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Abstract—The Stratonovich’s value of information (VoI) is
quantity that measure how much inferential gain is obtained
from a perturbed sample under information leakage constraint.
In this paper, we introduce a generalized VoI for a general loss
function and general information leakage. Then we derive an
upper bound of the generalized VoI. Moreover, for a classical
loss function, we provide a achievable condition of the upper
bound which is weaker than that of in previous studies. Since
VoI can be viewed as a formulation of a privacy-utility trade-off
(PUT) problem, we provide an interpretation of the achievable
condition in the PUT context.

I. INTRODUCTION

Research on decision-making under a constraint of infor-
mation leakage has been studied in 1960s in the academy of
sciences of the Soviet Union (USSR Academy). In particular,
Stratonovich’s work [1] is pioneering, however, it does not
appear to be widely known1. In [1] and [2], he introduced
Value of Information (VoI) to quantify how much inferential
gain is obtained from a perturbed sample Y which contains
some information about original sample X . His formulation
of the VoI was based on the Shannon’s mutual information
(MI) I(X;Y ) in the information theory [4] and a loss (cost)
function `(x, a), where a is some action (e.g. point estimation
on X , hypothesis testing on pX , prediction), in the statistical
decision theory (see, e.g., [5]).

Since Shannon’s proposal of MI, various information leak-
age measures have been proposed. Some examples are Ari-
moto’s MI [6], Sibson’s MI [7], and Csiszár’s MI [8]. Re-
cently, new information leakage measures have been proposed
in the privacy-utility trade-off (PUT) problem, such as f -
information [9] and f -leakage [10], as privacy measures.
In addition to these measures, by assuming a “guessing”
adversary, information leakage measures that have operational
meanings have been proposed. For example, Asoodeh et al.
introduced probability of correctly guessing in [11], [12].
In [13]–[15], Issa et al. introduced maximal leakage which
quantifies the maximal logarithmic gain of correctly guessing
any arbitrary function of the original sample. Extending the

This research is supported in part by Grant-in-Aid JP17K06446 for
Scientific Research (C).

1Recently, his book containing this research has been translated into
English [2]. It is worth noting that similar approach have been studied by
Kanaya and Nakagawa [3].

maximal leakage, Liao et al. introduced α-leakage and α-
maximal leakage in [10], [16]–[18]. Liao et al. also showed
the relationships between the (maximal) α-leakage and both
Arimoto’s MI and Sibson’s MI. It is worth noting that Liao
et al. introduced an α-loss to define the α-leakage.

In this study, we first introduce an information leakage
measure in a general manner by extracting common properties
from these specific information leakage measures. Then we
define a generalized VoI for the information leakage measure
and a general loss function containing the α-loss. For the
generalized VoI, we derive an upper bound next. Moreover, for
a classical loss function `(x, a), we also provide an achievable
condition of the upper bound which is weaker than that of
in previous studies [1], [2] and [19]. We also show basic
properties of the achievable upper bound and some extended
results. Finally, since VoI can be viewed as a formulation of a
PUT problem in a certain situation, based on our prior work
[20], we provide an interpretation of the achievable condition
in the PUT context.

II. PRELIMINARY

Fig. 1. System Model

In this section, we first review the statistical decision theory
and the concept of information leakage in information theory
on the system model in Figure 1. For simplicity, unless
otherwise stated, we will assume that all alphabets are finite.

A. Notations

Let X,Y and A be random variables on alphabets X ,Y and
A. Let pX,Y = pX×pY |X and pY be a given joint distribution
of (X,Y ) and a marginal distribution of Y , respectively. Let
δ∗ : Y ×A → [0, 1] and δ : Y → A be a randomized decision
rule and a deterministic decision rule, respectively. Since
δ∗(y, a) is equivalent to a conditional probability pA|Y (a | y),
we will use these notations interchangeably. The classical
notation for a loss function in the statistical decision theory is
`(x, a), which represents a loss for making an action A = a
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when the true state is X = x. In this study, however, we
extend the concept of the loss function to a loss for making
an action A = a from a sample Y = y using the (randomized)
decision rule δ∗ when the true state is X = x, denoted
as `(x, y, a, δ∗). Finally, we use log to represent the natural
logarithm.

B. Statistical decision theory

We review the basic concepts and results in the statistical
decision theory next.

Definition 1. The loss function for a randomized decision rule
δ∗ : Y ×A → [0, 1] is defined as

L(x, δ∗(y, ·)) := EA [`(x, y,A, δ∗) | Y = y] (1)

=
∑
a

pA|Y (a | y)`(x, y, a, δ∗). (2)

Definition 2. The risk function and the Bayes risk function
for a randomized decision rule δ∗ is defined as

R(x, δ∗, pY |X) := EY [L(x, δ∗(Y, ·)) | X = x] (3)

=
∑
y

pY |X(y | x)L(x, δ∗(y, ·)), (4)

r(δ∗, pY |X) := EX
[
R(X, δ∗, pY |X)

]
(5)

=
∑
x

pX(x)R(x, δ∗, pY |X). (6)

Proposition 1 ( [20, Prop 1]). The minimal Bayes risk is
given by

inf
δ∗
r(δ∗, pY |X) = r(δ∗,Bayes, pY |X) (7)

= EY
[

inf
δ(y,·)

EX [L(X, δ∗(Y, ·)) | Y ]

]
, (8)

with the optimal randomized decision rule δ∗,Bayes given by

δ∗,Bayes(y, ·) := arginf
δ∗(y,·)

