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Abstract—Optimum parameter estimation methods require
knowledge of a parametric probability density that statistically
describes the available observations. In this work we examine
Bayesian and non-Bayesian parameter estimation problems un-
der a data-driven formulation where the necessary parametric
probability density is replaced by available data. We present
various data-driven versions that either result in neural network
approximations of the optimum estimators or in well defined op-
timization problems that can be solved numerically. In particular,
for the data-driven equivalent of non-Bayesian estimation we end
up with optimization problems similar to the ones encountered
for the design of generative networks.

Index Terms—Parameter estimation, Neural networks, Data-
driven estimation.

I. INTRODUCTION

THE theory of Detection and Estimation constitutes a

major background knowledge in Engineering and Statis-

tics. The corresponding methodologies find application in

numerous scientific problems and either provide the actual

solution or serve as a starting point for developing techniques

that are practically implementable. It is remarkable that with

very introductory knowledge of Probability Theory one can

derive optimum Detection and Parameter Estimation methods

[1], [2]. In parameter estimation, common denominator in

all the optimum approaches is the key assumption that we

have a complete statistical description in the form of a joint

probability density functions of the observations and the pa-

rameters to be estimated (Bayesian) or the observations given

the parameters to be estimated (non-Bayesian).

Despite the availability of several popular classes of prob-

ability densities, these statistical models tend to fail dramat-

ically when they are used to capture the statistical behavior

of modern datasets. The reason is that nowadays data are

mostly images or videos enjoying a more structured form

which cannot be adequately explained by the usual classes

of probability density families (e.g. Gaussian). It is therefore

clear that it is necessary to develop techniques that do not rely

on specific density models.

In most applications there exist sufficient amount of prior

data that can be used for training, consequently it would

be interesting to attempt to develop detection and estimation

methods that are data-driven, namely do not require exact

(or partial) knowledge of probability densities and therefore

rely solely on data. Such techniques were developed in [3]

for several versions of the binary hypothesis testing problem

based on the direct estimation of the likelihood ratio of the

two unknown densities which, as we know, is a sufficient

statistic for the detection problem. Similar developments for

parameter estimation, to our knowledge, do not seem to exist

in any systematic way. Of course it is possible to find pure

data-driven estimators for specific estimation problems as for

example the estimate of a location parameter but there is

no method that provides an answer for a general class of

problems. It is this gap we attempt to fill, at least to some

extend, developing techniques that are applicable to classes of

parameter estimation problems.

Our paper is organized as follows: Section I contains the

Introduction. In Section II we consider data-driven versions of

the parameter estimation problem for the Bayesian approach.

Section III constitutes the most important part of our work.

We focus on parametric density families generated through

parametric transformations and consider the estimation prob-

lem under a non-Bayesian framework. In Section IV we apply

our methodology to the estimation of a simple data translation

problem and evaluate the effectiveness of our idea and how it

compares to already existing data-driven methods.

II. DATA-DRIVEN BAYESIAN ESTIMATION

In classical Bayesian parameter estimation we assume that

a random vector X follows the conditional parametric prob-

ability density f(X |θ), where θ is the parameter vector that

we like to estimate from realizations of X. Vector θ is also

considered a realization of a random vector ϑ for which we

assume knowledge of a prior density p(θ). Combining the two

densities we conclude that f(X, θ) = f(X |θ)p(θ) is the joint

density of the random pair (X, ϑ). Clearly knowing f(X, θ)
is equivalent to knowing the two densities f(X |θ), p(θ). We

recall that an estimator of θ is any deterministic vector

function θ̂(X) that has, of course, the same size as θ.

In order to produce the optimum estimator, according to

classical Bayesian theory [1], [2], we need to select a cost

function C(U, θ) and define the average cost

C (θ̂)=EX,ϑ

[

C
(

θ̂(X), ϑ
)]

=
∫∫

C
(

θ̂(X), θ
)

f(X, θ)dXdθ, (1)

where EZ[·] denotes expectation with respect to Z. The average

cost must be minimized over the vector function θ̂(X) in order

to produce the optimum estimator θ̂o(X), that is,

θ̂o(X) = argmin
θ̂(X)

C (θ̂) = arg min
θ̂(X)

EX,ϑ

[

C
(

θ̂(X), ϑ
)]

. (2)
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From [1], [2] we also know that if we define the function

G(U,X) = Eϑ

[

C
(

U, ϑ
)

|X
]

