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Abstract

Quantum Conference Key Agreement (QCKA) protocols are designed to allow mul-
tiple parties to agree on a shared secret key, secure against computationally unbounded
adversaries. In this paper, we consider a high-dimensional QCKA protocol and prove
its information theoretic security against arbitrary, general, attacks in the finite-key
scenario. Our proof technique may be useful for other high-dimensional multi-party
quantum cryptographic protocols. Finally, we evaluate the protocol in a variety of
settings, showing that high-dimensional states can greatly benefit QCKA protocols.

1 Introduction

Quantum key distribution (QKD) allows for the establishment of a shared secret key between
two parties, Alice and Bob, secure against computationally unbounded adversaries (whom
we refer to as Eve). Progress in these protocols has rapidly advanced, leading to both a rich
theory along with practical commercial systems [1, 2, 3]. Quantum conference key agreement
(QCKA) protocols are designed to allow multiple parties to establish a common, shared,
secret key secure against computationally unbounded adversaries. Starting from early work
in this field [4, 5], QCKA protocols have advanced substantially with new protocols and
security proofs [6, 7, 8]; it is also experimentally feasible [9]. Interestingly, it has been shown
that there are some scenarios where such multiparty protocols hold an advantage over the
naive use of multiple two-party protocols run in parallel [5]. For a recent survey on quantum
conference key agreement protocols and the state of the art in security proofs, the reader is
referred to [10].

High-dimensional quantum cryptography has been shown to exhibit numerous advantages
over qubit-based protocols, especially in two-party QKD [11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22]. Encouraged by this, it is worth investigating whether high-dimensional states can
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benefit QCKA. To our knowledge, only one high-dimensional QCKA protocol exists which
was introduced in [23], however no rigorous finite key security analysis exists for it (instead,
[23] developed layered QKD protocols and was not concerned with the explicit finite-key
analysis of this particular QCKA protocol - in fact, our analysis done in this paper may be
useful in proving security of those other protocols introduced in [23], though we leave that
as interesting future work).

In this work, we consider a high-dimensional QCKA protocol and prove its security
against arbitrary, general attacks in the finite key setting. The protocol we analyze is an
extension of the qubit-based protocol from [24] to higher dimensions and also a specific
instance of a protocol introduced in [23]. For the security proof, we utilize the quantum
sampling framework introduced by Bouman and Fehr in [25], along with proof techniques we
developed in [26] to derive sampling-based entropic uncertainty relations. Our proof, though
using these two frameworks as a foundation, introduces several new methods which may also
be useful when analyzing other quantum cryptographic protocols, both those involving two
users and those for multi-users, especially in higher dimensions.

Finally, we evaluate the performance of this protocol in a variety of scenarios, showing
some very interesting behavior and shedding new light on the benefits of high-dimensional
quantum states. In particular, we show that, as the dimension of the quantum signal in-
creases, the noise tolerance also increases. Interestingly, the key-rate also increases beyond
what would be possible by simply running multiple, lower-dimensional, protocols in parallel.
This shows that high-dimensional states can greatly benefit QCKA protocols. Our contribu-
tions in this work are not only in developing a security proof for a high dimensional QCKA
protocol, but also in showing even more benefits to high-dimensional quantum states when
applied to quantum cryptography. Our methods may also spur future research in this area,
as our proof techniques may be highly adaptable to other scenarios.

1.1 Notation and Definitions

We begin with some notation and definitions that we will use in this work. Let d ∈ N, then
we write Ad to be a d-character alphabet with a distinguished 0 element. Given a word
q ∈ And , and a subset t ⊂ {1, · · · , n}, we write qt to mean the substring of q indexed by t; we
use q−t to mean the substring of q indexed by the complement of t. We write w(q) to be the

relative Hamming weight of q, namely w(q) = |{i : qi 6=0}|
n

- that is the number of characters
in q that are not zero, divided by the length of q. Given two words x, y in this alphabet, we
write xy to mean the concatenation of x and y. Finally, given a, b, numbers between 0 and
d− 1, we write a+d b to mean the addition of a and b modulo d.

We use Hd to mean a Hilbert space of dimension d. The standard computational basis
will be denoted Z = {|0〉 , |1〉 , · · · , |d− 1〉}. If we are referring to an alternative basis we
will write the basis label as a superscript. One important basis we will use is the Fourier
basis consisting of elements F = {|0〉F , · · · , |d− 1〉F}, where:

|j〉F =
1√
d

∑
k

exp(2πijk/d) |k〉 .
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If given a word q ∈ And , we write |q〉 to mean |q1〉 ⊗ · · · ⊗ |qn〉. Similarly, we write |q〉F to
mean |q1〉F ⊗ · · · ⊗ |qn〉F . Note that if there is no superscript, then |q〉 is assumed to be the
computational Z basis. Finally, given pure state |ψ〉, we write [ψ] to mean |ψ〉 〈ψ|.

A density operator is a positive semi-definite Hermitian operator of unit trace acting on
some Hilbert space. If ρAE acts on Hilbert space HA ⊗HE, then we write ρA to mean the
operator resulting from tracing out the E system, namely ρA = trEρAE. Similarly for other,
or multiple, systems.