EX [L(X, δ∗(y, ·)) | Y = y] , (9)

where infimum is over all randomized decision rule δ∗(y, ·) =
pA|Y (· | y) for fixed y. In particular, when a channel is
pY |X = pY (i.e., X and Y are independent, denoted by
X ⊥⊥ Y ),

inf
δ∗
r(δ∗, pY ) = r(δ∗,Bayes, pY ) (10)

= EY
[

inf
δ∗(y,·)

EX [L(X, δ∗(Y, ·))]
]
. (11)

Remark 1. The corresponding result of the Proposition 1 for
a deterministic decision rule δ and a classical loss function
`(x, a) is given by

δBayes(y) := arginf
a

EX [`(X, a) | Y = y] , (12)

inf
δ
r(δ, pY |X) = r(δBayes, pY |X) = EY

[
inf
a
EX [`(X, a)]

∣∣∣ Y ] ,
(13)

inf
δ
r(δ, pY ) = r(δBayes, pY ) = inf

a
EX [`(X, a)] . (14)

C. Information leakage

In this study, we introduce information leakage measure,
denoted as L(X → Y ), to quantify how much information
Y leak about X . To this end, we extract some properties
in common to well-known information leakage measures in
information theory2.

Definition 3. The information leakage L(X → Y ) =
L(pX , pY |X) is defined as a functional of pX and pY |X that
satisfies following properties:

1) Non-negativity:

L(X → Y ) ≥ 0. (15)

2) Data Processing Inequality (DPI):
If X − Y − Z forms a Markov chain, then

L(X → Z) ≤ L(X → Y ). (16)

3) Independence:

L(X → Y ) = 0⇐⇒ X ⊥⊥ Y. (17)

1) Examples of the information leakage: Table I shows the
typical information leakage measures in information theory
that have these properties and their references, where
• α ∈ (0, 1)∪(1,∞). Note that the value of the information

leakage measures in the table are extended by continuity
to α = 1 and α =∞.

• Hα(X) := α
1−α log (

∑
x pX(x)α)

1
α is the Rényi entropy

of order α.
• HA

α (X|Y ) := α
1−α log

∑
y (
∑
x pX,Y (x, y)α)

1
α is Ari-

moto’s conditional entropy of X given Y of order α.
• Dα(p||q) := 1

α−1 log
(∑

z p
α(z)q1−α(z)

)
is the Rényi

divergence of order α.
• U represents an arbitrary (potentially random) function

of X and Û represents its estimator.
• Df (p||q) :=

∑
z∈Z q(z)f

(
p(z)
q(z)

)
is the f -divergence,

where f : R+ → R is a convex function such that f(1) =
0 and strictly convex at t = 1, where R+ := [0,∞).

Note that relationships between these information leakage
measures are given as follows:
• I(X;Y ) = IA

1 (X;Y ) = IS
1 (X;Y ) = IC

1 (X;Y ) =
If (X;Y ), where f(t) = t log t.

• IA
α(X;Y ) = Lα(X → Y ) (see [10, Thm 1]).

• Lmax
α (X → Y )

=


suppX̃ I

A
α(X̃;Y ) = suppX̃ I

S
α(X̃;Y ), α > 1,

LMaxL(X → Y ), α =∞,
I(X;Y ), α = 1,

where pX̃ is a probability distribution over support of
pX . See [10, Thm 2] for detail.

Most of the non-negativity properties 1) in the Table I
follow from the non-negativity of Dα(p||q) and Df (p||q).
Note that properties of α-leakage Lα(X → Y ) follows

2Note that these properties are part of requirements for reasonable infor-
mation leakage measures proposed by Issa et al. [15].



Name Definition 1) 2) 3)

mutual information (MI) [4] I(X;Y ) := H(X)−H(X | Y ) 3
3

[21, Thm 2.8.1]
3

[21, Eq (2.90)]

Arimoto’s MI of order α [6] IA
α(X;Y ) := Hα(X)−HA

α(X | Y )
3

[6, Thm 2]

3
[10, Footnote 4],

[22, Cor 1]

3
[6, Thm 2]

Arimoto’s MI of order ∞ [10] IA
∞(X;Y ) := log

∑
y maxx pX,Y (x,y)

maxx pX (x)
3

3
[22, Cor 1]

7
[23, Sec 6.6]

Sibson’s MI of order α [7] IS
α(X;Y ) := minqY Dα(pX,Y ||pXqY ) 3

3
[24, Eq (55)] 3

Sibson’s MI of order ∞ [10] IS
∞(X;Y ) := log

∑
y maxx pY |X(y | x) 3 3 3

Csiszár’s MI of order α [8] IC
α(X;Y ) := minqY EX

[
Dα(pY |X(· | X)||qY )

]
3

3
[8, Eq (22)] 3

f -information [9] If (X;Y ) := Df (pX,Y ||pXpY ) 3
3

[25, Thm 7.9]

3
[26, Lem 4],

[25, Thm 7.3]
f -leakage [10] Lf (X → Y ) := minqY Df (pX,Y ||pXqY ) 3 3 3

maximal leakage [15] LmaxL(X → Y ) := supU−X−Y log
maxp

Û|Y
EU,Y

[
p
Û|Y (U|Y )

]
maxu pU (u)

3
[15, Lem 1]

3
[15, Lem 1]

3
[15, Cor 2]

α-leakage [10] Lα(X → Y ) := α
α−1

log
maxp

X̂|Y
EX,Y

[
p
X̂|Y (X|Y )

