⊆ [N ], |Nk| = L. Let such associations be
given by the invertible mappings fk : [L] → Nk,∀k ∈ [K],
for every message such that {fk(l) : l ∈ [L]} = Nk. That is,
fk(l) will be an index of a server associated to mesage Wk.
This map is reversible, and for every fk there exist a reverse
map f−k : Nk → [L] such that f−k (fk(l)) = l.

Now consider an MDS code C having the parity check
matrix H ∈ FL×Nq and the generator matrix G ∈ FN−L×Nq .
The sub-matrix HNk

∈ FL×Lq formed by the columns of H
indexed by Nk will be invertible for all k.

Server n stores a random variable un ∈ Fq as follows:
Choose a vector U from FN−Lq uniformly and randomly. Then
server n will store Un = g>n U, where gn is the nth column
of G.

The message Wk is encoded to Ck ∈ FLq given by

Ck = H−1Nk
Wk

and then the lth symbol of Ck i.e. Ck,l is stored at server
fk(l). In (K,N,K/N,L) bi-regular PID setup, every server
is associated to KL/N messages, and hence each server will
be storing KL/N symbols from Fq , which is equivalent of
storing M = K/N messages.

Now, the servers collectively choose D ∈ [K] and wish to
convey WD to the user while keeping D secret from the user.
For that, Sn will transmit ADn to the user, where

ADn = CD,f−
D (n) + Un if n ∈ ND,

ADn = Un if n ∈ [N ] \ ND.

Let

AD ,


AD1
AD2

...
ADN

 .
Now, the user will be able to decode WD from AD as

shown below.



Proof of Correctness

The user will perform the computation: HAD.
Claim: HAD =WD.

Proof. Letting hn denote the nth column of H, we have

HAD =

N∑
n=1

hnA
D
n

=
∑
n∈ND

hnA
D
n +

∑
n∈[N ]\ND

hnA
D
n

= HND
ADND

+
∑

n∈[N ]\ND

hnA
D
n

= HND
(CD +G>ND

U) +H[N ]\ND
G>[N ]\ND

U

= HND
H−1ND

WD

+ (HND
G>ND

+H[N ]\ND
G>[N ]\ND

)U
=WD.

Proof of Privacy

Now we show that our scheme satisfies the privacy con-
straint given in (6).

Proof. We have I(D;AD) = H(AD)−H(AD|D). We proceed
to show that regardless of the value of D, AD is uniformly
distributed over all possible values (i.e. over FNq ).

For some a ∈ FNq and d ∈ [K], we have

P{AD = a|D = d}
= P{G>ND

U + CD = aND
, G>[N ]\ND

U = a[N ]\ND
|D = d}

= P{WD = HND
(aND

−G>ND
G−>[N ]\ND

a[N ]\ND
),

U = G−>[N ]\ND
a[N ]\ND

|D = d}.

As the message WD, shared randomness U and the message
index D are all mutually independent, we get

P{AD = a|D = d} = 1

qN
,∀d ∈ [K].

This implies

H(AD|D) = E{H(Adn)} = N.

Since N ≥ H(AD) ≥ H(AD|D) = N, we conclude that
I(D;AD) = 0.

Note: Observe that the achievable scheme is independent
of the fact that every server is associated to KL/N messages
and only require that each message is associated to L servers.
Therefore, given scheme will also work if servers don’t have
any restrictions on the number of messages they have access
to as long as servers have enough storage to store the coded
symbols, corresponding to the messages they are associated
with.

Also note that η = H(U)
L = N−L

L = K
ML − 1 for a

(K,N,M,L) bi-regular setup with M = K/N . As server n is
storing Un (which is uniformly distributed over Fq), ∀n ∈ [N ]

we have ηn = H(Un)
L = 1

L .

VI. PROOF OF OPTIMALITY OF RATE

In this section we prove that the achieved rate ML/K =
L/N is optimal for our (K,N, KN , L) bi-regular PID setup.
First we will give a bound on size of transmission that servers
associated to message WD, i.e. servers indexed by ND, have
to do in order to convey WD correctly (i.e. to satisfy (5)).

