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Abstract—We investigate the theory of affine groups in the context
of designing radar waveforms that obey the desired wideband ambiguity
function (WAF). The WAF is obtained by correlating the signal with its
time-dilated, Doppler-shifted, and delayed replicas. We consider the WAF
definition as a coefficient function of the unitary representation of the
group a·x+b. This is essentially an algebraic problem applied to the radar
waveform design. Prior works on this subject largely analyzed narrow-
band ambiguity functions. Here, we show that when the underlying
wideband signal of interest is a pulse or pulse train, a tight frame can be
built to design that waveform. Specifically, we design the radar signals
by minimizing the ratio of bounding constants of the frame in order
to obtain lower sidelobes in the WAF. This minimization is performed
by building a codebook based on difference sets in order to achieve the
Welch bound. We show that the tight frame so obtained is connected with
the wavelet transform that defines the WAF.

Keywords—Affine groups, complementary sequences, radar, wavelet
transform, wideband ambiguity function.

I. INTRODUCTION

The analytical theory of radar signal processing employs cross-
correlation technique for target detection and parameter estimation
[1, 2]. The radar’s ability to distinguish closely-spaced targets is
completely specified by the ambiguity function (AF) of its transmit
waveform. Through the AF, the transmit waveform enters into the
performance analyses related to detection, target parameter accuracy,
and resolution of multiple closely-spaced targets. The AF was first
introduced by Ville [3] and its significance as a signal design metric
in the mathematical radar theory is credited to Woodward [4, 5], later
expounded in detail by Siebert [6]. The AF is not uniquely defined,
including in the works of Woodward, which focused on narrowband
waveforms [2, 7–9].

However, many radar applications such as for ground penetration
[10], synthetic apertures [11], and vehicular sensing systems [12]
employ wideband waveforms that yield higher range resolution and
improved interference suppression. Unlike the narrowband AF (NAF),
the Doppler effect on the envelopes of transmit signal reflected off the
targets is not constant across the bandwidth. This led to several
generalizations of Woodward’s definition to wideband ambiguity
function (WAF) [13–15]. In this paper, we focus on such wideband
interpretations of AF.

There is a large body of research on using the AF as an aid to
select suitable radar waveforms. An AF equal to zero except at one
point is ideal for detection tasks [16, Chapter 3]. But, in this case, the
probability of the target lying within the response region would be
near zero [17]. In the absence of an ideal AF, significant theoretical
efforts have been devoted to the problem of finding functions of delay
and Doppler that are not only realizable as AFs but also have suitable
radar performance. The resulting procedure of waveform design has
traditionally focused on achieving AFs that are thumbtack with a
sharp central spike and low sidelobes in the delay-Doppler plane. The
inverse problem - given an AF, design a signal that yields it - is traced
back to the 1970 work by Rudolf de Buda. This study claimed that
when the NAF is bounded by a Hermite function, then the signal is

also a Hermite function where the polynomial is found from its AF
by comparing coefficients [18]. Later works such as [19] extended
de Buda’s results by showing that the bounding assumption over the
radar AF is removed to uniquely identify (up to trivial ambiguities) a
Hermite function and rectangular pulse trains. More recently, phase
retrieval techniques have been applied to estimate a band-limited
signal from its NAF [8].

The interest in studying both NAF and WAF in a unified framework
resulted in analyzing these functions from the perspective of a group
representation theory [20]. The NAF and WAF are coefficients of
the unitary representations of their respective groups. For example,
for the NAF, the delayed and Doppler-shifted replicas of a signal
are obtained by a unitary operator that is a member of a Heisenberg
group [21]. On the other hand, the time dilated and delayed replicas
result from the transmit signal through a unitary operator that comes
from an affine group. The wideband cross-AFs are, therefore, affine
wavelet transforms [20].

In this paper, we investigate group-theoretic formulations to design
signals that obey a given WAF. Similar prior works were largely limited
to analyzing the NAF. In [21], using the theory developed in [22] for
the extraspecial 2-group, it was shown that finite Heisenberg-Weyl
groups provide a unifying framework for several sequences to design
narrowband phase-coded radar waveforms. Later, this was expanded
to design complementary sequences in [23, 24]. Initial investigations
into the group representation theory for WAF appeared in [20, 25, 26].
This was expanded to include Mellin transform in [27]. Nearly all of
the aforementioned works did not examine the design of wideband
waveforms from a given WAF using group-theoretic tools. In this
work, we build upon the unitary representation of WAF to design
complementary sequences. In particular, we exploit the seminal work
of [28, 29] to build a tight frame, whose bounding constants are then
utilized to obtain low WAF sidelobes. We show that the resulting tight
frame is related to the wavelet transform that defines the WAF.