The Shannon entropy of a random variable X is denoted H(X). The d-ary entropy
function is denoted Hd(x), for x ∈ [0, 1], and is defined to be:

Hd(x) = x logd(d− 1)− x logd x− (1− x) logd(1− x).

Note that when d = 2 this is simply the binary Shannon entropy. Given density operator
ρAE, the conditional quantum min entropy is defined to be [27]:

H∞(A|E)ρ = sup
σE

max{λ ∈ R : 2−λIA ⊗ σE − ρAE ≥ 0}, (1)

where the supremum is over all density operators acting on the E system. If ρ = [ψ] is a
pure state, then we often write H∞(A|E)ψ. Given ρAE, we write H∞(AZ |E)ρ to mean the
min entropy of the resulting state following a measurement of the A register in the Z basis.

There are many important properties of quantum min entropy we will use. In particular,
if the E system is trivial or independent of the A system, then H∞(A)ρ = − log2 maxλ,

where the maximum is over all eigenvalues λ of ρA. Given a state ρAEC =
∑M

c=0 pcρ
(c)
AE ⊗ [c]

(i.e., the C register is classical), then:

H∞(A|EC)ρ ≥ min
c
H∞(A|E)ρ(c) . (2)

An important result proven in [25], based on a lemma in [27], is the following which
allows one to compute the min entropy of a superposition state based on the min entropy of
a suitable mixture state:

Lemma 1. (From [25]): Let Z and X be two orthonormal bases of Hd. Then for any pure
state |ψ〉AE =

∑
i∈J α |i〉

X ⊗ |Ei〉, with J ⊂ ANd , it holds that:

H∞(AZ |E)ψ ≥ H∞(AZ |E)ρ − log2 |J |,

where ρAE =
∑

i∈J |αi|2[i]
X ⊗ [Ei], and where the entropies above are computed on the state

following a Z basis measurement.

Quantum min-entropy is a vital resource in QKD security. Indeed, given a classical-
quantum state ρAE, then the amount of uniform independent randomness that may be
extracted from the A register after a privacy amplification process is a function of conditional
min entropy. In particular, let σKE be the resulting state after privacy amplification (a
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process of hashing the A register to a size of ` bits using a randomly chosen two-universal
hash function), then it was shown in [27] that:∣∣∣∣σKE − I/2` ⊗ σE∣∣∣∣ ≤ 2−

1
2
(H∞(A|E)ρ−`). (3)

In our security proof, we will utilize a quantum sampling framework originally introduced
in 2010 by Bouman and Fehr [25] and used by us recently to prove novel sampling-based
entropic uncertainty relations [26, 28] and proofs of security for high-dimensional BB84 [29].
We review some of the terminology and results from [25] here; for more information on these
results, the reader is referred to that original reference.

Fix d ≥ 2 and N ≥ 1. A classical sampling strategy is a tuple (PT , f, g) where PT is a
distribution over all subsets of {1, · · · , N} and f, g : A∗d → R. Given q ∈ ANd , the strategy
will first choose t according to PT ; it will then observe qt and evaluate f(qt). This evaluation
should be a “guess” as to the value of some target function, g, evaluated on the unobserved
portion. Namely, for a good sampling strategy, with high probability over the choice of
subset t, it should hold that f(qt) is δ-close to g(q−t) for given δ > 0.

More formally, fix a subset t with PT (t) > 0. We define the set of “good” words Gt to be:

Gt = {q ∈ ANd : |f(qt)− g(q−t)| ≤ δ} (4)

Note that, given q ∈ Gt, if subset t were to be chosen by the sampling strategy, it is guaranteed
that the strategy will succeed (the guess will be δ-close to the target value). The error
probability of the sampling strategy, then, is:

εcl = max
q∈ANd

Pr (q 6∈ Gt) ,

where the probability is over all subsets chosen according to PT . One sampling strategy we
will need later is summarized in the following lemma:

Lemma 2. (From [25]): Let δ > 0 and m ≤ N/2. Define PT to be the uniform distribution
over all subsets of {1, · · · , N} of size m. Define f(x) = g(x) = w(x). Then:

εcl ≤ 2 exp

(
−δ2mN
N + 2

)
.

These definitions may be promoted to the quantum case. Fixing a sampling strategy
and a d-dimensional basis B, we define span(Gt) = span(|q〉B : q ∈ Gt). Note that, for any
|ψ〉 ∈ span(Gt) ⊗ HE, if a measurement in the B basis were made on those qudit systems

indexed by t resulting in outcome q ∈ A|t|d , it would hold that the collapsed post-measured
state must be of the form:

|ψqt 〉 =
∑
x∈Jq

αx |x〉B ⊗ |Ex〉 ,

where Jq = {x ∈ AN−|t|d : |f(q)− g(x)| ≤ δ}.
The main result from [25] may then be stated as follows:
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Theorem 1. (From [25] though reworded for our application in this work): Let (PT , f, g)
be a classical sampling strategy with error probability εcl for a given δ > 0 and let |ψ〉AE be
a quantum state where the A register lives in a Hilbert space of dimension dN . Then, there
exist ideal states |φt〉 ∈ span(Gt) ⊗ HE (with respect to some given, fixed, d-dimensional
basis B) such that:

1

2

∣∣∣∣∣
∣∣∣∣∣∑

t

PT (t)[t]⊗
(
[ψ]−

[
φt
])∣∣∣∣∣
∣∣∣∣∣ ≤ √εcl. (5)

where the above summation is over all subsets t ⊂ {1, · · · , N}.