α−1
α

]
maxp

X̂
EX
[
p
X̂

(X)
α−1
α

] 3 3 3

maximal α-leakage [10] Lmax
α (X → Y ) := supU−X−Y Lα(U → Y ) 3

3
[10, Thm 3] 3

mmse-leakage [This study] Lmmse(X → Y ) := V(X)− EY [V(X | Y )]
3

[Prop 2]
3

[Prop 2]
7

[Prop 2]
TABLE I

TYPICAL INFORMATION LEAKAGE MEASURES IN INFORMATION THEORY

from that of Arimoto’s MI IA
α(X;Y ) because of their iden-

tity mentioned above. Independence property 3) of maxi-
mal α-leakage Lmax

α (X → Y ) follows from the property
in the α-leakage, while the property of Sibson’s MI fol-
lows can be derived in a similar manner of [6, Thm 2].
Csiszár’s MI IC

α(X;Y ) and f -leakage Lf (X → Y ) also
have the independence property 3). In fact, for Csiszár’s
MI, it follows from the non-negativity of the α-divergence
that IC

α(X;Y ) = EX
[
Dα(pY |X(· | X)||qC, *

Y )
]

= 0 ⇐⇒
Dα(pY |X(·|X)||qC,∗

Y ) = 0 a.s. ⇐⇒ pY |X(y|x) = qC,∗
Y (y) =

pY (y),∀x ∈ supp(pX), y ∈ Y ⇐⇒ X ⊥⊥ Y , where
qC,∗
Y := argminqY EX

[
Dα(pY |X(· | X)||qY )

]
, supp(pX) :=

{x ∈ X | pX(x) > 0} (support of pX ) and a.s. means almost
surely. For f -leakage, it can be shown in a similar way.
Finally, DPI property of f -leakage follows from [26, Lem
4], [25, Thm 7.2], and a discussion in [24, Sec V].

2) mmse-leakage: In addition to the typcal information
leakage measures, we can define a new information leakage
measure, minimum mean squared error-leakage Lmmse(X →
Y ), which has the properties 1), 2) but does not satisfy 3) in
general. Note that we assume that alphabets are continuous
here, i.e., X = Y = R.

Definition 4 (Minimum mean squared error-leakage). The
minimum mean squared error-leakage Lmmse(X → Y ) is
defined as

Lmmse(X → Y ) := V(X)− inf
f : Y→X

EX,Y
[
(X − f(Y ))2

]
(18)

= V(X)− EY [V(X | Y )] , (19)

where infimums is over all (measurable) function f : Y → X
and V(X) := EX

[
(X − EX [X])2

]
,V(X | Y = y) :=

EX
[
(X − EX [X | Y = y])2

]
are variance of X and condi-

tional variance of X given Y = y, respectively.

Proposition 2. Lmmse(X → Y ) has the properties 1), 2) but
does not satisfy 3) in general.

Proof. Property 1) is trivial from the definition of the quantity.
Property 2) can be proved as follows: If X − Y − Z forms
a Markov chain, then Lmmse(X → Y ) − Lmmse(X →
Z) = EY,Z

[
(EX [X | Y ]− EX [X | Z])

2
]
≥ 0, where we

used the the orthogonal principle3 in the first equality4.
Finally, it follows from the law of total variance V(X) =
EY [V(X | Y )] + V (EX [X | Y ]) that Lmmse(X → Y ) =

0 ⇐⇒ V (EY [X | Y ]) = EY
[
(EX [X | Y ]− EX [X])

2
]

=

0 ⇐⇒ EX [X | Y ] = EX [X] a.s. The equality condition
EX [X | Y ] = EX [X] a.s. is often called a mean indepen-
dence, which is known as a weaker condition than indepen-
dence 3), i.e., X ⊥⊥ Y =⇒ EX [X | Y ] = EX [X] a.s. 5 �

Remark 2. As with the mmse-leakage Lmmse(X → Y ),
Arimoto’s MI of order α =∞, i.e., IA

∞(X;Y ) does not have
the independence property 3) (see [23, Sec 6.6]).

III. A GENERALIZATION OF THE VALUE OF INFORMATION

In this section, we introduce the Stratonovich’s Value of In-
formation (VoI) in a general manner to formulate the leakage-

3For any function f(Y ), EX,Y [(X − EX [X | Y ])f(Y )] = 0.
4This proof is borrowed from [27, Thm 11]. Interestingly, unlike the DPI

for mutual information I(X;Y ), Lmmse(X → Y ) = Lmmse(X → Z) does
not imply that Z is a sufficient statistic of Y for X . The equality holds iff
EX [X | Y ] = EX [X | Z] a.s.

5On the other hand, the mean independence is a stronger condition
than uncorrelatedness, i.e., EX [X | Y ] a.s. =⇒ ρ(X,Y ) = 0, where
ρ(X,Y ) := (EX,Y [XY ]− EX [X]EY [Y ])/

√
V(X)

√
V(Y )] is the coef-

ficient of correlation between X and Y .



utility trade-off problem. We also show that the generalized
VoI can be viewed as an analogue of the distortion-rate
function and the information bottleneck.

A. Average gain

We first introduce average gain to quantify the utility of
using Y for a decision-making as largest reduction of the
minimal Bayes risk compared to independent case.