The rest of the paper is organized as follows. In the next section,
we introduce the definitions of WAF. We then make a connection with
affine groups in Section III. We analytically design the signal using
this theory in Section IV before concluding in Section V. Throughout
the paper, for reference, the NAF of an uncoded pulse w(t) with

duration Tc and unit energy
∫ Tc

2

−Tc
2

|w(t)|2dt = 1 is the inner product

of the transmit waveform w(t) and its time-delayed/frequency-shifted
version:

ψw(τ, ν) =

∫ Tc
2

−Tc
2

w(t)w∗(t− τ)e−jνtdt, (1)

where (τ, ν) are the delay-Doppler coordinates.

II. WAF OF RADAR PULSES

As a traveling wavefield reflects off a moving target, the field either
expands or compresses in time because of the movement of the target.
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When a narrowband waveform is transmitted, this compressive effect is
ignored for the waveform’s complex envelope and only considered for
the carrier. The WAF for which this approximation is not permissible
is

χ1
w(τ, ν) =

√
γ

∫ Tc
2

−Tc
2

w(t)w∗(γ(t− τ))e−jνtdt, (2)

where the factor γ = 1+fv/fc accounts for the stretching/compressing
in time of the reflected signal (Doppler factor). Assume f0 to be the
central frequency of the spectra W (ν). Denote

∆f = ν − f0, frequency deviation,

δ =
2v

c+ v
, the relative velocity.

Then,

w(γ(t− τ)) = e−2πjf0δ(t−τ)

×
∫ Tc

2

−Tc
2

W (ν)e2πjν(t−τ)e−2πj∆fδ(t−τ)dν. (3)

Observe that there are two factors affecting the signal behaviour in
time e−2πjf0δ(t−τ) and e−2πj∆fδ(t−τ). The first shifts the signal
spectra; the second accounts for the stretching/compressing in time of
the reflected signal. If the target-source velocity v � c then δ � 1
and thus e−2πj∆fδ(t−τ) ≈ 1. In this case,

w(γ(t− τ)) = e−2πjf0(γ−1)(t−τ)w(t− τ). (4)

It follows from (4) that the WAF is, equivalently,

χ1
w(τ, ν) =

√
γe−2πjf0(γ−1)τ

∫ Tc
2

−Tc
2

w(t)w∗(t− τ)e−jνtdt. (5)

There is a scalar term in front of the integral to account for a change
in amplitude of the reflected signal as it is stretched. The amplitude
scaling is necessary for the conservation of energy when the waveform
is stretched in time.

Note that, like its narrowband counterpart, the definition of WAF
is also not unique. The form in (5) (hereafter, χw(τ, ν)) is due to
Kelly-Wishner [14] and Altes [30, 31]. A second form appears as
wavelets in the works by Daubechies [28]; Auslander and Gertner
[25]; Miller [32]:

χ2
w(τ, ν) =

1
√
γ

∫ Tc
2

−Tc
2

w(t)w∗
(
t− τ
γ

)
e−jνtdt. (6)

Speiser [13] and Chaiyasena et al. [26] deal with the following WAF,
where the dilation is inside the integral:

χ3
w(τ, ν) =

√
γ

∫ Tc
2

−Tc
2

w(t)w∗(γt− τ)e−jνtdt. (7)

In [33, 34], the dilation is included as an exponential (similar to a
Doppler shift):

χ4
w(τ, ν) = e

ν
2

∫ Tc
2

−Tc
2

w(t)w∗
(
e−νt− τ

)
e−jνtdt. (8)

In this paper, we concern ourselves with the definition in (5).

Consider a baseband waveform constructed by phase coding
translates of w(t) with a unimodular sequence x[n] of length L
as

x(t) =

L−1∑
`=0

x[`]w (t− `Tc) ,

with the energy

Ex =

∫
R
|x(t)|2dt =

(
L−1∑
`=0

x[`]2
)∫ Tc

2

−Tc
2

|w(t)|2dt = L.