Note that the above is a slight rewording of the main result from [25]. For a proof that
Theorem 1 follows from the main result in [25], the reader is referred to [29].

2 Protocol

The protocol we consider is a high-dimensional variant of the QCKA agreement protocol
originally introduced and analyzed in [24]. It is also a specific instance of a protocol intro-
duced for a layered QKD system in [23] (though without a complete proof of security). We
assume there are p Bob’s and one Alice all of whom wish to agree on a shared secret group
key. The protocol begins by having Alice prepare the following high-dimensional GHZ state:

|ψ0〉 =
1√
d

d−1∑
a=0

|a, · · · , a〉AB1··· ,Bp .

Above, d is the dimension of a single system (d = 2 in the protocol analyzed in [24]).
The Bi system is sent to the i’th Bob while Alice retains the A register. Randomly, Alice
and the p Bob’s will measure their registers in the Fourier basis F resulting in outcome
qAB1···Bp ∈ A

p+1
d . Otherwise, if Alice and the p Bob’s choose not to measure in the Fourier

basis, they will measure in the computational basis, the result of which will be used to add
log2 d bits to their raw key. Note that the choice of whether to measure in the Fourier basis
or the computational Z basis may be made randomly by all parties (discarding events when
choices are not consistent) or by using a pre-shared secret key (as was done in [24]). The
above process is repeated for a freshly prepared and sent |ψ0〉 until a raw key of sufficient
length has been established. Note that, in the original qubit-based version introduced in
[24], the Hadamard X basis was used instead of explicitly the Fourier basis - however both
are equivalent in dimension two; in higher dimensions, we use the Fourier basis for this test
measurement. This protocol here, generalizes the one from [24] to higher dimensions and
when d = 2 they are equivalent protocols.

Interestingly, unlike standard BB84 [30] (or, rather, the entanglement based version E91
[31]), measuring in an alternative, non computational, basis cannot lead to a correlated
secret key digit as the results will not be identical for all parties. However, the Fourier
basis measurement can be used to test for errors, leaving the Z basis measurement alone
for key distillation. Note that, if there is no noise in the channel, it should hold that
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whenever parties measure in the F basis, the results should sum to 0 modulo d, namely:
qA +d qB1 +d · · ·+d qBp = 0; any non-zero sum will be considered noise and factored into our
key-rate analysis. That this is true is easy to see. Indeed, converting |ψ0〉 to the Fourier
basis yields:

|ψ0〉 =
1√
d

d−1∑
a=0

 ∑
j0,··· ,jp∈Ad

1√
dp+1

exp(−2πi(j0 + · · ·+ jp)a/d) |j0, · · · , jp〉F


Now, if j0 + · · ·+ jp = λ · d for some λ ∈ Z, then the probability of observing that particular

|j0, · · · , jp〉F is simply:

1

dp+2

∣∣∣∣∣
∣∣∣∣∣
d−1∑
a=0

exp(−2πia)

∣∣∣∣∣
∣∣∣∣∣
2

=
1

dp+2
× d2 =

1

dp
.

Since there are exactly dp such j0, · · · , jp ∈ Ad and their sum, modulo d is zero, it follows
that the only observable values in the Fourier basis must sum to a number divisible by the
dimension d. This proves the protocol is correct - namely, if the source is ideal, parties
will distill a correlated key and not abort since their test measurement will result in the
prescribed all-zero string.

Following the establishment of the raw key, Alice and the p Bob’s will run a pair-wise
error correction protocol followed by a standard privacy amplification protocol. Following
error correction, but before privacy amplification, Alice will choose a random two-universal
hash function f , the output size of which we take to be log2

1
εEC

-bits (for user-specified εEC),
and broadcast f(A), where A is her raw key. Each Bob will locally compare the result of
running their version of the raw key through this hash function and if the digest doesn’t
match, all parties abort. This ensures that, except with probability at most εEC , parties can
be assured that error correction has succeeded. This, of course, leaks an additional log2

1
εEC

bits which must be deducted from the final secret key size. We will comment more on error
correction later when evaluating our key-rate bound.

3 Security Proof

To prove security of this protocol, we analyze the security of an equivalent entanglement
based version. Here, instead of having Alice prepare and send a quantum state, we allow
Eve the ability to create any arbitrary initial state, sending part to Alice and the other parts
to the p Bob’s while also potentially maintaining a private entangled ancilla. Clearly security
in this case will imply security of the prepare-and-measure version discussed in the previous
section. We also use as a foundation, a proof methodology we introduced in [26], though
making several modifications for the multi-party protocol being analyzed here. Our proof of
security, at a high level, proceeds in three steps: first we define an analyze an appropriate
classical sampling strategy allowing us to use Theorem 1; second, we analyze the ideal states
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produced by that Theorem; and third, finally, we promote that ideal-case analysis to the
real state.