=
∫
C
(

U, θ
)

f(θ|X)dθ

=

∫

C(U, θ)f(X |θ)p(θ)dθ
∫

f(X |θ)p(θ)dθ
=

Eϑ

[

C(U, ϑ)f(X |ϑ)
]

Eϑ

[

f(X |ϑ)
] (3)

where f(θ|X) is the posterior probability density of ϑ given

X then, using (3) it is also possible to recover the optimum

estimator from the following optimization

θ̂o(X)=argmin
U

G(U,X)=argmin
U

Eϑ

[

C(U, ϑ)f(X |ϑ)
]

. (4)

We will use (2) and (4) in order to derive data-driven versions

of the optimum estimators. We distinguish the following two

cases.

A. Unknown f(X |θ) and p(θ)

This is the simplest and most straightforward version. The

knowledge of the two densities or, equivalently, the knowledge

of the joint density f(X, θ) is replaced by the availability of

realizations of the pair (X, ϑ) suggesting that we must have

a collection of pairs {(X1, θ1), . . . , (Xn, θn)}. We emphasize

that we need realizations of the pair which is representative

of the random relationship that exists between X and ϑ

and expressed through the joint density. If instead we only

have two unrelated (i.e. independent) sets {X1, . . . , Xn} and

{θ1, . . . , θn} then this information is clearly not sufficient to

capture the random connection between X and ϑ.

Since our estimator is a vector function θ̂(X) that we like

to optimize as described above, we can limit our search within

a class of vector functions u(X,α) as for example the class

of neural networks with α denoting the network parameters.

Replacing θ̂(X) in (1) with u(X,α) defines a new average

cost that depends only on the network parameters α

C̃ (α) = EX,ϑ

[

C
(

u(X, α), ϑ
)]

. (5)

As in (2), we would like to minimize this criterion over α in

order to optimize u(X,α), that is,

αo = argmin
α

C̃ (α) = argmin
α

EX,ϑ

[

C
(

u(X, α), ϑ
)]

. (6)

The optimization in (6) is in the classical form that accepts

computation of αo using the stochastic gradient descent al-

gorithm applied to the training data {(X1, θ1), . . . , (Xn, θn)}.

Specifically we have

αt = αt−1 − µ∇αC
(

u(Xt, αt−1), θt
)

= αt−1 − µ
[

Jαu(Xt, αt−1)
]⊺[

∇UC
(

u(Xt, αt−1), θt
)]

, (7)

where Jαu(X,α) denotes the Jacobian of u(X,α) with respect

to α and ∇UC
(

U, θ) the gradient of C
(

U, θ) with respect to

U . We recall that µ > 0 is the step size (learning rate) and

that in each iteration t we employ a pair (Xt, θt) from the

available training data. If the data are exhausted before we

reach convergence then we can reuse them after, possibly,

applying a random permutation. Alternatively, we could ap-

proximate expectation with sample means and replace (6) with

αo = argmin
α

1

n

n
∑

i=1

C
(

u(Xi, α), θi
)

,

that accepts a gradient descent iterative solution of the form

αt = αt−1

− µ
1

n

n
∑

i=1

[

Jαu(Xi, αt−1)
]⊺[

∇UC
(

u(Xi, αt−1), θi
)]

.

If either of the two algorithms converges to α̂o and if this limit

does not correspond to some local minimum, then we expect

that we can approximate the optimum estimator as follows

θ̂o(X) ≈ u(X, α̂o). (8)

In other words, we anticipate that the output of u(X, α̂o)
will provide estimates that are close to the estimates of the

optimum estimator θ̂o(X).
From the above it is clear that in this case we compute

a mathematical formula for the estimator in the form, for

example, of a neural network. We must however point out

that the application of iterative solvers based on gradients

is possible only if we can find the gradient of C(U, θ) with

respect to U . This is clearly the case in the MMSE criterion

where C(U, θ) = ‖U − θ‖2 or the MAE criterion with

C(U, θ) = ‖U − θ‖1. Unfortunately the same observation

does not apply in the case of the popular MAP estimator

where C(U, θ) = 1{‖U−θ‖>δ} with 0 < δ ≪ 1 and 1A

denoting the indicator function of the set A. This is because

the indicator takes values 1 or 0 with derivative that is

either 0 at non-boundary points or ∞ at boundary points.

