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AoI in Source-Aware Preemptive M/G/1/1
Queueing Systems: Moment Generating Function

Mohammad Moltafet, Markus Leinonen, and Marian Codreanu

Abstract—We consider a multi-source status update system
consisting of multiple independent sources, one server, and one
sink. The packets of the sources are generated according to
Poisson processes and served according to a generally distributed
service time. We consider a system with no waiting buffer and
model it as a multi-source M/G/1/1 queueing model. We intro-
duce a source-aware preemptive packet management policy and
subsequently derive the moment generating functions (MGFs)
of the age of information (AoI) and peak AoI of each source.
According to the policy, when a packet arrives, the possible
packet of the same source in the system is replaced by the fresh
packet. Simulation results show the performance of the packet
management policy.

I. INTRODUCTION

Timely delivery of the status updates of various real-world
physical processes plays a critical role in enabling the time-
critical Internet of Things (IoT) applications. The age of
information (AoI) was introduced in the seminal work [1]
as a destination-centric metric to measure the information
freshness in status update systems. A status update packet
contains the measured value of a monitored process and a
time stamp representing the time at which the sample was
generated. Due to wireless channel access, channel errors,
fading, etc. communicating a status update packet through
the network experiences a random delay. If at a time instant
t, the most recently received status update packet contains
the time stamp U(t), AoI is defined as the random process
∆(t) = t − U(t). Thus, the AoI measures for each source
node the time elapsed since the last received status update
packet was generated at the source node.

The first queueing theoretic work on AoI is [2] where
the authors derived the average AoI for M/M/1, D/M/1, and
M/D/1 first-come first-served (FCFS) queueing models. In [3],
the authors proposed peak AoI as an alternative metric to
evaluate the information freshness. The work in [4] was the
first to investigate the AoI in a multi-source setup in which
the authors derived an approximate expression for the average
AoI in a multi-source M/M/1 FCFS queueing model.

It has been shown that an appropriate packet management
policy – in the waiting queue or/and server – has a great
potential to improve the information freshness in status update
systems [5], [6]. AoI under various packet management
policies in queueing systems with exponentially distributed
service time and Poisson process arrivals has been extensively
studied [7]–[16].
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Besides exponentially distributed service time and Poisson
arrivals, AoI has been studied under various arrival processes
and service time distributions in both single- and multi-source
systems. In [17], the authors derived various approximations
for the average AoI in a multi-source M/G/1 FCFS queueing
model. The work in [18] derived the distribution of the AoI
and peak AoI for the single-source PH/PH/1/1 and M/PH/1/2
queueing models. The authors of [19] analyzed the AoI in a
single-source D/G/1 FCFS queueing model. The authors of
[20] derived a closed-form expression for the average AoI of
a single-source M/G/1/1 preemptive queueing model with hy-
brid automatic repeat request. The stationary distributions of
the AoI and peak AoI of single-source M/G/1/1 and G/M/1/1
queueing models were derived in [21]. In [22], the authors
derived a general formula for the stationary distribution of
the AoI in single-source single-server queueing systems. The
work in [23] considered a single-source last-come first-served
(LCFS) queueing model where the packets arrive according to
a Poisson process and the service time follows a gamma dis-
tribution. They derived the average AoI and average peak AoI
for the preemptive LCFS policy and the non-preemptive LCFS
policy, wherein, when the server is busy, any arriving packet
is blocked and cleared. The work in [24], [25] derived the
average AoI expression for a single-source G/G/1/1 queueing
model under two packet management policies. The authors
of [26] considered a multi-source M/G/1 queueing system
and optimized the arrival rates of each source to minimize
the peak AoI. The average AoI and average peak AoI of
a multi-source M/G/1/1 queueing model under the source-
agnostic preemption policy were derived in [27]. In [28],
the authors derived the average AoI for a queueing system
with two classes of Poisson arrivals with different priorities
under a general service time distribution. They assumed that
the system contains at most one packet and a newly arriving
packet replaces the possible currently-in-service packet with
the same or lower priority. The average AoI and average peak
AoI of a multi-source M/G/1/1 queueing model under the
source-agnostic non-preemptive policy were derived in [29].

