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Abstract—A source generates time-stamped update packets
that are sent to a server and then forwarded to a monitor.
This occurs in the presence of an adversary that can infer
information about the source by observing the output process
of the server. The server wishes to release updates in a timely
way to the monitor but also wishes to minimize the information
leaked to the adversary. We analyze the trade-off between the
age of information (AoI) and the maximal leakage for systems
in which the source generates updates as a Bernoulli process.
For a time slotted system in which sending an update requires
one slot, we consider three server policies: (1) Memoryless with
Bernoulli Thinning (MBT): arriving updates are queued with
some probability and head-of-line update is released after a
geometric holding time; (2) Deterministic Accumulate-and-Dump
(DAD): the most recently generated update (if any) is released
after a fixed time; (3) Random Accumulate-and-Dump (RAD):
the most recently generated update (if any) is released after a
geometric waiting time. We show that for the same maximal
leakage rate, the DAD policy achieves lower age compared to
the other two policies but is restricted to discrete age-leakage
operating points.

Index Terms—Age of information, maximal leakage, status
updates, Bernoulli process.

I. INTRODUCTION

A smart home has a range of devices that can be accessed or
controlled remotely using the internet. The various sensors in a
smart home send time-stamped updates about the temperature,
humidity, power consumption, etc. to a destination monitor.
In spite of the advantages offered by a smart home system,
there is also a potential loss of privacy. Adversaries could
infer sensitive information about the home occupants from the
update packets generated from the various sensors. Moreover,
timeliness of the updates is important in many applications,
but improving the timeliness of delivered updates can increase
the information leaked to the adversary. When the timeliness
of these updates is important, an age of information metric
is useful in optimizing these systems. The age of information
metric tells us how much time has elapsed since the generation
of the most recent update that has been received at the
monitor [1].

In this paper we study trade-offs between privacy and age.
We consider a model for a smart home system in which
a source generates time-stamped updates that are sent to
a monitor through a server. There is an adversary present
at the monitor that can infer information about the source
from the packet arrival process. We measure privacy using
the maximal leakage metric introduced by Issa, Kamath, and
Wagner [2]; this measures the maximal multiplicative gain that
the adversary can guess any function of the original data from

the observed data. The maximal leakage increases when we
minimize age in these systems. We design service policies in
order to reduce the maximal leakage and see the effect on the
age of information (AoI) for these systems.

The time average AoI for various systems has been ex-
tensively studied, including the first-come first-served (FCFS)
M/M/1, M/D/1 and D/M/1 queues, and the last-come first-
served (LCFS) queues [1], [3]–[9]. AoI has also been analyzed
for other continuous time queueing disciplines [10]–[17] and
for various discrete time queues [18]–[21]. Minimizing the
timing information leaked, while keeping the status updates
timely in an energy harvesting channel is analyzed in [22].

Minimizing the maximal leakage subject to a cost constraint
has been studied in [23]–[26]. Issa et al. [27] derive the max-
imal leakage for both an M/M/1 queue and an “accumulate-
and-dump” system.

Our contribution is to study the trade-off between maximal
leakage and the age. We examine the discrete time analogues
of the M/M/1 queue and the “accumulate-and-dump” system.
We also introduce a “Random Accumulate-and-Dump” service
policy. We derive the age and maximal leakage for these
systems. This raises interesting questions about the general
problem of balancing timeliness and privacy in communication
systems.

II. SYSTEM MODEL AND PAPER OVERVIEW

Our discrete time system consists of a source, server,
monitor and an adversary as shown in Figure 1. Time passes
in integer slots with slot n ≥ 0 denoting the time interval
[n, n + 1). The transmission of a packet requires one slot. A
packet sent in slot n (from source to server or from server to
monitor) is received at the start of slot n+ 1.