Entanglement Based Protocol - Let |ψ〉 ∈ HA ⊗HB1 ⊗ · · · ⊗HBp ⊗HE be the state
Eve prepares where each HA

∼= HBi
∼= H⊗Nd . Here N is the user-specified number of rounds

used by the protocol and is a parameter users may optimize. Ideally |ψ〉 = |ψ0〉⊗N . At this
point, the users choose a random subset t ⊂ {1, 2, · · · , N} of size m < N/2 for sampling.
This can be done by having Alice choose the subset and sending it to the Bob’s (the option
we assume here) or by using a small pre-shared key (the option used in [24]). Each party will
measure their respective d dimensional signals, indexed by t, in the d-dimensional Fourier
basis, F , resulting in outcome q = qAqB1 · · · qBp ∈ A

m(p+1)
d . Here, each qA, qB1 , · · · , qBp is an

m character string which we may enumerate as qA = q1A · · · qmA and qBi = q1Bi · · · q
m
Bi

.
Let si(q) = qiA +d q

i
B1

+d · · · +d q
i
Bp

. That is, si is the sum, modulo the dimension d, of
all user measurement outcomes for signal i. Also, define s(q) = s1(q) · · · sm(q) ∈ Amd . If the
source E were honest, it should be that w(s(q)) = 0 since this will be the case in the event
Eve prepared copies of 1√

d

∑d−1
a=0 |a, a, · · · , a〉AB1···Bp as discussed earlier.

Step 1: Classical Sample Strategy Analysis - We now wish to use Theorem 1 to
analyze the security of this protocol. To do so, we require a suitable classical sampling
strategy which corresponds to the sampling done by the actual protocol, and a bound on
its error probability. Consider the following classical sampling strategy: given a word q =
q0q1q2 · · · qp ∈ A(p+1)·N

d (i.e., each qj ∈ ANd ), then first choose a subset t ⊂ {1, · · · , N} of size
m ≤ N/2 and observe qt = q0t q

1
t q

2
t · · · q

p
t (namely, one observes the t portion of each of the p+1

strings). From this, compute f(qt) = w(s(qt)) to estimate the value of g(q−t) = w(s(q−t)).
Putting this into the notation introduced earlier, we have the set of “good” words (see
Equation 4) as:

Gt = {q ∈ A(p+1)·N
d : |w(s(qt))− w(s(q−t))| ≤ δ}.

This is exactly the sampling strategy we wish to use in our QCKA protocol. Users will
observe a value based on their measurement in the Fourier basis, in particular, they observe
the number of outcomes that do not sum to 0 modulo d. We wish to argue that the remaining,
unmeasured portion, satisfies a similar restriction in the F basis, thus placing a constraint
on the form of the state Eve prepared, needed to compute the min entropy later. In order
to use Theorem 1, needed to construct suitable ideal quantum states, we require a bound on
the error probability of this classical sampling strategy. In particular, we require:

εcl = max
q∈A(p+1)N

d

Pr (q 6∈ Gt) .

We claim:

εcl ≤ 2 exp

(
−δ2mN
N + 2

)
. (6)

Let G̃t = {q ∈ ANd : |w(qt)− w(q−t)| ≤ δ}. Note that, by Lemma 2, it holds that:

ε̃cl = max
q̃∈ANd

Pr(q̃ 6∈ G̃t) ≤ 2 exp

(
−δ2mN
N + 2

)
.
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Pick q ∈ A(p+1)N
d and let q̃ = s(q). Then, it is clear that if q 6∈ Gt then q̃ 6∈ G̃t for any subset

t. Thus for every q ∈ A(p+1)N
d , it holds that Pr(q 6∈ Gt) ≤ Pr(q̃ 6∈ G̃t) from which the claim

follows.
Step 2: Ideal State Analysis - We now return to the security analysis of the protocol.

Let ε > 0 be given (it will, as we discuss later, determine the security level of the secret key).
From Theorem 1, using the above sampling strategy with respect to the Fourier basis, there
exists an ideal state of the form 1

T

∑
t [t]⊗ [φt] where T =

(
N
m

)
and:

|φt〉 ∈ span{|q〉F : q ∈ A(p+1)N
d and |w(s(qt))− w(s(q−t))| ≤ δ}. (7)

If we set

δ =

√
(m+ n+ 2) ln(2/ε2)

m(m+ n)
. (8)

then, we have that the real and ideal states are ε-close in trace distance (on average over the
subset choice as shown in Equation 5) with the real-state being 1

T

∑
t [t]⊗ [ψ].

We first analyze the ideal case and then use this analysis to argue about security of the
actual given input state from Eve. In the ideal case, the event of choosing subset t, measuring
those systems in the Fourier basis and observing outcome q ∈ A(p+1)m

d , causes the ideal state
to collapse to:

|φtq〉 =
∑
x∈Jq

αx |x〉F ⊗ |Ex〉 , (9)

where:

Jq = {xAxB1 · · ·xBp ∈ A
(p+1)n
d : |w(s(x))− w(s(q))| ≤ δ}

=
{
x1A · · ·xnAx1B1

· · ·xnB1
· · ·x1Bp · · ·x

n
Bp such that (10)

|w([x1A +d · · ·+d x
1
Bp ] · · · [x

n
A +d · · ·+d x

n
Bp ])− w(s(q))| ≤ δ

}
.