We consider a multi-source status update system of capacity
one packet (i.e., no waiting buffer), where the source packets
are generated according to Poisson processes and served ac-
cording to a generally distributed service time. For this multi-
source M/G/1/1 queueing system, we derive the MGFs of the
AoI and peak AoI under a source-aware preemptive policy.
According to the policy, when a packet arrives, the possible
packet of the same source in the system is replaced by the
fresh packet. By using the MGFs of the AoI and peak AoI, the
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Fig. 1: The considered multi-source M/G/1/1 queueing system.

average AoI and average peak AoI of a two-source M/G/1/1
queueing system are derived. The numerical results show that,
depending on the system parameters, the proposed source-
aware preemptive packet management policy can outperform
the source-agnostic preemptive and non-preemptive policy
proposed in [27] and [29], respectively, from the perspective
of average AoI.

II. SYSTEM MODEL AND MAIN RESULTS

We consider a status update system consisting of a set
C = {1, . . . , C} of independent sources, one server, and one
sink, as depicted in Fig. 1. Each source sends status infor-
mation about a random process to the sink as status update
packets containing the measured value of the monitored pro-
cess and a time stamp representing the time when the sample
was generated. We assume that the packets of source c ∈ C are
generated according to the Poisson process with rate λc. Since
the source packets are generated according to independent
Poisson processes, the packet generation in the system follows
the Poisson process with rate λ =

∑
c′∈C λc′ . The server

serves the packets according to a generally distributed service
time with rate µ. We assume that the service times of packets
are independent and identically distributed (i.i.d.) random
variables following a general distribution. Finally, we consider
that the capacity of the system is one (i.e., there is no waiting
buffer) and thus, the considered setup is referred to as a multi-
source M/G/1/1 queueing system.

Source-Aware Preemptive Policy: According to the pol-
icy, a new arriving packet preempts the possible packet of the
same source in the system. Whenever the new arriving packet
finds a packet of another source under service, the arriving
packet is blocked and cleared.

A. AoI Definition

For each source, the AoI at the sink is defined as the time
elapsed since the last successfully received packet was gener-
ated. Formally, let tc,i denote the time instant at which the ith
delivered status update packet of source c was generated, and
let t′c,i denote the time instant at which this packet arrives
at the sink. Let t̄c,i denote the generation time of the ith
packet of source c that does not complete service because
of the packet management policy (i.e., the packet is either
preempted by another packet or it is blocked and cleared).

At a time instant τ , the index of the most recently received
packet of source c is given by

Nc(τ) = max{i′ | t′c,i′ ≤ τ}, (1)

and the time stamp of the most recently received packet of
source c is Uc(τ) = tc,Nc(τ). The AoI of source c at the sink
is defined as the random process δc(t) = t− Uc(t).

Let the random variable

Yc,i = t′c,i+1 − t′c,i (2)

represent the ith interdeparture time of source c, i.e., the time
elapsed between the departures of ith and i+ 1th (delivered)
packets from source c. From here onwards, we refer to the
ith delivered packet from source c simply as “packet c, i”.
Moreover, let the random variable

Tc,i = t′c,i − tc,i (3)

represent the system time of packet c, i, i.e., the duration this
(delivered) packet spends in the system.

One of the most commonly used metrics for evaluating the
AoI of a source at the sink is the peak AoI [3]. The peak
AoI of source c at the sink is defined as the value of the AoI
immediately before receiving an update packet. Accordingly,
the peak AoI concerning the ith successfully received packet
of source c, denoted by Ac,i, is given by

Ac,i = Yc,i−1 + Tc,i−1. (4)

We assume that the considered status update system is sta-
tionary so that Tc,i =

st Tc, Yc,i =
st Yc, and Ac,i =

st Ac,∀i,
where =st means stochastically identical (i.e., they have an
identical marginal distribution). We further assume that the
AoI process for each source is ergodic.