A. Information Leakage

To characterize information leakage, packet transmissions
from the source to the server are indicated by the binary
sequence Xn = (X1, . . . , Xn) such that Xt = 1 if the
server receives a packet from the source at the start of slot
t. This packet will have been generated and transmitted by
the source in slot t− 1. Packet transmissions from the server
to the monitor are similarly indicated by the binary sequence
Y n = (Y1, . . . , Yn) such that Yt = 1 if the server sends a
packet in slot t. The adversary observes the server transmission
sequence Y n. The updating policy of the source, coupled
with the updating policy of the server induces a joint PMF
PXn,Y n(xn, yn). From this PMF, the support set of Xn is
denoted Xn = {xn : PXn(xn) > 0}. The support set Yn of
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Fig. 1. A source sends status updates through a server to a monitor. An
adversary (Adv) observes transmissions from the server to the monitor.

Y n is defined analogously. We measure the information leaked
to the adversary by the maximal leakage metric.

Definition 1 (Issa et al. [27]). A joint distribution PXnY n on
finite alphabets Xn and Yn has maximal leakage

L(Xn → Y n) = log
∑
yn∈Yn

max
xn∈Xn

PY n|Xn(yn|xn). (1)

The key technical challenge in this work is to find the
leakage maximizing input sequence xn ∈ Xn for each possible
output sequence Y n = yn. Note that the maximal leakage
depends on the arrival process Xn only through its support
Xn. We find the leakage maximizing input xn for full support
arrival processes satisfying Xn = {0, 1}n. We further assume
the source sends fresh updates as a rate λ Bernoulli process
since this is the simplest class of arrival processes with full
support.

B. Age of Information

For the evaluation of update timeliness, we employ a
discrete-time age process model that is consistent with prior
work [28]. The source generates time-stamped update packets
(or simply updates) that are sent to the server. An update
generated by the source in slot t is based on a measurement
of a process of interest that is taken at the beginning of the
slot and has time-stamp t. At the end of slot t, or equivalently
at the start of slot t + 1, that packet will have age 1. In slot
t+j, this update will have age j. We say one packet is fresher
than another if its age is smaller.

An observer of these updates measures timeliness by a
discrete-time age process A(t) that is constant over a slot
and equals the age of the freshest packet received prior to
slot t. When u(t) denotes the time-stamp of the freshest
packet observed/received prior to slot t, the age in slot t is
A(t) = t − u(t). We characterize the timeliness performance
of the system by the average age of information (AoI) at the
monitor.

Definition 2 (Kaul et al. [1]). A stationary ergodic age process
has age of information (AoI)

E[A(t)] = lim
T→∞

1

T

T−1∑
t=0

A(t), (2)

where E[·] is the expectation operator.

C. Server Policies

The server wishes to balance the timing information leaked
to the adversary against the AoI at the monitor. To characterize
these conflicting objectives, we explore age-leakage trade-offs
for three server policies:
• Memoryless with Bernoulli thinning (MBT): The

server admits each arriving update into a first-come first-
served queue with probability α. If the queue is not empty
at the start of a slot, the update at the head of the queue
is sent to the monitor with probability µ, independent of
transmissions in other slots.

• Deterministic Accumulate-and-Dump (DAD): The
server stores the freshest update received from the source.
For a fixed parameter τ , the server sends its stored update
every τ slots.

• Random Accumulate-and-Dump (RAD): The server
stores the freshest update received from the source. In
each slot t, the server sends its stored update with
probability µ, independent of transmissions in other slots.

With rate λ Bernoulli arrivals, the MBT server acts as a
Geo/Geo/1 queue with effective arrival rate αλ. Furthermore,
while the service time of an update is always one slot, each
update spends a geometric number of slots at the head-of-
line (HOL) position of the queue and the departure process
is indistinguishable from that of a discrete-time Geo/Geo/1
queue. It is the discrete-time version of the M/M/1 queue.

The DAD policy was introduced Issa et al. [27] with the
generalization that up to n packets are dumped at a time. Here,
we focus on the special case of DAD in which no more than
n = 1 packet is “accumulated” and dumped because maximal
leakage grows linearly with n [27] and because the AoI is the
same for all n ≥ 1 as long as the dumped updates include
the most recent update. For the same reasons, the RAD server
also accumulates only one packet. We further note that with
Bernoulli arrivals, RAD is the discrete-time analogue of the
M/M/1/1 queue with preemption in service; the time an update
spends in the HOL position is geometric and in each time slot
the HOL update may be replaced by a new arrival.