By manipulating the above state, we may write it in the following form which will be more
useful for us in our analysis:

|φtq〉 ∼=
∑

x1B1
···xnB1

=xB1
∈And

x1B2
···xnB2

=xB2
∈And

...
x1Bp ···x

n
Bp

=xBp∈And

βx |x〉FB1···Bp ⊗
∑

y∈J(q : x)

βy|x |y〉FA |Fx,y〉E (11)

where, above, we define x = xB1 · · ·xBp ∈ A
p·n
d and we define:

J(q : x) = {y ∈ And : |w(s(yx))− w(s(q))| ≤ δ} (12)
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Note that some of the β’s in the above expression may be zero; also note that we permuted
the subspaces above to place the A register to the right of the B registers - this was done
only to make the algebra in the remainder of the proof easier to follow.

Our goal now is to compute a lower bound on the conditional quantum min entropy
following a Z basis measurement on the collapsed ideal state (that is, the entropy in the
above state |φtq〉, but following Alice’s Z basis measurement on her A register). Tracing out
B’s system yields:

σAE =
∑

x∈Ap·nd

|βx|2 P

 ∑
y∈J(q : x)

βy|x |y〉FA |Fx,y〉E


︸ ︷︷ ︸

σ
(x)
AE

, (13)

where P (|z〉) = [z].
From Equation 2, we have H∞(AZ |E)σ ≥ minxH∞(AZ |E)σ(x) . Fix a particular x and

consider the mixed state:

χ
(x)
AE =

∑
y∈J(q : x)

|βy|x|2[y]FA ⊗ [Fx,y]E. (14)

From Lemma 1, we have:

H∞(AZ |E)σ(x) ≥ H∞(AZ |E)χ(x) − log2 |J(q : x)|.

We first compute a bound on the size of J(q : x). Let I = {y ∈ And : |w(y)−w(s(q))| ≤ δ}.
We claim |J(q : x)| ≤ |I|. Indeed, pick y ∈ J(q : x) and let z = s(yx). Then z ∈ I.
Furthermore, for any y, y′ ∈ J(q : x) with y 6= y′, it holds that s(yx) 6= s(y′x). Thus the
claim follows. Now, since |I| ≤ dnHd(w(s(q))+δ) by the well known bound on the volume of a
Hamming ball, we have an upper-bound on the size of the set J(q : x) as a function of the
observed value q. Note that, ideally, w(s(q)) = 0 with non-zero values representing error in
the channel, and so the size of this set should be “small” for low noise levels. As the noise
increases, our entropy bound will decrease (thus ultimately decreasing the overall key-rate
as expected).

What remains is to compute H∞(AZ |E)χ. Following a Z basis measurement on the A
register in χ, we are left with the post-measured state:

χAZE =
∑
y

|βy|x|2
∑
z∈And

p(z|y)[z]A[Fx,y]E, (15)

where p(z|y) is the conditional probability of observing outcome |z〉 given input state |y〉F .
Now, consider the following state where we add an additional, classical, ancilla:

χAZEY =
∑
y

|βy|x|2[y]Y ⊗
∑
z∈And

p(z|y)[z]A[Fx,y]E︸ ︷︷ ︸
χ(y)

.
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Then we have H∞(AZ |E)χ ≥ H∞(AZ |EY )χ ≥ minyH∞(AZ |E)χ(y) where we used Equation

2 for the last inequality. Since the E and AZ registers are independent in χ(y) we have
H∞(AZ |E)χ(y) = H∞(AZ)χ(y) = − log2 maxz p(z|y). It is not difficult to see that p(z|y) = d−n

for all y, z ∈ And . Thus H∞(AZ |E)χ ≥ n log2 d. Note that our bound here, and also on
|J(q : x)|, are independent of x. Thus, concluding, we have the following bound on the
entropy in the ideal state:

H∞(AZ |E)σ ≥ min
x
H∞(AZ |E)σ(x) ≥ n

(
log2 d−

Hd(w(s(q)) + δ)

logd 2

)
. (16)

Of course, this was only the ideal state analysis, however, Equation 16 holds for any choice
of subset t and observation q. We now use this result to derive the final security of the real
state produced by Eve and show that, with high probability over the choice of subset t and
measurement outcome q, the final secret key produced by the protocol will be secure.

Step 3: Real State Security - The QCKA protocol (and, indeed, most if not all QKD
protocols) may be broken into three distinct modules or CPTP maps: first is a sampling
module S which takes as input a quantum state ρTABE where the T register represents
the sampling subset t used and B represents all p Bobs. Here, this module measures the T
register which chooses a subset t; from this, all qudits indexed by t are measured in the Fourier
basis, producing outcome q ∈ Am·(p+1)

d . The output of this process is the subset chosen t,
the observed q, and also the post-measured state ρABE(t, q). Following this, the raw-key
generation module is run, denoted R, which takes as input the previous post measured state
and measures the remaining systems in the Z basis resulting in raw keys for all parties.
The output of this module is the raw key produced along with a post-measured state for
Eve. Finally, a post-processing module is run, denoted P , which will run an error correction
protocol and privacy amplification, yielding the final secret key. The output of this last
CPTP map is the actual secret key produced along with Eve’s final quantum ancilla. This
module requires as input the raw keys along with q (needed to determine the final secret
key size). We want to show, with high probability over the choice of sampling subset and
test measurement outcome, that the final secret key is εPA-close to the ideal secret key as
defined by Equation 3.