The main results of our paper are presented in Theorem 1.

Theorem 1. Let S be the random variable representing the
service time of any packet in the system. The MGFs of the AoI
and peak AoI of source c under the source-aware preemptive
packet management policy, denoted by Mδc(s) and MAc

(s),
respectively, are given as

Mδc(s) =
MS(s− λc)(MYc

(s)− 1)

sLλc
M ′

Yc
(0)

, (5)

MAc
(s) =

MS(s− λc)MYc
(s)

Lλc

, (6)

where Lλc
= E[e−λcS ], MS(s − λc) = E[e(s−λc)S ] is the

MGF of the service time S at s− λc, MYc
(s) is the MGF of

the interdeparture time Yc under the policy, which is given as

MYc(s) =
acMS(s− λc)

(1− a′c)

(
1−

∑
c′∈C\{c}

ac′MS(s− λc′)

1− a′c′

) ,

(7)

where ac =
λc

λ− s
and a′c =

λc(1−MS(s− λc))

λc − s
, and

M ′
Yc
(0) is the first derivative of the MGF of Yc, evaluated

at s = 0, i.e.,

M ′
Yc
(0) =

d(MYc
(s))

ds

∣∣∣
s=0

.

Remark 1. The mth moment of the AoI (peak AoI) is derived
by calculating the mth derivative of the MGF of the AoI (peak
AoI) when s → 0.
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Corollary 1. The average AoI and average peak AoI of source
1 in a two-source M/G/1/1 queueing model under the source-
aware preemptive packet management policy are given as

∆̄1=
L2
λ1
(λ(1−Lλ2

)−λ1λ2L
′
λ2
)+L2

λ2
(λ2(1−Lλ1

))−Ψ

λ1λ2Lλ1
Lλ2

(Lλ1
+ Lλ2

− Lλ1
Lλ2

)
,

Ā1 =
Lλ1

+ Lλ2
− Lλ1

Lλ2
+ λ1Lλ2

L′
λ1

λ1Lλ1Lλ2

,

where Ψ = λ1λ2Lλ1
L′
λ1

+ Lλ1
Lλ2

λ2(1 + λ1L
′
λ1
) and

L′
λc

= E[Se−λcS ].

Remark 2. The average AoI under the source-aware pre-
emptive policy, presented in Corollary 1, generalizes the
existing results in [20] and [12]. Specifically, when confining
to a single-source case by letting λ2 → 0, the average
AoI becomes equal to that of the single-source M/G/1/1
queueing model with preemption derived in [20]. Moreover,
when we consider an exponentially distributed service time,
the average AoI expression coincides with that of the multi-
source M/M/1/1 queueing model with preemption derived in
[12].

III. DERIVATION OF THE MGFS OF THE AOI AND PEAK
AOI

In this section, we prove Theorem 1. To begin, we first
provide Lemma 1 which presents the MGF of the AoI of
source c in the considered multi-source M/G/1/1 queueing
model as a function of the MGFs of the system time of source
c, Tc, and interdeparture time of source c, Yc.

Lemma 1. The MGFs of the AoI and peak AoI of source c
in a multi-source M/G/1/1 queueing model under the source-
aware preemptive policy, denoted by Mδc(s) and MAc(s),
respectively, can be expressed as

Mδc(s) =
MTc

(s)(MYc
(s)− 1)

sE[Yc]
, (8)

MAc
(s) = MTc

(s)MYc
(s), (9)

where MTc
(s) is the MGF of the system time of a delivered

packet of source c and MYc(s) is the MGF of the interdepar-
ture time of source c.

Proof. See [30, Lemma 1].