III. MAXIMAL LEAKAGE

A fixed arrival sequence xn and service policy induces a
conditional PMF PY n|Xn(yn|xn). For the MBT and RAD
servers, the service time of a packet is geometric with pa-
rameter µ. For these servers, we employ the following lemma
to calculate the maximal leakage.

Lemma 1. For the MBT and RAD servers with full support
arrival processes,

max
x∈Xn

PY n|Xn(yn|xn) = µ
∑n

i=1 yi (3)

and this maximum is achieved when xn = yn.

The proof follows by an induction argument; details are in
the extended version of this manuscript. Lemma 1 shows that
for a given output sequence yn from either the MBT or the



RAD server, the maximal leakage is maximized by a “just-
in-time” input xn = yn in which the source generates each
update in the slot just prior to its departure from the server.
The MBT and the RAD server share the property that the HOL
update in each slot is transmitted with probability µ. The just-
in-time input xn = yn maximizes PY n|Xn(yn|xn) because it
precludes departures from the server prior to the departures
specified by the output yn.

Theorem 1. For full support arrival processes, the maximal
leakage rate for the MBT and RAD servers is given by

1

n
L(Xn → Y n) = log(1 + µ). (4)

Proof. Applying Lemma 1 to (1) yields

L(Xn → Y n) = log
∑

yn∈Yn

µ
∑n

i=1 yi

= log

1∑
y1=0

µy1 · · ·
1∑

yn=0

µyn

= log (µ0 + µ1)
n
= n log(1 + µ). (5)

For the DAD policy, the most recently generated packet is
dumped after every τ slots and Y n is a deterministic function
of Xn. Defining K = bn/τc, Y n has the form

Y n = (0τ−1, Yτ , 0
τ−1, Y2τ , . . . , YKτ , 0

n−Kτ ) (6)

where Ykτ = 0 if and only if (X(k−1)τ+1, · · · ,Xkτ ) = 0τ

and otherwise Ykτ = 1. This structure simplifies the leakage
calculation.

Lemma 2. For the DAD policy, maxx∈Xn PY n|Xn(yn|xn) =
1 and the maximum is achieved when xn = yn.

Proof. For a given output Y n = yn from the DAD server,
the input xn = yn implies PY n|Xn(yn|xn) = 1. This is the
maximizing input since it achieves the unity upper bound.

We note that the maximizing xn may not be unique.

Theorem 2. The DAD policy has maximal leakage rate

L(Xn → Y n)

n
=

log 2

n

⌊n
τ

⌋
. (7)

Proof. Since Y n has the form (6), the support set Yn has size
|Yn| = 2K = 2bn/τc. Applying Lemma 2 to (1),

L(Xn → Y n) = log
∑
yn∈Yn

1 = log 2bn/τc =
⌊n
τ

⌋
log 2. (8)

Since limn→∞bn/τc/n = 1/τ , it follows from Theorem 2
that the DAD policy has maximal leakage rate

lim
n→∞

L(Xn → Y n)

n
=

log 2

τ
. (9)

age
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Am(n)

n1 n2 n n3s1 s2 s3 s4
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Fig. 2. The source sends fresh updates to the server in slots Nk = nk ,
inducing the age process Ai(n) at the input to the server. The server sends
samples of the most recent update to the monitor in time slots Sk = sk ,
inducing the age process Am(n) at the monitor.