Lemma 1. Message WD can be correctly conveyed to the user
only if ∑

n∈ND

Tn ≥ H(WD)

Proof. From (5) we know that

H(WD|AD[N ]) = 0

=⇒ I(WD;A
D
[N ]) = H(WD)

Now, H(WD) =I(WD;A
D
[N ]) = I(WD;A

D
[N ]\ND

)

+ I(WD;A
D
ND
|AD[N ]\ND

)

Consider the term I(WD;A
D
[N ]\ND

). Transmissions AD[N ]\ND

are only the functions of server storages Z[N ]\ND
, index

D, and shared randomness U , which are all independent of
message WD and hence we get

I(WD;A
D
[N ]\ND

) ≤ I(WD;Z[N ]\ND
, U,D) = 0.

Substituting this value above, we get

H(WD) = I(WD;A
D
ND
|AD[N ]\ND

)

= H(ADND
|AD[N ]\ND

)−H(ADND
|WD, A

D
[N ]\ND

)

≤ H(ADND
|AD[N ]\ND

) ≤ H(ADND
) ≤

∑
n∈ND

Tn

Now we proceed to show that, in order to hide the index
of message WD, the set of servers associated to messages
other than WD, i.e. servers associated to messages Wk where
k ∈ [K] \ {D}, are also required to perform transmissions of
size more than H(Wk). This is formalized in Lemma 2

Lemma 2. Message WD can be conveyed privately to the user
only if ∑

n∈Nk

Tn ≥ H(Wk), ∀k ∈ [K] \ {D}

Proof. Consider for some k ∈ [K]∑
n∈Nk

Tn < H(Wk).

Then, from Lemma 1 we know that message Wk cannot be
conveyed correctly if

∑
n∈Nk

Tn < H(Wk). So, user can infer
that message Wk is not being conveyed to it and that D ∈
[K] \ {k}, violating privacy constraint.

Lemma 1 give a lower bound on size of transmissions that
have to be done by the servers indexed by ND and Lemma 2
gives a lower bound on the size of transmissions that have to be
done by the servers indexed by Nk for k ∈ [K]\{D} in order
to convey message WD to the user correctly and privately.



Now we prove Theorem 3.

Proof. We know from Lemma 1 and Lemma 2 that WD can
be conveyed to the user correctly and privately only if∑

n∈Nk

Tn ≥ H(Wk), ∀k ∈ [K]

summing both sides over all k ∈ [K] we get∑
k∈[K]

H(Wk) = KL ≤
∑
k∈[K]

∑
n∈Nk

Tn.

Considering the term on the RHS, as each server is associated
to ML messages, the term corresponding to transmission of
the nth server i.e. Tn will appear ML times in the summation.
Therefore we have

KL ≤
∑
n∈[N ]

MLTn =ML
∑
n∈[N ]

Tn

=⇒ KL ≤ML
∑
n∈[N ]

Tn

=⇒ L∑
n∈[N ] Tn

≤ ML

K

=⇒ R ≤ ML

K
=
L

N
.

Since our scheme achieves this rate in the setting considered,
we conclude that

CCS =
L

N
=
ML

K

Remark: Lemma 1 only deals with the correctness of the
scheme. If only correctness is required then rate R = 1 can
be easily achieved. For instance, divide each message into
L equal and non overlapping sub-messages, Wk = {Wk,l :
l ∈ [L]} ∀k ∈ [K]. Then store sub-messages of message
Wk across the servers indexed by Nk for all k ∈ [K]. Then,
in order to correctly convey message WD, servers indexed
by ND will transmit the sub-messages of WD, and serves
indexed by [N ]\{D} will not transmit anything. This scheme
is correct and achieve rate R = 1 but the scheme is not
private, as the user can infer that only the servers associated
to message WD are transmitting and therefore message WD

is being conveyed. Lemma 2 deals with privacy, and impose
necessary condition on the transmissions on the servers not
associated to the message being delivered.
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