Definition 5 (Average gain). The average gain of using Y on
X for making an action A when a loss function is `(x, y, a, δ∗)
is defined as

gain`(X;Y ) := inf
δ∗
r(δ∗, pY )− inf

δ∗
r(δ∗, pY |X) (20)

= EY
[

inf
δ∗(y,·)

EX [L(X, δ∗(Y, ·))]
]

− EY
[

inf
δ∗(y,·)

EX [L(X, δ∗(Y, ·)) | Y ]

]
, (21)

where pY (y) :=
∑
x pX(x)pY |X(y | x) is a marginal distribu-

tion on Y . Note that the last equality follows from Proposition
1. In particular, the average gain with a deterministic decision
rule a classic loss function `(x, a) is given as

gain`(X;Y ) = inf
a
EX [`(X, a)]

− EY
[
inf
a
EX [`(X, a) | Y ]

]
. (22)

Remark 3. Note that the average gain is a statistical decision-
theoretic counterpart of the average cost gain ∆C defined in
[28].

Using the similar argument as in [29, Sec V.F], it follows
that the average gain satisfies the DPI.

Proposition 3 ( [29, Sec V.F]). For any loss function
`(x, y, a, δ∗), the average gain gain`(X;Y ) satisfies DPI.

Example 1. When a decision maker’s action is to estimate
X deterministically under a squared-loss, i.e., A = X̂ =
δ(Y ), `sq(x, x̂) := (x − x̂)2, gain`sq(X;Y ) = Lmmse(X →
Y ).

Example 2. When a decision maker’s action is to es-
timate X randomly under an α-loss proposed by Liao
et al. in [10, Def 3]6, i.e., A = X̂, `α(x, y, x̂, δ∗) :=
α
α−1

(
1− δ∗(y, x̂)

−1
α 1l{x̂=x}

)
,

gain`α(X;Y )

=

{
α
α−1

(
e

1−α
α ·H

A
α(X|Y ) − e 1−α

α ·Hα(X)
)
, α > 1

H(X)−H(X | Y ) = I(X;Y ), α = 1.
(23)

where (23) follows from [10, Lem 1].

Intuitively, the optimal decision rule (9) seems not to de-
pend on y when the independent channel pY is used, however,

6Technically, Liao et al. call Lα(x, δ∗(y, ·)) := EX̂ [`α(x, y, X̂, δ∗) |
Y = y] itself as α-loss. Note that the value of Lα(x, δ∗(y, ·)) is extended
by continuity to α = 1 and α =∞.

it is not the case in general loss function `(x, y, a, δ∗). Thus
we restrict the loss function to the following standard loss
class.

Definition 6 (Standard loss). The loss function `(x, y, a, δ∗)
is said to be a standard loss if there exists a function ˜̀: X ×
A× [0, 1]→ R+; (x, a, p) 7→ ˜̀(x, a, p) such that for all x, y, a
and δ∗,

`(x, y, a, δ∗) = ˜̀(x, a, δ∗(y, a)). (24)

Example 3. The classical loss function `(x, a) and the α-loss
`α(x, y, x̂, δ∗) in the Example 2 are typical examples of the
standard loss.

Proposition 4. For a standard loss `(x, y, a, δ∗), the optimal
decision rule (9) does not depend on y when a channel is
independent.

Proof. Since

inf
δ∗(y,·)

EX [L(X, δ∗(y, ·))]

= inf
δ∗(y,·)

∑
x

pX(x)
∑
a

δ∗(y, a)˜̀(x, a, δ∗(y, a)) (25)

is constant regardless of the value of y, the optimal decision
rule (9) does not depend on y. �

B. A Generalization of the Value of Information

We define VoI for information leakage to formulate the
leakage-utility trade-off problem. In the following, we assume
that the information leakage L(X → Y ) is bounded above,
i.e., there exists an upper bound K(X) that can depend on
pX such that for all pY |X , L(X → Y ) ≤ K(X).

Definition 7. Let the loss function `(x, y, a, δ∗) be a standard
loss. For 0 ≤ R ≤ K(X), the generalized value of informa-
tion for information leakage L(X → Y ) is defined as

V`L(R;Y) := sup
pY |X :

L(X→Y )≤R

gain`(X;Y ) (26)

= inf
δ∗(y,·)

EX [L(X, δ∗(y, ·))]

− inf
pY |X :

L(X→Y )≤R

EY
[

inf
δ∗(y,·)

EX [L(X, δ∗(Y, ·)) | Y ]

]
. (27)

In particular, VoI for a deterministic decision rule and a
classical loss function `(x, a) is given as

V`L(R;Y) = inf
a
EX [`(X, a)]

− inf
pY |X :

Lα(X→Y )≤R

EY
[
inf
a
EX [`(X, a) | Y ]

]
. (28)

Remark 4. Stratonovich’s original formulation of VoI is when
L(X → Y ) = I(X;Y ) and classical loss `(x, a). Note
that the second term of the generalized VoI U(R;Y) :=
inf pY |X :

L(X→Y )≤R
EY
[
infδ∗(y,·) EX [L(X, δ∗(Y, ·)) | Y ]

]
will be

the distortion-rate function D(R;Y) under a non-standard loss
function `(x, y, a, δ∗) = d(x, y), where d(x, y) is a distortion



function, which is not appropriate loss for a decision-making
context since it only measures the distortion between x and
y.

Example 4. From the Example 1 and Example 2, it follows
immediately that

V`sq
Lmmse

(R;Y) = R, 0 ≤ R ≤ V(X), (29)

V`α=1

I (R;Y) = R, 0 ≤ R ≤ H(X), (30)

for all alphabet Y .