The WAF χx(τ, ν) of x(t) becomes

χx(τ, ν) =
√
γ

∫ Tc
2

−Tc
2

x(t)x∗(γ(t− τ))e−jνtdt

=
√
γ

∫ Tc
2

−Tc
2

L−1∑
`,`′=0

x[`]w (t− `Tc)x∗[`′]

× w∗
(
γt− γτ − `′Tc

)
e−jνtdt

=

L−1∑
`,k=0

A`x (k, νTc)χw

(
τ − Tc(k + `(γ − 1))

γ
, ν

)
,

(9)

where A`x (k, νTc) = x[`]x∗[`− k]e−jν`Tc .

Next, we extend WAF to complementary sequence pair [24].
Denote a binary sequence of length N by P = {pn}N−1

n=0 and
the complement of pn by p̄n = 1 − pn. The P -pulse train xP (t)
transmitted at a pulse repetition interval T is

xP (t) =

N−1∑
n=0

pnx(t− nT ) + p̄nx̃(t− nT ). (10)

Multiplying (10) by a discrete-valued real nonnegative sequence Q =
{qn}N−1

n=0 , (qn ≥ 0) of length N gives the Q-pulse train xQ(t) is

xQ(t) =

N−1∑
n=0

qn [pnx(t− nT ) + p̄nx̃(t− nT )] . (11)

Transmitting xP (t) and correlating the return with xQ(t) yields

χPQ(τ, ν) =

∫
R
xP (t)x∗Q(γ(t− τ))e−jνtdt (12)

≈ 1
√
γ

N−1∑
n=0

qne
−jνnT [pnχx(τ, ν) + p̄nχx̃(τ, ν)] , (13)

where range aliases at offset ±nT, n = 1, 2, . . . , N − 1 are ignored
and the last approximation follows from the fact that ν � 1/T so
that the phase rotation within one coherent processing interval (CPI)
(slow time) can be approximated as a constant. Our goal is to obtain
the sequences pn and qn from a given WAF.

III. GROUP-THEORETIC CONNECTIONS OF WAF

The WAF in (2) is related to a representation of the affine or
a · x+ b group. The a · x+ b group is a set R \ {0} × R equipped
with the product

(a, b) ◦ (a′, b′) = (a · a′, b+ a · b′). (14)

The unity of the group is (1, 0) because

(1, 0) ◦ (a, b) = (a, b)

(a, b) ◦ (1, 0) = (a, b). (15)

The right and left inverse of (a, b) is
(

1
a
,− b

a

)
since

(a, b) ◦
(

1

a
,− b

a

)
= (1, 0)(

1

a
,− b

a

)
◦ (a, b) = (1, 0). (16)



The group is non-commutative

(a, b) ◦ (a′, b′) = (a · a′, b+ a · b′)
(a′, b′) ◦ (a, b) = (a · a′, b′ + a′ · b). (17)

From the definition of this group, we now introduce unitary represen-
tation.

A. Unitary Representation of WAF

A representation of the group R\{0}×R in the space L2(R) is a
pair {U , L2(R)} where U is a mapping which assigns to every element
(a, b) ∈ R \ {0}×R a linear mapping U(a,b) : L2(R)→ L2(R) such
that

U(1,0) = 1L2(R)

U((a,b)◦(a′,b′)) = U(a,b) ◦ U(a′,b′), (18)

for all (a, b) ∈ R \ {0} × R. In particular,

U(a,b) ◦ U( 1
a
,− b
a

) = U(1,0). (19)

If L2(R) is a Hilbert space, a linear representation {U , L2(R)} is
said to be unitary if the automorphism U(a,b) forms a unitary operator
of L2(R) for all (a, b) ∈ R \ {0} × R.

Now consider that U defines a morphism (a, b)→ U(a,b) of the
group R\{0}×R into a unitary group U(L2(R)) of L2(R) operators
such that

U(a,b)−1 =
(
U(a,b)

)∗
, ∀(a, b) ∈ R \ {0} × R. (20)

Unitary is equivalent to

‖U(a,b)f‖ = ‖f‖, (21)

for all (a, b) ∈ R \ {0} × R; f ∈ L2(R), or

〈U(a,b)f,U(a,b)g〉 = 〈f, g〉, (22)

for all (a, b) ∈ R \ {0} × R; f, g ∈ L2(R).