According to Lemma 1, the main challenge in calculating
the MGFs of the AoI (see (8)) and peak AoI (see (9)) reduces
to deriving the MGF of the system time of source c, MTc

(s),
and the MGF of the interdeparture time of source c, MYc(s).
Note that when we have MYc(s), we can easily derive E[Yc]
(as showed in Remark 1).

To derive the MGF of the system time of source c, we first
derive the probability density function (PDF) of the system
time, fTc

(t), which is given by the following lemma.

Lemma 2. The PDF of the system time of source c, fTc
(t),

is given by

fTc(t) =
fS(t)e

−λct

Lλc

. (10)

Proof. The system time of a delivered packet from source
c is equal to the service time of the packet. Let Xc be a
random variable representing the interarrival time between
two consecutive packets of source c. Thus, the distribution
of Tc is given by Pr(Tc > t) = Pr(S > t | S < Xc). Hence,
fTc(t) is calculated as

fTc
(t) = lim

ϵ→0

Pr(t < Tc < t+ ϵ)

ϵ
(11)

= lim
ϵ→0

Pr(t < S < t+ ϵ | S < Xc)

ϵ

= lim
ϵ→0

Pr(t < S < t+ ϵ)Pr(S < Xc | t < S < t+ ϵ)

ϵPr(S < Xc)

=
fS(t)Pr(Xc > t)

Pr(S < Xc)

(a)
=

fS(t)e
−λct

Lλc

,

where (a) follows because i) the interarrival times of the
source c packets follow the exponential distribution with
parameter λc and thus, Pr(Xc > t) = 1− FXc(t) = e−λct,
where FXc

(t) is the cumulative distribution function (CDF)
of the interarrival time Xc and ii) Pr(S < Xc) is given as

Pr(S < Xc) =

∫ ∞

0

Pr(S < Xc | Xc = t)fXc
(t)dt (12)

=

∫ ∞

0

Fs(t)λce
−λctdt

(b)
= Lλc

,

where Fs(t) is the CDF of the service time S, and (b) follows
from a feature of the Laplace transform that for any function
f(y), y ≥ 0, we have [31, Sect. 13.5]

L∫ y
0

f(b)db(s) =
Lf(y)(s)

s
, (13)

where Lf(y)(s) is the Laplace transform of f(y).

Using Lemma 2, the MGF of the system time of source c,
MTc(s) =

∫∞
0

estfTc(t)dt, is given as

MTc(s) =
1

Lλc

∫ ∞

0

e(s−λc)tfS(t)dt =
MS(s− λc)

Lλc

. (14)

The next step is to derive the MGF of the interdeparture
time Yc, MYc

(s), which is given by the following proposition.

Proposition 1. The MGF of the interdeparture time of source
c, MYc(s), is given by

MYc
(s) =

acMS(s− λc)

(1− a′c)

(
1−

∑
c′∈C\{c}

ac′MS(s− λc′)

1− a′c′

) ,

(15)

where a′c and ac were defined below (7).

Proof. See [30, Proposition 1].

Finally, substituting the MGF of the system time of source
c derived in (14) and the MGF of the interdeparture time of
source c derived in (15) into (8) results in the MGF of the
AoI under the source-aware preemptive policy, Mδc(s), given
in Theorem 1. Similarly, substituting (14) and (15) into (9)
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results in the MGF of the peak AoI under the source-aware
preemptive policy, MAc

(s), given in Theorem 1.

IV. NUMERICAL RESULTS

We use Corollary 1 to validate the derived results for the
average AoI under the source-aware preemptive packet man-
agement policy in a two-source system and subsequently com-
pare the average AoI performance against those of the source-
agnostic preemptive policy [27] and the non-preemptive pol-
icy [29]. We investigate two service time distributions: i)
gamma distribution and ii) Pareto distribution.

• The PDF of a random variable S following a gamma dis-

tribution is fS(t) =
βκtκ−1 exp(−βt)

Γ(κ)
, t > 0, for pa-

rameters κ > 0 and β > 0, where Γ(κ) is the gamma
function at κ. The service rate is µ = 1/E[S] = β/κ.