Example 5. When an action is to estimate U correlated only
with X , i.e., A = Û under α = 1-loss `Uα=1(u, y, û, δ∗) :=
α
α−1

(
1− δ∗(y, û)

−1
α 1l{û=u}

)
and the information leakage

constraint L(X → Y ) = I(X;Y ) ≤ R, the generalized VoI
is given as

V`
U
α=1

I (R;Y) := sup
pY |X :

I(X;Y )≤R

gain`
U
α=1(U ;Y ) (31)

= sup
pY |X :

I(X;Y )≤R

I(U ;Y ). (32)

Note that this quantity is the well-known information bottle-
neck [30].

IV. MAIN RESULTS

The main results of this paper are an upper bound of the
VoI for a standard loss and a fundamental limit of the VoI for
a classical loss.

A. Upper bound and Fundamental Limit

For a standard loss `(x, y, a, δ∗), following upper bound
holds.

Proposition 5. For a standard loss `(x, y, a, δ∗), define a
function as follows:

V̄`L(R;Y) := inf
δ∗(y,·)

EX [L(X, δ∗(y, ·))]

− inf
pY |X ,δ

∗ :

L(X→A)≤R

EX,Y [L(X, δ∗(Y, ·))] . (33)

Then V̄`L(0) = 0 and for 0 ≤ R ≤ K(X) and arbitrary
alphabet Y ,

V`L(R;Y) ≤ V̄`L(R;Y). (34)

Proof. See Appendix A. �

Note that the upper bound (34) still depends on the alphabet
Y . Interestingly, when it comes to the classical loss function
`(x, a), corresponding upper bound is independent on the
alphabet Y and it is even achievable.

Theorem 1. For a classical loss `(x, a), define a function as
follows:

V`L(R) := inf
a
EX [`(X, a)]− inf

pA|X :

L(X→A)≤R

EX,A [`(X,A)] .

(35)

Then V`L(0) = 0 and for 0 ≤ R ≤ K(X) and arbitrary
alphabet Y ,

V`L(R;Y) ≤ V`L(R). (36)

Moreover, let t(A) be a sufficient statistic of A for X and
t(A) be a set of all values of the statistic. Then the equality
in the inequality (36) holds when Y = t(A) and the optimal
mechanism is given by

p∗Y |X(y | x) :=
∑
a

p∗A|X(a | x)1l{y=t(a)}, (37)

where p∗A|X = arginfpA|X : L(X→A)≤R EX,A [`(X,A)].
The statement above can be summarized as follows:

sup
Y

V`L(R;Y) = V`L(R). (38)

Proof. See Appendix B. �

Remark 5. Stratonovich call V`I(R) as Value of Shan-
non’s Information in [2, Chapter. 9.3]. Thus we call
V`IA

α
(R) (resp. V`IS

α
(R),V`IC

α
(R),V`If (R)) and V`Lα(R) (resp.

V`Lmax
α

(R),V`Lf (R)) as Value of Arimoto’s (resp. Sibson’s,
Csiszár’s, f -) Information and Value of α- (resp. maximal α-,
f -) leakage.

Let the alphabet X be X := {1, 2, . . . ,m} and P(X) be a
probability simplex in Rm. In Storatonovich’s original proof
of the achievability, he showed the equality condition as Y =
P(X) and Y = (pX|A(1 | A), pX|A(2 | A), . . . , pX|A(m |
A)) ∈ P(X). In [19], Raginsky gave much shorter proof with
Y = A and Y = A. Note that both equality conditions are
special cases of the Theorem 1, i.e., following holds.

Proposition 6. t(A) = A is a sufficient statistic
of A for X . Moreover, if a family of distributions
{pA|X(· | x)}x∈X have the same support, then t(A) =
(pX|A(1|A), pX|A(2|A), . . . , pX|A(m | A)) is also sufficient
for X .

Proof. See Appendix C. �

Remark 6. Even though mmse-leakage Lmmse(X → Y ) and
Arimoto’s MI of order α =∞, i.e., IA

∞(X;Y ) does not have
the independence property 3), almost the same result holds
for V`Lmmse

(R) and V`IA
∞

(R) since the only part that we use
the independence property is to prove V`L(0) = 0. Note that
V`Lmmse

(0) ≥ 0 and V`IA
∞

(0) ≥ 0 in general.

B. Basic properties of the Fundamental Limit

The following basic properties hold for the fundamental
limit V`L(R).

Proposition 7.
1) V`L(R) is non-decreasing in R.
2) V`L(R) is concave (resp. quasi-concave) if L(X → A)

is convex (resp. quasi-convex) in pA|X .



3) Let L1(X → Y ),L2(X → Y ) be information leakage
measures. If there exists a constant c > 0 such that
L1(X → Y ) ≤ cL2(X → Y ), then

V`L(2)(R) ≤ V`L(1)(cR), (39)

V`L(2)(R/c) ≤ V`L(1)(R). (40)

Proof. See Appendix D. �

Corollary 1. From the property 2) above, following holds.

• V`I(R) is concave since I(X;A) is convex in pA|X for
fixed pX (see, e.g., [21, Thm 2.7.4])

• V`Lα(R) = V`IA
α

(R) is quasi-concave since Lα(X →
A) = IA

α(X;A) is quasi-convex in pA|X for fixed pX
(see [10, Footnote 3])

• For α > 0, V`IS
α

(R) is quasi-concave since IS
α(X;A) is

quasi-convex in pA|X for fixed pX . For 0 < α ≤ 1,
V`IS

α
(R) is concave since IS

α(X;A) is convex in pA|X
for fixed pX (see [31, Thm 10])

• For 0 < α ≤ 1, V`IC
α

(R) is concave since IC
α(X;A) is

convex in pA|X for fixed pX (see [32, Thm 9 (c)])
• V`If (R) and V`Lf (R) are concave since If (X;A) and
Lf (X → A) are both convex in pA|X7 for fixed pX

• For α > 0, V`Lmax
α

(R) is quasi-concave since Lmax
α (X →

A) is quasi-convex in pA|X for fixed support of pX (see
[10, Thm 3]). For 0 < α ≤ 1, V`Lmax

α
(R) is concave since

Lmax
α (X → A) is convex in pA|X for fixed support of

pX
8

Figure 2 shows a graph of the value of Shannon’s informa-
tion.