Of course it is always possible to approximate 1{‖U−θ‖>δ}

with some smooth and differentiable functions but we will

still experience computational problems because δ must be

selected very small suggesting that in (7) we will rarely

observe gradients that are not close to 0. This will clearly affect

the convergence speed of the iterations producing excessive

convergence delays. Consequently the MAP estimator requires

a substantially different approach for which, unfortunately, we

have no meaningful answer at the moment.

B. Known f(X |θ) and unknown p(θ)

Although we argued that we are interested in abandoning the

assumption of known probability densities, we would like to

consider the case where f(X |θ) is known. The reason is that in

some applications this assumption is regarded as realistic. The

prior p(θ) of the random parameter ϑ on the other hand, as in

the previous case, is considered unknown and replaced by the

availability of a set of realizations {θ1, . . . , θn} that follow

p(θ). The goal is to employ directly this dataset to obtain

Bayesian-like estimates of the desired parameters instead of

using it to estimate the prior density p(θ) first and then apply

the classical Bayesian theory.

Here we are not necessarily targeting the development of a

mathematical expression for the estimator since we no longer

have realizations of X that could be used for training. We

recall that we have assumed that we know the functional form



of the conditional density f(X |θ). Suppose now that we are

given a realization X of X for which we would like to obtain

the corresponding estimate of θ. Following (4) we have that

θ̂o(X) = argmin
U

Eϑ

[

C(U, ϑ)f(X |ϑ)
]

, (9)

which involves averaging only with respect to ϑ while f(X |θ)
for given X is a known function of θ. The optimization in

(9) is in the standard form that accepts a stochastic gradient

descent algorithmic solution of the form

Ut = Ut−1 − µ [∇UC(Ut−1, θt)] f(X |θt). (10)

The limit of the sequence {Ut} generated by the iterative

procedure in (10) will constitute the desired estimate θ̂o(X).
Alternatively, one may approximate the expectation in (9) with

the sample mean and attempt the minimization

θ̂o(X) = argmin
U

1

n

n
∑

i=1

C(U, θi)f(X |θi) (11)

which whenever not possible to solve analytically it can give

rise to a gradient descent algorithm of the form

Ut = Ut−1 − µ
1

n

n
∑

i=1

[∇UC(Ut−1, θi)] f(X |θi), (12)

every time the data vector X is given. We observe that both

iterations (10) and (12), for every given observation vector

X , employ the dataset {θ1, . . . , θn} and the knowledge of the

density f(X |θ) in order to compute numerically the desired

estimate.

There are cases where it is possible to solve (11) directly and

obtain a mathematical formula for the corresponding estimator.

When C(U, θ) = ‖U − θ‖2, that is, when we are interested in

the MMSE, it is easy to verify that this leads to the following

estimator function

θ̂MMSE(X) =

∑n
i=1 θi f(X |θi)

∑n
i=1 f(X |θi)

, (13)

with the right hand side being an approximation of the

conditional expectation of θ given X which is the ideal MMSE

estimator. The resulting formula is clearly not in the form of a

neural network. A closed form solution is also possible in the

case of the minimum mean absolute error (MMAE) however,

due to lack of space we are not going to present it.

Completing our presentation of the Bayesian-like data-

driven estimators we must add that, as in Section II-A, iterative

(stochastic) gradient descent algorithms are impossible to

apply in the case of the MAP estimator because, as before,

we cannot compute the gradient of C(U, θ) with respect to U .

III. DATA-DRIVEN NON-BAYESIAN ESTIMATION

Let us now examine the far more interesting problem of

non-Bayesian parameter estimation. In its classical version we

are given a density f(X |θ) that contains a parameter vector

θ which is considered deterministic and unknown. In other

words there exist no prior density that describes its statistical

behavior. The most popular means to solve this parameter

estimation problem [1], [2] is by employing the Maximum

Likelihood Estimator (MLE), namely

θ̂(X) = argmax
θ

f(X |θ). (14)

This estimator, under general conditions enjoys asymptotic

optimality (as the length of X tends to infinity) in the sense

that in the limit its error covariance matrix approaches the

Cramer-Rao Lower Bound (CRLB).

Defining a data-driven version for this estimation problem

is not as straightforward as in the Bayesian case. First of all

because there is no prior for θ this immediately translates

in the data-driven setup that there are no realizations of θ

which could be used for training. Since the idea is to replace

probability densities with data sampled from these densities

we assume that we have available a set of data {X1, . . . , Xn}
that follow the unknown density f(X |θ) for the same θ. If we

try to solve our problem at this stage, it is possible to employ

different data-driven formulations with drastically different

answers but without any means to decide which is the most

appropriate solution. To be able to proceed we need to impose

additional structure on the problem of interest that will allow

us to produce a version which makes sense from a practical

as well as theoretical point of view.