Define the translation representation

(T(1,s)f)(t) = f(t− s), (1, s) ∈ R \ {0} × R. (23)

Then it follows that the above representation T is unitary and
commutative

T(1,s)◦(1,s′) = T(1,s+s′) = T(1,s′)◦(1,s)

= T(1,s) ◦ T(1,s′). (24)

The unitary of the translation representation follows from

〈T(1,s)h, T(1,s)g〉 =

∫ ∞
−∞

h(t− s)g(t− s)dt

= 〈h, g〉. (25)

Define the dilation representation by

(Dλ,0h)(t) =
1√
|λ|
h

(
t

λ

)
, (26)

for all (λ, 0) ∈ R\{0}×R. It is easy to that the above representation
D is unitary and commutative

D(λ,0) ◦D(λ′,0) = D(λ,0)◦(λ′,0)

= D(λλ′,0), (27)

and

D(λ′,0) ◦D(λ,0) = D(λ′,0)◦(λ,0)

= D(λλ′,0). (28)

The unitary of the dilation representation follows from

〈D(λ,0)h,D(λ,0)g〉 =

∫ ∞
−∞

1

λ
h

(
t

λ

)
g

(
t

λ

)
dt

=

∫ ∞
−∞

h(s)g(s)ds = 〈h, g〉, (29)

where a change of variables was needed, i.e. s = t
λ

.

Considering the translation and dilation representations we are
ready to define the WAF based on T and D. To this end, we consider
the product of dilation and translation operators in the set of unitary
representations

DT(λ,s) =∆ D(λ,0) ◦ T(1,s), (30)

such that for any h ∈ L2(R), we have

(DT(λ,s)h)(t) = D(λ,0) ◦ (T(1,s)h)(t)

= (D(λ,0)h)(t− s)

=
1√
|λ|
h

(
t− s
λ

)
. (31)

Observe that the product between translation and dilation representa-
tions is not commutative

(T(1,s) ◦D(λ,0)h)(t) =
1√
|λ|
h

(
t− λs
λ

)
6= (D(λ,0) ◦ T(1,λs)h)(t). (32)

We now introduce the notation

h(λ,s)(t) =∆ (T(1,s) ◦D(λ,0)h)(t)

=∆
1√
|λ|
h

(
t− s
λ

)
. (33)

Thus, the WAF in (2) can be defined based on the following inner
product with a w(t) baseband pulse shape with duration limited to a
chip interval Tc and unit energy

〈w,w(1/γ,τ)〉

=
√
γ

Tc
2∫

−Tc
2

w(t)w∗ (γ(t− τ)) dt

=
√
γe−2πjf0(γ−1)τ

Tc
2∫

−Tc
2

w(t)w∗(t− τ)e−jνtdt

︸ ︷︷ ︸
χ1
w(τ,ν)

, (34)

which the second comes from (4) leading to the same WAF as in (5).

B. Wavelet Expansion and WAF

The unitary representation of WAF is connected with the wavelet
expansion. Define points of the grid from constants γ0, τ0 > 0, γ 6=
1, 0. The points of the grid are

1

γm
=

1

γm0
and τmn = nτ0

1

γm
, (35)



for m,n ∈ Z. Define the function on the grid by the discrete translation
and dilation operators

hmn(t) = (D(1/γm,0) ◦ T(1,τmn)h)(t)

=
1√
|λm0 |

h

(
t

λm0
− nτ0

)
. (36)

Observe that (36) follows the structure of the wavelet case in [29].
The implication is that we can build a frame in order to design the
waveforms xP (t), and xQ(t) in (10) and (11), respectively.