Fig. 2. Value of Shannon’s information

C. Extension: logarithmic value of information

Instead of the average gain in Definition 5, we can consider
logarithmic gain to capture utility.

7From the convexity of f -divergence [26, Lem 4.1], one can derive the
convexity of If (X;A) and Lf (X → A) in pA|X .

8Convexity of Lmax
α (X → A) in pA|X follows from [10, Thm 2] and [31,

Thm 10].

Definition 8. The logarithmic gain of using Y on X for
making an action A when a loss function is `(x, a) and the
logarithmic value of information are defined as follows:

Lgain`(X;Y ) := log
infδ∗ r(δ

∗, pY )

infδ∗ r(δ∗, pY |X)
(41)

= log
infa EX [`(X, a)]

EY [infa EX [`(X, a) | Y ]]
, (42)

LV`L(R;Y) := sup
pY |X :

L(X→Y )≤R

Lgain`(X;Y ). (43)

Example 6. Let A = X̂ and `sq(x, x̂) = (x− x̂)2. Then

Lgain`sq(X;Y ) = log
V(X)

EY [V(X | Y )]
=: LMS(X → Y ).

(44)

From Proposition 2, it follows that Lgain`sq(X;Y ) =
LMS(X → Y ) has properties 1), 2) and does not have the
independence property 3).

Remark 7. It is worth noting that Issa et al. introduce maxi-
mal versions of the logarithmic gain in [15]. For example, they
inrotoduced the variance leakage Lv(X → Y ) as follows:

Lv(X → Y ) := sup
U−X−Y

LMS(U → Y ) (45)

= − log(1− ρm(X;Y )), (46)

(see [15, Def 10 and Lem 16]) where

ρm(X;Y ) := sup
f,g:

E[f(X)]=E[g(X)]=0,

E[f(X)2]=E[g(X)2]=1

E[f(X)g(Y )] (47)

is the maximal correlation. Note that the variance leakage
Lv(X → Y ) have all properties 1), 2) and 3) in Definition 3
(see [23, Prop 5.2]). They also introduced a maximal version
of all the logarithmic gain, called maximal cost leakage
Lc(X → Y ), as follows:

Lc(X → Y ) := sup
U−X−Y

Û,` : X×X̂→R+

Lgain`(U ;Y ) (48)

= − log
∑
y

min
x∈supp(pX)

pY |X(y | x) (49)

(see [15, Def 11 and Thm 15]). Note also that the maximal
cost gain Lc(X → Y ) have have all properties 1), 2) and
3) in Definition 3 (see [15, Cor 5]). In addition to these
loss (cost) based information leakage measures, they also
introduced several utility9 based information leakage measures
and showed relationships to the maximal information leakage
LMaxL(X → Y ). See [15] for detail.

For the logarithmic gain, a similar result as in Theorem 1
holds as follows.

9Here we used the term ‘utility’ in a statistical decision-theoretic sense.
Note that Issa et al. call ‘utility based information leakage’ as ‘gain based
information leakage’.



Corollary 2. For a classical loss `(x, a), define a function as
follows:

LV`L(R) := log inf
a
EX [`(X, a)]

− inf
pA|X :

L(X→A)≤R

logEX,A [`(X,A)] . (50)

Then, following holds.

sup
Y

LV`L(R;Y) = LV`L(R). (51)

V. APPLICATION TO PRIVACY-UTILITY TRADE-OFF

In this section, we provide an interpretation of the achiev-
ability condition in Theorem 1 in the PUT context. We assume
three parties: data curator (Alice), a legitimate user (Bob),
and an adversary (Eve). Alice has the original data X and
disclose perturbed data Y through a privacy mechanism pY |X
to prevent information leakage to Eve. A privacy constraint is
represented as L(X → Y ) ≤ R, where the information leak-
age measure L(X → Y ) is chosen arbitrarily by Alice. While
Bob’s purpose of using the published data Y is represented
as an action, a deterministic decision rule and a loss function,
i.e., A = δ(Y ) and `(x, a), respectively. Suppose that Alice
knows the Bob’s purpose of using the published data Y before
disclosure. We also assume that Bob make his action with the
optimal decision rule δBayes under the loss functions `(x, a).

In the situation above, Theorem 1 states that in order to
maximize utility measured by gain`(X;Y ) under the privacy
constraint L(X → Y ) ≤ R, Alice should take the following
steps:

1) Find the channel p∗A|X such that

p∗A|X = arginf
pA|X : L(X→A)≤R

EX,A [`(X,A)] . (52)

2) Generate a random variable Ã drawn to p∗A|X .
3) Finally, disclose Y = t(Ã), a sufficient statistic of Ã

for X , to public.

Remark 8. When Alice assumes Eve’s purpose of using
Y , say δ∗eve and `eve(x, y, a, δ

∗
eve), she can chose a privacy

constraint as an average gain for Eve, i.e., L(X → Y ) :=
gain`eve(X;Y ). Note that she can even adopt the privacy
constraint as the maximal gain Mgain`eve(X;Y ) defined as
follows, which is the inferential gain for using Y in the most
favorable situation for Eve.