A possible direction we may follow is to define the para-

metric density f(X |θ) indirectly. Let us start with a random

vector Z which is distributed according to the density g(Z).
Consider now a deterministic transformation T(Z, θ) that

contains the parameter vector θ. By defining with the help

of the transformation the new random vector X = T(Z, θ) it

is clear that X will have a probability density f(X |θ) which is

a function of θ. We note that the parametric density f(X |θ) of

course exists but we do not necessarily have its explicit form.

We must also point out that the transformation does not have

to be one-to-one since the resulting X can be of dimension

larger than the dimension of Z allowing X to live on a lower

dimensional manifold. Consider now the following parameter

estimation problem.

Non-Bayesian Parameter Estimation Problem: Assume a

random vector Z is distributed according to the density

g(Z). A transformation T(Z, θ) with parameters θ is applied

onto Z generating the random vector X = T(Z, θ) which

follows the unknown density f(X |θ). We are given the dataset

{X1, . . . , Xn} comprised of independent realizations of X

generated with the same θ and the dataset {Z1, . . . , Zm}
with independent realizations of Z that follow g(Z). Assuming

knowledge of the functional form of the transformation T(Z, θ)
we would like to estimate the parameter vector θ that gives

rise to the first dataset.

This is clearly a parameter estimation problem which is

purely data-driven since there is no knowledge of any probabil-

ity density. One might argue that we do not need any densities

since from the correspondence Xi = T(Zi, θ) it is a simple

exercise to estimate θ by minimizing some form of distance

between the two sides. However, this is not true because the

two datasets are considered entirely unrelated being sampled



independently with no actual correspondence between their

samples. The first dataset is simply a representative of f(X |θ)
(containing the information about θ) while the second is a

representative of g(Z).
With this class of parametric densities generated with the

help of parametrized transformations we cannot, of course,

capture the generality of the original parameter estimation

problem where f(X |θ) can be any parametric density. However

the proposed class is fairly rich with some classical parameter

estimation problems being straightforward examples of the

proposed data model. For instance if T(Z, θ) = Z + θ then

this corresponds to an unknown translation of the random

vector Z. In fact this simple transformation will be used in

our simulation experiments in Section IV. Another well known

instance of our setting is a change of scale in each element

of Z where T(Z, θ) = θ ⊙ Z with “⊙” denoting the element-

by-element multiplication of the two vectors. Finally, a more

challenging version would be T(Z,Θ) = ΘZ where Θ is an

unknown matrix that replaces the parameter vector θ. Clearly,

one can come up with more complex examples that are not

necessarily linear as the cases we mentioned.

Possible solution to the non-Bayesian parameter estima-

tion problem constitutes the moment matching method pro-

posed in [4] where moments of X estimated from the

first dataset {X1, . . . , Xn} are matched to the corresponding

moments of T(Z, θ) using the transformed second dataset

{T(Z1, θ), . . . ,T(Zm, θ)} thus defining suitable equations.

Employing an adequate number of such equations we can

solve for the unknown parameters θ. Unfortunately there is an

infinite number of moment combinations that could be used

to solve the same problem and, more importantly, we recall

that classical moment estimation methods are notoriously non-

robust hence easily resulting in unsatisfactory performance.

A. Density Matching

Instead of attempting to match moments we could al-

ternatively select the parameters to match the two prob-

ability densities of the two datasets {X1, . . . , Xn} and

{T(Z1, θ), . . . ,T(Zm, θ)}. For density matching it is not nec-

essary to estimate the two densities. For example, it would

be sufficient to estimate the likelihood ratio function and by

properly selecting the parameters θ to bring this function as

close as possible to 1 (perfect match).