• The PDF of a random variable S following a Pareto

distribution is fS(t) =
αωα

tα+1
, for t ∈ [ω,∞] and pa-

rameters ω > 0 and α > 1. The service rate is
µ =

α− 1

αω
.

In all the figures, we have λ = λ1 + λ2 = 1. Next, we
investigate the contours of achievable average AoI pairs.

Fig. 2 illustrates the contours of achievable average AoI
pairs (∆1, ∆2) for the proposed source-aware preemptive
packet management policy, the source-agnostic preemptive
policy, and the non-preemptive policy under the gamma
distribution with service rate µ = 1 for the parameters
κ = β = 0.5, κ = β = 1.7, and κ = β = 3. Note that for a
fixed service rate, increasing β makes the gamma distribution
to have a lighter tail. For the parameters κ = β = 0.5, the
source-agnostic preemptive policy outperforms the others and
the non-preemptive is the worst policy (Fig. 2(a)); for the
parameters κ = β = 1.7, the source-aware preemptive policy
outperforms the others and the non-preemptive is the worst
policy (Fig. 2(b)); and for the parameters κ = β = 3, the
non-preemptive policy outperforms the others and the source-
agnostic preemptive policy is the worst one (Fig. 2(c)). In
addition, Fig. 2(a) shows that the simulated curve for the
source-aware preemptive packet management policy matches
with the derived expression in Corollary 1.

Fig. 3 illustrates the contours of achievable average AoI
pairs (∆1, ∆2) for the packet management policies un-
der the Pareto distribution with µ = 10 for the sets of
parameters (α = 2.4, ω = 0.0583), (α = 2.7, ω = 0.630),
and (α = 4, ω = 0.750). Note that for a fixed service rate,
increasing α makes the Pareto distribution to have a lighter
tail. Similar to the observations made for the gamma distribu-
tion, for the parameters (α = 2.4, ω = 0.0583), the source-
agnostic preemptive policy outperforms the others and the
non-preemptive policy is the worst one (Fig. 3(a)); for the
parameters (α = 2.7, ω = 0.630), the source-aware preemp-
tive policy outperforms the others and the non-preemptive
policy is the worst one (Fig. 3(b)); and for the parameters
(α = 4, ω = 0.750), the non-preemptive policy outperforms
the others and the source-agnostic preemptive policy is the
worst one (Fig. 3(c)).

Figs. 2 and 3 show that for a fixed mean service time and
the set of parameters that make the tail of the distribution
heavy enough, the source-agnostic preemptive policy is the
best one; and for the parameters that the tail of the distribution
is light enough, the non-preemptive policy is the best one.
This is due to the fact that for a fixed mean service time,
the heavier the tail, the higher the chance of serving a packet
with service time that is substantially longer than the mean
service time. In this case, the preemption enables discarding
the packets that would otherwise keep the server inefficiently
busy for a long time period and, in turn, enables switching
to serve a more fresh packet which has a high chance of
experiencing shorter service time. On the other hand, when the
tail of the distribution is light enough, it is better to block new
arrivals. This is because preemption would cause infrequent
updating due to excessively switching the packet under service
so that any packet rarely completes service.

V. CONCLUSIONS

We derived the MGFs of the AoI and peak AoI in a
multi-source M/G/1/1 queueing model under the proposed
source-aware preemptive packet management policy. Using
the derived MGFs, we derived the average AoI and aver-
age peak AoI of a two-source M/G/1/1 queueing system.
We numerically compared the average AoI of the source-
aware preemptive policy with those of the source-agnostic
preemptive and non-preemptive policies. The results showed
that, depending on the system parameters, i.e., the packet
arrival rates and the distribution of the service time, each
policy can outperform the others. In particular, for a given
service rate, when the tail of the service time distribution
is sufficiently heavy, the source-agnostic preemptive policy
is the best policy, whereas for a sufficiently light tailed
distribution, the non-preemptive policy is the best one.
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