Definition 9 (Maximal gain). For a standard loss
`(x, y, a, δ∗), the maximal gain of using Y on X for
making an action A is defined as

Mgain`(X;Y ) := EY
[

inf
δ∗(y,·)

EX [L(X, δ∗(Y, ·))]
]

−min
y

inf
δ∗(y,·)

EX [L(X, δ∗(Y, ·)) | Y = y] . (53)

Note that it follows immediately from [33, Prop 23] that
the maximal gain satisfies DPI.

VI. CONCLUSION

In this study, we generalized the Stratonovich’s VoI to
formulate a problem of decision-making under a general
information leakage constraint and a general loss function.
We derived upper bound for the VoI and showed weaker
achievability condition than ever for a classical loss function.
We presented an interpretation of these results in the PUT
context and some extended results. Future work includes
deriving calculation algorithms for the upper bound.

APPENDIX A
PROOF OF PROPOSITION 5

Proof. Define Ũ `L(R;Y) and Ū `L(R) as the second terms of
the RHS in (28) and (35), respectively, i.e.,

Ũ `L(R;Y) := inf
pY |X :

L(X→Y )≤R

EY
[

inf
δ∗(y,·)

EX [L(X, δ∗(Y, ·)) | Y ]

]
,

(54)

Ū `L(R;Y) := inf
pY |X ,δ

∗ :

L(X→A)≤R

EX,Y [L(X, δ∗(Y, ·))] . (55)

It suffices to show that Ũ `L(R;Y) ≥ Ū `L(R;Y) for arbitrary
alphabet Y . Define the privacy mechanism p̃Y |X and the
optimal randomized decision rule δ̃∗,Bayes = p̃A|Y as

p̃Y |X := arginf
pY |X :

L(X→Y )≤R

Ũ `L(R;Y), (56)

δ̃∗,Bayes(y, a) = p̃A|Y (a | y) (57)

:= arginf
δ∗(y,·)

∑
x,a

`(x, y, a, δ∗)δ∗(y, a)p̃X|Y (x | y),

(58)

where p̃X|Y (x | y) :=
pX(x)p̃Y |X(y|x)

pY (y) . Since X−Y −A forms
a Markov chain for the distributions p̃Y |X and δ̃∗,Bayes = p̃A|Y ,

L(X → A) ≤ L(X → Y ) ≤ R (59)

holds from DPI (16) and (56). Then from (59),

Ū `L(R;Y) = inf
pY |X ,δ

∗ :

L(X→A)≤R

EX,Y [L(X, δ∗(Y, ·))] (60)

≤
∑
x,y,a

pX(x)p̃Y |X(y | x)δ̃∗,Bayes(y, a)`(x, y, a, δ̃∗,Bayes)

(61)

= Ũ `L(R;Y). (62)

�

APPENDIX B
PROOF OF THEOREM 1

Based on [2, Chapter. 9.7] and a refined proof in [19], we
prove Theorem 1 as follows.



Proof. Define U `L(R;Y) and U `L(R) as the second terms of
RHS in (28) and (35), respectively, i.e.,

U `L(R;Y) := inf
pY |X :

L(X→Y )≤R

EY
[
inf
a
EX [`(X, a) | Y ]

]
, (63)

U `L(R) := inf
pA|X :

L(X→A)≤R

EX,A [`(X,A)] . (64)

(Converse part): It suffices to show that U `L(R;Y) ≥ U `L(R)
to prove V`L(R;Y) ≤ V`L(R) for arbitrary Y . This can be
proved in a similar way to that in the proof of Proposition 5
(see [20, Appendix D]).
(Achievable part): Let Y := t(A). It suffices to show that
U `L(R; t(A)) ≤ U `L(R). Define p∗A|X , p

∗
A and p∗X|A as follows:

p∗A|X := argmin
pA|X :

L(X→A)≤R

EX,A [`(X,A)] , (65)

p∗A(a) :=
∑
x

pX(x)p∗A|X(a | x), (66)

p∗X|A(x | a) :=
pX(x)p∗A|X(a | x)

p∗A(a)
. (67)

Let Ã be a random variable drawn to p∗A. Since X−Ã−Y :=
t(Ã) forms a Markov chain,

L(X → Y ) ≤ L(X → Ã) ≤ R (68)

holds from DPI (16) and (65). Now, define a privacy mecha-
nism p∗Y |X as

p∗Y |X(y | x) :=
∑
a

p∗A|X(a | x)1l{y=t(a)}. (69)

Then

U `L(R; t(A)) := inf
pY |X :

L(X→Y )≤R

EY
[
inf
a
EX [`(X, a) | Y ]

]
(70)

≤ EY
[
inf
a
E
p∗X|Y
X [`(X, a) | Y ]

]
, (71)

where the expectation E
p∗Y |X
X [·] is taken over the distribution

p∗X|Y (x|y) = pX(x)p∗Y |X(y|x)/p∗Y (y). Now, we will evaluate

infa E
p∗X|Y
X [`(X, a) | Y = t(a′)] from above.

inf
a
E
p∗X|Y
X [`(X, a) | Y = t(a′)]

(∗)
= inf

a
E
p∗X|A
X

[
`(X, a)

∣∣∣ Ã = a′
]

(72)

≤ E
p∗X|A
X

[
`(X, a′)

∣∣∣ Ã = a′
]
, (73)

where the equality (∗) follows from the sufficiency of t(Ã)
10 . Thus we have

EY
[
inf
a
E
p∗X|Y
X [`(X, a)] | Y

]
= EÃ

[
inf
a
E
p∗X|A
X [`(X, a)] | Ã

]
(74)

≤ E
p∗X|A

X,Ã

[
`(X, Ã)

]
= inf

pA|X :

L(X→A)≤R

EX,A [`(X,A)] (75)

= U `L(R). (76)

By combining with (71), U `L(R; t(A)) ≤ U `L(R).
�

APPENDIX C
PROOF OF PROPOSITION 6

The sufficiency of t(A) = A is trivial. To prove the suffi-
ciency of t(A) = (pX|A(1|A), pX|A(2|A), . . . , pX|A(m|A)),
we first introduce the following lemmas.