The idea we just mentioned is motivated by the results in [5]

where the notion of Generative Adversarial Networks (GANs)

was first introduced. We recall from [5] that we have a random

vector X that follows a density f(X) and we are interested in

generating realization of X. This is achieved by first generating

realizations of Z which follows some density g(Z) and then

applying a transformation Y = G(Z) with G(Z) known as the

“generator” function. The generator G(Z) is designed so that

the density of Y matches the density of X. The “matching

quality” is evaluated with the help of the “discriminator”

function D(X) that tries to differentiate between the “true”

X and the “synthetic” G(Z). Matching is achieved when the

selected generator makes the discriminator fail in its task to

distinguish the statistical behavior of the two random vectors

X and Y. In [5] it is proved that the generator/discriminator

pair which is capable of achieving the desired matching is the

solution to the following min-max (adversarial) problem

min
D(X)

max
G(Z)

{

EX[logD(X)] + EZ

[

log
(

1− D
(

G(Z)
))]}

. (15)

This first original work was followed by a number of

alternative methods that appeared in the literature all adopting

a similar adversarial setup. We must mention [6] but also the

more general result in [7], [8]. Regarding the latter approach,

the problem in (15) is extended to

min
G(Z)

max
D(X)

{

EX[φ
(

D(X)
)

] + EZ

[

ψ
(

D
(

G(Z)
))]}

, (16)

with the two functions φ(z), ψ(z) satisfying ψ′(z) = ρ(z),
φ′(z) = −ω−1(z)ρ(z), where “ ′ ” denotes derivative, ρ(z) >
0 is a strictly positive function and ω(r) is a strictly increasing

differentiable function defined on r ∈ [0,∞) with ω−1(z)
being its inverse function. In [7], [8] it is then proved that the

adversarial problem in (16) produces a generator/discriminator

pair with the generator output Y = G(Z) matching the

statistical behavior of X (i.e. its density). In [7] one can

find a plethora of pairs following the above rules which are

successful in identifying the right generator function.

Adversarial approaches when applied to the design of GANs

are well known to suffer from convergence instability when

implemented iteratively using stochastic gradients. Of course

we must also not forget the fact that we are interested

in designing a generator and we end up designing also a

second function, the discriminator, which becomes useless

once the generator is computed. One can find very few

generator design techniques that do not need a discriminator

function. These methods are non-adversarial suggesting that

their implementation is going to be far more stable than their

adversarial counterparts. We focus on a specific such technique

introduced in [9] which is called Maximal Correlation method

and consists in solving the following optimization problem

with respect to the generator G(Z)

max
G(Z)

EX,Z1

[

K
(

X,G(Z1)
)]

EX,Z2

[

K
(

X,G(Z2)
)]

EZ1,Z2

[

K
(

G(Z1),G(Z2)
)] , (17)

where K(X,Y ) is a positive definite kernel and Z1,Z2 are

two independent random vectors with the same density g(Z)
while X follows f(X). As it is shown in [9] the generator

function that maximizes the correlation in (17) when used in

the transformation Y = G(Z) the Y it produces matches X in

density exactly as in the adversarial problems. Since here we

have a single optimization its implementation is far easier.

The connection of the two approaches in (15) and (17) to

our parameter estimation problem is not difficult to see. In our

case we do not need to identify the generator function G(Z)
since this role is undertaken by the parametric transformation

T(Z, θ). Focusing on (17) which we are going to adopt in our

simulation experiments the optimization problem becomes

max
θ

EX,Z1

[

K
(

X,T(Z1, θ)
)]

EX,Z2

[

K
(

X,T(Z2, θ)
)]

EZ1,Z2

[

K
(

T(Z1, θ),T(Z2, θ)
)] ,



with the optimization over G(Z) being replaced by the opti-

mization over the parameters θ. By approximating expectations

with sample means gives rise to the data-driven version of the

optimization problem that will provide our desired parameter

estimates. Specifically we are interested in

max
θ

N1(θ)N2(θ)

D(θ)
(18)

where

Nℓ(θ) =

n
∑

i=1

mℓ
∑

j=1

K
(

Xi,T(Z
ℓ
j , θ)

)

, ℓ = 1, 2

D(θ) =

m1
∑

i=1

m2
∑

j=1

K
(

T(Z1
i , θ),T(Z

2
j , θ)

)

,

(19)

and where we have split the second dataset {Z1, . . . , Zm} into

two independent parts {Z1
1 , . . . , Z

1
m1

} and {Z2
1 , . . . , Z

2
m2

}.