Recall, |ψ〉AB1···BpE is the actual state produced by the adversary and sent to each of
the parties. We may assume this is a pure state as a mixed state would lead to greater
uncertainty for Eve. Of course, in the real case, the choice of subset is independent of the
state produced by Eve and so we write the complete real state as ρTABE =

∑
t
1
T

[t] ⊗ [ψ]

where T =
(
N
m

)
. From this, an ideal state of the form

∑
t
1
T

[t] ⊗ [φt]ABE may be defined as
was analyzed previously in the second step of the proof. We may write the action of the
composition P ◦ R ◦ S = PRS as follows:

PRS

(∑
t

1

T
[t]T ⊗ [ψ]

)
=
∑
q,t

p(q, t)[q, t]⊗ PqR
([
ψt
q

]
ABE

)
(17)

PRS

(∑
t

1

T
[t]T ⊗

[
φt
])

=
∑
q,t

p̃(q, t)[q, t]⊗ PqR
([
φt
q

]
ABE

)
. (18)
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Above, p(q, t) is the probability of choosing subset t and observing outcome q in the real
state and p̃(q, t) is similar but for the ideal state. The post-measured state after sampling
are denoted |ψtq〉 in the real case and |φtq〉 in the ideal case (see Equation 9 for what this state
looks like in the ideal case). Note that, conditioning on a particular q and t, these states are
pure.

Let `(q, leakEC) = n(log2 d− 1
logd 2

Hd(w(s(q)) + δ))− leakEC − 2 log2

(
1
ε

)
where leakEC

will be used to denote the leaked information due to error correction. Then, from Equation
3 and our analysis on the min entropy of the post-measured ideal state in Equation 16, we
know that for any t and observed q, if privacy amplification shrinks the raw key to a size of
`, it holds that: ∣∣∣∣PqR ([φt

q

])
− U`(q,leakEC) ⊗ trAPqR

([
φt
q

])∣∣∣∣ ≤ ε, (19)

where Uk = 1
2k

∑2k−1
i=0 [i] is an operator acting on H2n log2 d (note that n log2 d is the largest

number of bits the final secret key can possibly be; privacy amplification will hash this into
something potentially smaller and so U represents a uniform distribution on this smaller
subspace of potential secret keys). Note that, above and in the text below, we are tracing
out the B systems though we do not explicitly write out trB in all equations as it would
add additional, and unnecessary, bulk to the equations. Hence, from here on out, the reader
may assume all Bob systems are traced out of the equations unless otherwise stated. Finally,
note that the above of course implies that:∣∣∣∣∣
∣∣∣∣∣∑
q,t

p̃(q, t)[q, t]⊗ PqR
([
φt
q

])
−
∑
q,t

p̃(q, t)[q, t]⊗ U`(q,leakEC) ⊗ trAPqR
([
φt
q

])∣∣∣∣∣
∣∣∣∣∣ ≤ ε, (20)

We now claim that, with high probability over t and measurement outcome q, it holds
that: ∣∣∣∣PqR ([ψt

q

])
− U`(q,leakEC) ⊗ trAPqR

([
ψt
q

])∣∣∣∣ ≤ 5ε+ (20ε)1/3 = εPA (21)

thus ensuring, again with high probability over the subset choice and test measurement
outcome, that the resulting secret key in the real case, using the state produced by the
adversary, is εPA close to an ideal secret key.

Let ρTABE and σTABE be the real and ideal states respectively. Now, since the ideal and
real states are ε-close in trace distance by Theorem 1, along with our choice of δ and our
sampling strategy, and since quantum operations cannot increase trace distance, we have:

2ε ≥ ||ρ− σ|| ≥ ||PRS(ρ)− PRS(σ)||

=

∣∣∣∣∣
∣∣∣∣∣∑
q,t

p(q, t)[q, t]⊗ PqR(
[
ψt
q

]
)−

∑
q,t

p̃(q, t)[q, t]⊗ PqR(
[
φt
q

]
)

∣∣∣∣∣
∣∣∣∣∣ (22)

From the above, we have:

2ε ≥

∣∣∣∣∣
∣∣∣∣∣∑
q,t

p(q, t)[q, t]⊗ U`(q,leakEC) ⊗ trAPqR(
[
ψt
q

]
)−

∑
q,t

p̃(q, t)[q, t]⊗ U`(q,leakEC) ⊗ trAPqR(
[
φt
q

]
)

∣∣∣∣∣
∣∣∣∣∣

(23)
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This follows from basic properties of trace distance along with the fact that partial trace is
a quantum operation.