Lemma 1 ( [34, Thm 6.12]). Assume that a family of distri-
butions {pA|X(· | x)}x∈X have the same support. Then

s(A) =

(
pA|X(A | 2)

pA|X(A | 1)
, . . . ,

pA|X(A | m)

pA|X(A | 1)

)
(77)

is a minimal sufficient statistic of A for X .

Lemma 2. Let T1 = t1(A) be a sufficient statistic of A for
X . If there exists a (measurable) function f such that T1 =
f(t2(A)), then T2 = t2(A) is also sufficient for X .

Proof. The statement follows immediately from the Fisher’s
factorization theorem (see, e.g., [34, Thm 6.5]) or DPI for
Shannon’s mutual information (see e.g., [21, Eq (2.124)]). �

Lemma 3.

e(A) =

(
pX|A(2 | A)

pX|A(1 | A)
, . . . ,

pX|A(m | A)

pX|A(1 | A)

)
(78)

is a (minimal) sufficient statistic of A for X .

Proof. 11 Since s(A) :=
(
pA|X(A|2)
pA|X(A|1) , . . . ,

pA|X(A|m)

pA|X(A|1)

)
=(

pX(1)
pX(2) ·

pX|A(2|A)

pX|A(1|A) , . . . ,
pX(1)
pX(m) ·

pX|A(m|A)

pX|A(1|A)

)
is a function of

e(A), it follows from Lemma 2 that e(A) is also sufficient.
The minimality follows immediately as follows: For arbitrary
a, b ∈ A, it holds that s(a) = s(b)⇐⇒ e(a) = e(b). �

Making use of these results, we prove Proposition 6 as
follows.

Proof. Since e(A) =
(
pX|A(2|A)

pX|A(1|A) , . . . ,
pX|A(m|A)

pX|A(1|A)

)
is a func-

tion of t(A) = (pX|A(1|A), pX|A(2|A), . . . , pX|A(m|A)),
from Lemma 2, t(A) is also sufficient for X . �

10It follows immediately from pX|Ã(x|a
′) =

∑
y pX,Y |Ã(x, y|a

′) =∑
y pY |Ã(y|a

′)pX|Y (x|y) = pX|Y (x|y)1l{y=t(a′)} = pX|Y (x | t(a′)),
where we used the sufficiency of Y = t(Ã) in the second equality.

11This proof is based on [35, Prop 3.3].



APPENDIX D
PROOF OF PROPOSITION 7

Proof. The property 1) is trivial. To prove the property 2), it
suffices to show that U(R) := inf pA|X :

L(X→A)≤R
EX,A [`(X,A)]

is convex (resp. quasi-convex) when L(X → A) =
L(pX , pA|X) is convex (resp. quasi-convex). We will only
prove the convexity. For arbitrary 0 ≤ λ ≤ 1 and 0 ≤
R1, R2 ≤ K(X), define

p∗,1A|X := arginf
pA|X :

L(X→A)≤R1

EX,A [`(X,A)] , (79)

p∗,2A|X := arginf
pA|X :

L(X→A)≤R2

EX,A [`(X,A)] , (80)

p∗,λA|X := λp∗,1A|X + (1− λ)p∗,2A|X . (81)

Then let denote L∗,1(X → A),L∗,2(X → A) and L∗,λ(X →
A) as the α-leakages defined by p∗,1A|X , p

∗,2
A|X and p∗,λA|X ,

respectively. Then

L∗,λ(X → A) ≤ λL∗,1(X → A)

+ (1− λ)L∗,2(X → A) (82)
≤ λR1 + (1− λ)R2. (83)

Therefore,

U(λR1 + (1− λ)R2) ≤ E
p∗,λ
A|X
X,A [`(X,A)] (84)

=
∑
x,a

pX(x)p∗,λA|X(a | x)`(x, a) (85)

= λU(R1) + (1− λ)U(R2). (86)

The quasi-convexity can be proved in a similar way.
To prove the property 3), it suffices to show that

V`L2
(R;Y) ≤ V`L1

(cR;Y) (87)

for arbitrary alphabet Y . To this end, define

p∗,2Y |X := argsup
pY |X :

L2(X→Y )≤R

gain`(X;Y ) (88)

for arbitrary alphabet Y . Since

L1(pX , p
∗,2
Y |X) ≤ cL2(pX , p

∗,2
Y |X) ≤ cR, (89)

it holds that

V`L1
(cR;Y) := sup

pY |X :

L1(X→Y )≤cR

gain`(X;Y ) (90)

≤ gain`(pX , p
∗,2
Y |X) = V`L2

(R;Y), (91)

where gain`(pX , p
∗,2
Y |X) := r(δ∗,Bayes, p∗,2Y )−r(δ∗,Bayes, p∗,2Y |X)

and p∗,2Y (y) :=
∑
x pX(x)p∗,2Y |X(y | x). �
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