IV. EXPERIMENTS

We focus on the non-Bayesian version and in particular the

first problem mentioned in Section III namely the estimation

of an unknown translation of the data. For simplicity we limit

ourselves to the scalar case. Let us begin with a density g0(W )
which is zero mean. We then define g(Z) = g0(Z−µ) where

µ is an initial unknown mean of Z . Next we apply a translation

θ that results in f(X |θ) = g(X − θ) = g0(X − µ − θ). The

goal is to estimate θ using the two datasets {X1, . . . , Xn}
and {Z1, . . . , Zm} sampled from f(X |θ) and g(Z) respec-

tively. This suggests that we could first estimate µ using

{Z1, . . . , Zm} and then µ + θ from {X1, . . . , Xn}. The two

estimates must then be subtracted θ̂ = µ̂+ θ − µ̂ in order to

produce the desired estimate of θ. Since each estimate employs

a different dataset and since the two datasets are independent

we can write

E[(θ̂−θ)2]=E[(µ̂+ θ−µ−θ)2]+E[(µ̂−µ)2]≥
1

FI

(

1

n
+

1

m

)

,

where we have lower bounded each error power by its corre-

sponding CRLB with the Fisher Information satisfying FI =
∫ (g′

0
(W ))2

g0(W ) dW . No estimator of θ in the form θ̂ = µ̂+ θ − µ̂

can enjoy an error power smaller than the lower bound we

have specified. We know [1], [2] that this lower bound is

attained asymptotically for large n,m by the MLE with the

corresponding estimate being

θ̂MLE=argmax
ν

n
∑

i=1

log g0(Xi−ν)−argmax
µ

m
∑

i=1

log g0(Zi−µ).

where ν replaces the sum µ + θ. Of course the previous

estimate is not data-driven since it requires knowledge of the

density g0(W ).
The most obvious data-driven estimator of θ is clearly the

one that matches the first moments by combining the two

sample means, that is

θ̂M =
1

n

n
∑

i=1

Xi −
1

m

m
∑

i=1

Zi. (20)

As before, because of the independence of the two datasets

we can easily show that

E[(θ̂M − θ)2] = σ2
0

(

1

n
+

1

m

)

,

where σ2
0 =

∫

W 2g0(W )dW is the corresponding variance.

Since sample means are well known to be non-robust one can

develop robust alternatives by adopting the approach in [10]

θ̂R = argmin
ν

n
∑

i=1

ϕ(Xi − ν)− argmin
µ

m
∑

i=1

ϕ(Zi − µ),

where ϕ(W ) is a proper convex function. For example

ϕ(W ) = W 2 results in the estimator in (20), while selecting

ϕ(W ) to be the Huber function [10]

ϕ(W ) =

{

W 2 for |W | ≤ c

2c|W | − c2 for |W | > c,

constitutes a popular method to robustify the estimates of the

two means (location parameters) in (20). For the proposed

maximal correlation method in (18),(19) we consider the

Gaussian kernel K(X,Y ) = e−
‖X−Y ‖2

h with h = 1.

Regarding the sizes of the two datasets, we examine the

case n = m = 100 and the second dataset in the maximal

correlation method is split into m1 = m2 = m
2 = 50

samples. Finally for the density g0(W ) we simulate three

cases: 1) Gaussian with g0(W ) = (2π)−1/2e−W 2/2, FI=1,

σ2
0 = 1; 2) Laplace with g0(W ) = 0.5e−|W |, FI=1, σ2

0 = 2
and 3) Cauchy with g0(W ) = 1

π
1

1+W 2 , FI=0.5, σ2
0 = ∞,

that exhibit increasing tail fatness. In all three cases we select

θ = µ = 1. For the MLE, the moment matching, the Huber

robust estimator with c = 1 and the maximal correlation

(proposed) the error power is computed by averaging over

100,000 independent runs.

TABLE I
ERROR POWER OF TRANSLATION ESTIMATES.

Gaussian Laplace Cauchy

CRLB 0.020 0.020 0.040

MLE 0.020 0.023 0.041

Moment Matching 0.020 0.040 ∞ Data-driven

Huber Estimator 0.022 0.027 0.052 Data-driven

Maximal Correlation 0.026 0.026 0.044 Data-driven

In Table I for each estimator we present the error power. In

the case of Gaussian data we know that the simple moment

matching estimator in (20) is the same as the MLE and

attains the CRLB for every finite n,m. However performance

degrades rapidly as we diverge from Gaussianity and use data

from fat-tailed densities. The main observation is that our

method is antagonistic to Huber’s robust estimator being also

very close to the MLE which is not data-driven. At the same

time our idea enjoys the advantage of being applicable to any

transformation T(Z, θ) as opposed to Huber’s robust approach

which is primarily employed for the location parameter prob-

lem.
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