Adding the Equations 22 and 23 above yields:

4ε ≥

∣∣∣∣∣
∣∣∣∣∣∑
q,t

p(q, t)[q, t]⊗ PqR(
[
ψt
q

]
)−

∑
q,t

p̃(q, t)[q, t]⊗ PqR(
[
φt
q

]
)

∣∣∣∣∣
∣∣∣∣∣

+

∣∣∣∣∣
∣∣∣∣∣∑
q,t

p(q, t)[q, t]⊗ U`(q,leakEC) ⊗ trAPqR(
[
ψt
q

]
)−

∑
q,t

p̃(q, t)[q, t]⊗ U`(q,leakEC) ⊗ trAPqR(
[
φt
q

]
)

∣∣∣∣∣
∣∣∣∣∣

≥

∣∣∣∣∣
∣∣∣∣∣∑
q,t

p(q, t)[q, t]⊗
(
PqR(

[
ψt
q

]
)− U`(q,leakEC) ⊗ trAPqR(

[
ψt
q

]
)
)∣∣∣∣∣
∣∣∣∣∣

−

∣∣∣∣∣
∣∣∣∣∣∑
q,t

p̃(q, t)[q, t]⊗
(
PqR(

[
φt
q

]
)− U`(q,leakEC) ⊗ trAPqR(

[
φt
q

]
)
)∣∣∣∣∣
∣∣∣∣∣

≥

∣∣∣∣∣
∣∣∣∣∣∑
q,t

p(q, t)[q, t]⊗
(
PqR(

[
ψt
q

]
)− U`(q,leakEC) ⊗ trAPqR(

[
ψt
q

]
)
)∣∣∣∣∣
∣∣∣∣∣− ε,

where, above we used the triangle inequality followed by the reverse triangle inequality and
finally Equation 20. Let ∆t,q = 1

2

∣∣∣∣PqR(
[
ψt
q

]
)− U`(q,leakEC) ⊗ trAPqR(

[
ψt
q

]
)
∣∣∣∣. Then, the

above, along with basic properties of trace distance, implies:

5ε

2
≥
∑
q,t

p(q, t)∆q,t.

We now consider ∆q,t as a random variable over q and t. From the above, its expected value
is upper-bounded by 5ε/2. Furthermore, since ∆t,q ≤ 1 for all t, q (by properties of trace
distance), the variance may also be upper-bounded by 5ε/2. Using Chebyshev’s inequality,
then, we have:

Pr

[∣∣∣∣∆t,q −
5ε

2

∣∣∣∣ ≤ (5ε

2

)1/3
]
≥ 1−

(
5ε

2

)1/3

, (24)

From this, and simple algebra, it follows that, except with probability at most εfail =
(5ε/2)1/3, Equation 21 holds. This implies that, with high probability over the choice of
subset t and test measurement outcome in the Fourier basis q, Alice and the p Bob’s are left
with an εPA = 5ε+ (20ε)1/3 secure key of size:

` = n

(
log2 d−

Hd(w(s(q)) + δ)

logd 2

)
− leakEC − 2 log2

1

ε
. (25)

concluding the security proof.
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3.1 Evaluation

We now evaluate our key-rate bound for this protocol. We will first consider the two-
dimensional case, allowing us to compare with current state of the art results from [24]. We
will then evaluate our bound in higher dimensions - in that case, we have no other QCKA
results to compare to (the results in [24] applied only to the qubit case); however, we will
show some interesting behavior in the higher-dimensional case, when compared to the qubit
case.

To evaluate, we will assume a depolarization channel connecting all parties. This as-
sumption is not required for our security proof which works for any channel - one must
simply observe the value q and also the error correction leakage used by the EC protocol
and then evaluate the secret key rate (Equation 25) using our analysis in the prior section.
However, we will consider depolarization channels in this subsection in order to evaluate
our bound here without actual hardware, and also to compare with prior work (which also
assume depolarization channels when evaluating key-rates).

Under a depolarization channel, we may assume the quantum state shared by Alice and
the p Bobs is of the form:

ρ⊗NAB =

(
(1−Q)[ψ0] +

Q

dp+1
I

)⊗N
, (26)

where I is the identity operator of dimension dp+1. Note that, under this assumption, the
expected value of w(s(q)) is Q/d. This matches the value evaluated in [24] for the qubit case
as expected (where, there, the X basis was used and a parity check performed).

We next need a bound on leakEC . In practice, this can be done through the actual
public transcript after executing the protocol; however for our evaluation, we will simulate
an expected leakage. For error correction (EC), we assume one-way error correction and take
the same approach as in [24], whereby Alice will send the same error correction information
to each of the p Bob’s. In particular, it was proven there, that there exists a one-way EC
protocol for such a scenario that aborts with probability no greater than 2pε′ where the
leakage is upper-bounded by:

leakEC ≤ max
i
Hε′

0 (A|Bi) + log2

2(N − 1)

εEC

where:
(1− 2pε′)Pr(∃i : Bi 6= A after EC) ≤ εEC

and where Hε′
0 (A|Bi) is the smooth Rényi zero-entropy of Alice’s raw key conditioned on the

i’th Bob’s, namely:
Hε′

0 (X|Y ) = min
PXY

max
y

supp(P (X|Y = y))

where the minimum is over all probability distributions P that are ε′-close to the original
input distribution. Importantly, one need only consider the “worst-case” noise between Alice
and one Bob, as opposed to taking the sum of all error correction leakages for all p Bob’s.
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A single error correction message from Alice is sufficient to correct all p Bob’s raw keys. To
ensure error correction succeeded, Alice will choose a random two-universal hash function f ,
the output size of which we take to be log2

1
εEC

-bits, and broadcast f(A), where A is her raw

key as discussed earlier when introducing the protocol. This leaks an additional log2
1

εEC
bits

which must be deducted from the final secret key size. This is used so users can be assured
that error correction has succeeded.