In order to build a frame based on wavelet expansion select a
constant K > 0 and define the operator

P (u(t)) = I −
2
∑
m,n〈hmn, u〉hmn(t)

K
, (37)

where I is the identity operator. Then, from (10), the frame h̃mn is
obtained using h̃0n by applying the dilation operation as

h̃mn(t) = D(1/γm,0)h̃0n(t)

=
1

γ
m/2
0

h̃0n

(
1

γm0
t

)
, (38)

where

h̃0n(t) =

(
2

K

∑
k

P k
)
h0n(t). (39)

Thus, using this expansion we have that the signal u(t) can be
represented as [29]

u(t) =
∑
m,n

〈hmn, u〉h̃mn(t). (40)

Observe that from (40), we have that the term 〈hmn, u〉 can
be understood as the WAF. Following (34), when w(t) = u(t) and
w(1/γ,τ) = h(1/γ,τ). Therefore, the wavelet expansion is applicable
for designing the waveforms xP (t), and xQ(t). To this end, we use
the following isometry that the frame h̃mn(t) satisfies:

A‖u(·)‖2 ≤
∑
m,n

|〈hmn, u〉|2 ≤ B‖u(·)‖2, (41)

for some constants A > 0 and B <∞. To better represent the signal
u(t) using (40), the ratio B/A needs to be small; ideally, B/A = 1
[29]. Hence, we pursuit the minimization of B/A by properly selecting
the sequences pn and qn in (11) since they are the only free parameters
of the waveforms xP and xQ. The analytical estimation of A and B
is usually computationally expensive. Therefore, we target achieving
the Welch bound. This is equivalent to minimizing the ratio B/A
[35]. We propose to design the sequences pn and qn using a strategy
relying on difference sets that have been shown to precisely achieve
the Welch bound [35].

IV. NUMERICAL EXAMPLE

Difference sets have been well studied in the combinatorial design
theory [36, 37]. They are known to exist for certain cases and a
comprehensive repository of difference sets is provided in [38]. As
an illustration of our approach, we employ the Singer difference sets
[39] to design the sequences pn and qn in (11).

Consider the prime number q = 11 and a power constant d = 2.
Then, the size of the sequences is directly determined from these
values as

N =
qd+1 − 1

q − 1
= 133.

Figure 1. Wideband cross-AF for the designed signals xP and xQ.

Define C1 = qd−1
q−1

and C2 = qd−1−1
q−1

. This yields a (N,C1, C2)-
difference set. Under this setup, the resultant difference set is

F = {0, 1, 8, 14, 30, 45, 47, 56, 66, 106, 109, 129}. (42)

From (34), the WAF in (13) corresponds to the inner product between
xP and xQ. The function uses the product pnqn as∣∣∣〈xP , x(1/γ,τ)

Q 〉
∣∣∣ ≡ χPQ(τ, ν)

≈ 1
√
γ

N−1∑
n=0

qne
−jνnT [pnχx(τ, ν) + p̄nχx̃(τ, ν)]

≤ 1
√
γ

N−1∑
n=0

qnpn|χx(τ, ν)|+ qn(1− pn)|χx̃(τ, ν)|. (43)

Therefore, in order to minimize the ratio B/A of the resultant
frame applied to xQ (following the strategy explained in the previous
section), we need to design pnqn. To this end, we set pnqn = 1 for
all n ∈ F , and pnqn = 0 for all n ∈ {0, . . . , N} \ F . From these
constraints, we can determine (pn, qn) as

(pn, qn) =

{
(1, 1) if n ∈ F
(n mod 2, n+ 1 mod 2) if n 6∈ F . (44)

The resultant wideband cross-AF is plotted in Fig. 1.

In the context of tight frames in [40, 41], it has been shown that,
if the Welch bound is reached, with overwhelming probability we
are able to guarantee the reconstruction. It turns out that difference
sets can provide patterns that reach the Welch bound [35]. For the
particular scenario we considered, this bound is µ =

√
N−C1
C1(N−1)

=√
121
1584

≈ 0.27. Therefore, B
A

= 1 + O(µ). We remark that this
strategy is limited by the calculation of the difference set in (42),
which is computationally demanding. In the future, we intend to
develop a numerical algorithm to estimate new difference sets to
produce higher values of N .

V. SUMMARY

We analytically demonstrated design procedure a wideband radar
waveform using group-theoretic strategy via difference sets. We
first mathematically expressed the waveform’s WAF as a coefficient



function of the unitary representation of the group a · x + b. From
this representation, we connected the wavelet expansions of frame to
the WAF. This allowed us to derive a strategy to design two binary
sequences in order to minimize the ratio of the bounding constant
of the wavelet frame so constructed. The analytical estimation of
these bounds is usually computationally expensive. As an alternative,
we targeted achieving the Welch bound using difference sets. Our
proposed group-theoretic waveform design guarantees a near-optimal
reconstruction.
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