Using results from [32] to bound the Rényi zero-entropy in this high-dimensional scenario,
along with the depolarization assumption, we may bound the error correction leakage by:

leakEC ≤ nh(QZ + ν) + n(QZ + ν) log2(d− 1) + log2

1

εEC
,

where:

ν =

√
N(m+ 1) ln 4p

εEC

m2(N −m)
.

and where QZ = maxiQi, where Qi is the probability of an error in Alice and the i’th Bob’s
raw key digit. Note that we are using the same sample size m used for the Fourier basis
measurement test and this must be deducted from the total raw key size. Since we are
evaluating assuming a depolarization channel, we have QZ = Q(1 − 1/d) (which is easily
seen from Equation 26). Note that, we use this only for evaluation purposes as it will allow
us to directly compare, in the qubit case, to state-of-the-art results in [24].

Combining everything, we find the length of the key produced by the protocol to be:

` = n

(
log2 d−

Hd

(
Q
d

+ δ
)

logd 2
− h (QZ + ν)− (QZ + ν) log2(d− 1)

)
− log2

1

εEC
− 2 log2

1

ε
.

(27)
Of course the actual key-rate, then, is simply `/(n + 2m) (we divide by an additional m
number of signals to account for the sampling of the raw-key needed to estimate QZ above).
In our evaluations, we set εEC = 10−12 and ε = 10−36 giving a failure probability (both for
the entropy bound and error correction) on the order of 10−12. This also sets εPA to be on
the order of 10−12. When comparing with other protocols, we use a failure probability of
10−12. Finally, we use a sample size of 7% for both bases (i.e., m = .07N where N is the
total number of signals sent).

A comparison of our key-rate bound, and that derived in [24] through alternative means,
is shown in Figure 1 for the two dimensional case (in which case both protocols are identical).
We note that, except for a slight deviation, the two results agree (with prior results from
[24] surpassing ours by a small amount). Of course, the proof and results in [24] apply only
to d = 2; to our knowledge, we are the first to derive a rigorous finite-key proof of security
for a high-dimensional QCKA protocol.

We also evaluate our key-rate bound in higher-dimensions in Figure 2. In higher dimen-
sions, we cannot compare to any other QCKA protocols as we are not aware of any other
finite key security results for such protocols in high (greater than 2) dimensions. However,
we note several interesting properties here. First, as the dimension increases, the number
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Figure 1: Comparing our new bound with that from [24] for the qubit case (d = 2) when
Q = 10%. We note that our result is slightly lower than in [24] for this dimension. However,
the advantage to our approach is that it can readily handle higher dimensions. Inset: a
close-up view of the difference in our bound and that from [24]; we note that as the number
of signals increases, our results converge. See text for discussion.

of signals needed before a positive key-rate is achieved, decreases, and the general key-rate
increases, making the protocol potentially more efficient. Note that one explanation for the
increased key-rate is due to the fact that one receives, for each signal, a larger number of
raw-key bits as the dimension increases. However this, alone, does not explain the great
increase in key-rate as the signal dimension increases. For instance, if we compare d = 2
and d′ = 4, a single iteration of the protocol, in the first case, produces at most one raw
key bit, while the second case would produce at most 2 raw key bits. If this were the only
reason for the increase in secret key-rates, one would expect that running twice the number
of iterations for the d = 2 case would produce the same secret key length as the d′ = 4 case.
However this is clearly not the case, as shown in Figure 3. Thus, the increase in key-rate for
higher dimensions cannot be recovered simply by running multiple copies of the qubit-based
protocol in parallel, instead higher-dimensional states per round are required. We also note
that the number of Bob’s, p, does not noticeably affect the key-rate - interestingly, this was
also discovered in [24] for the qubit, d = 2, case.

4 Closing Remarks

In this paper, we proved the security of a high-dimensional QCKA protocol, allowing mul-
tiple parties to establish a shared secret key. We proved security using a combination of
the quantum sampling framework of [25], along with sampling-based entropic uncertainty
relation techniques from [26]. Our proof introduced several new methods needed to use
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Figure 2: Evaluating our key-rate bound for higher dimensions assuming Q = 10% (Top)
and Q = 30% (Bottom). We note that, as dimension increases, not only does key-rate
increase, but also noise tolerance. Furthermore, the number of signals required before a
positive key-rate is attained also decreases with dimension for a fixed noise level.
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Figure 3: Showing that the advantage in key-rate for higher dimensions cannot be recovered
simply by using lower-dimensional systems and increasing the number of rounds. High-
dimensional states exhibit an advantage beyond simple parallel executions of a qubit-based
protocol for this QCKA protocol.

those two frameworks in this multi-user scenario and our methods may be applicable to
other multi-user quantum cryptographic protocols, especially in higher dimensions. Finally,
we evaluated the protocol in a variety of scenarios and showed some interesting properties
in higher-dimensions. Our work here has shown even more evidence, beyond that already
known (as discussed in the Introduction), of the potential benefits, at least in theory, of high-
dimensional quantum states. Note that we did not consider practical device imperfections,
leaving that as interesting future work.
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