IV. AGE OF INFORMATION

The MBT server with rate λ Bernoulli arrivals and admis-
sion probability α is identical to a Geo/Geo/1 queue with
arrival rate αλ. If the server queue is not empty at the start of
slot t, the server sends the head-of-line update with probability
µ. Using the discrete time analogue of the M/M/1 graphical
AoI analysis [1], the AoI of the Geo/Geo/1 queue has been
previously derived by Kosta et al. [28] and equals

E[AMBT] =
1

αλ
+

1− αλ
µ− αλ

− αλ

µ2
+
αλ

µ
. (10)

While the graphical method could be employed for age
analysis of the DAD and RAD systems, here we instead
employ the sampling of age processes approach [10]. In
the implementation of the DAD/RAD servers, no update is
dumped if no update arrived in the preceding inter-dump
period. However, for the purpose of AoI analysis, we make
a different assumption: if no update arrives before the dump
attempt, then the server resends its previously dumped update.
This approach is an example of the method of fake updates
introduced in Yates and Kaul [29]. With respect to the age at
the monitor, in the absence of an update to dump, it makes no
difference if the server sits idle or if the server repeats sending
the prior update. Neither changes the age at the monitor.

However this fake update approach simplifies the age anal-
ysis. We can now view the monitor as sampling the update
process of the server. With each dump instance, the monitor
receives the freshest update of the server, resetting the age at
monitor to the age of the dumped update. In the same way,
we can view the server as sampling the always-fresh update
process of the source.

For both the DAD and RAD systems, we observe that the
source offers fresh updates to the server as a renewal process.
The dump attempts of the DAD and RAD servers are also
renewal processes. Specifically, the DAD server attempts to
release its freshest update every τ slots while the RAD server
has dump attempts with iid geometric inter-dump times.



A. Sampling the Source: The Age of Fresh Updates

Referring to Figure 1, the source can generate a fresh (age
zero) update in a slot n and forward it to the server in that
same slot. This fresh update arrives at the server at the end
of slot n with age 1. The age process Ai(n) = Zn of an
observer at the server input is reset at the start of slot n + 1
to Zn+1 = 1. When a source generates fresh updates in slots
Nk = nk, the age Zn evolves as the sequence of staircases
shown in Figure 2. From the observer’s perspective, update k
arrives in slot Nk + 1 with interarrival time

Yk = Nk + 1− (Nk−1 + 1) = Nk −Nk−1. (11)

Defining the indicator I{A} to be 1 if event A occurs and
zero otherwise, we can employ Palm probabilities to calculate
the age PMF

P[Zn = z] = lim
N→∞

1

N

N−1∑
n=0

I{Zn=z}. (12)

The sum on the right side of (12) can be accumulated as
rewards over each renewal period. In the kth renewal period,
we set the reward Rk equal to the number of slots in the kth
renewal period in which Zn = z. If Yk ≥ z, then there is
one slot in the renewal period in which Zn = z and thus the
reward is Rk = 1; otherwise Rk = 0. Thus, for z = 1, 2, . . .,
Rk = I{Yk≥z}. From renewal reward theory, it follows from
(12) that

P[Zn = z] =
E[Rk]

E[Yk]
=

P[Yk ≥ z]
E[Yk]

, z = 1, 2, . . . . (13)

This is the discrete-time version of a well-known distribution
of the age of a renewal process. It follows from (13) that the
average age of the current update at the server has average
age

E[Ai(n)] = E[Zn] =

∞∑
z=1

z P[Zn = z] =
E
[
Y 2
k

]
2E[Yk]

+
1

2
. (14)

B. Sampling the Server: The Age at the Monitor

Now we examine age at the monitor for the DAD and RAD
servers. As depicted in Figure 2, the server (whether DAD
or RAD) sends its freshest update to the monitor at sample
times S1, S2, . . .. These sample times Sk also form a renewal
process with iid inter-sample times Y ′k = Sk − Sk−1. For the
DAD server, Y ′k = τ . while for the RAD server, the Y ′k are
geometric (µ) random variables. We now analyze the average
age at the monitor in terms of the moments of Y ′k .

The age process Ai(n) at the input to the server is identical
to the Zn process defined in Section IV-A. When the server
sends its most recent update to the monitor in slot Sk, this
update has age Ai(Sk) at the start of the slot. The monitor
receives the update at the end of the slot with age Ai(sk)+1.
Thus, at the start of slot sk+1, the age at the monitor is reset
to Am(sk + 1) = Ai(sk) + 1. Graphically, this is depicted in
Figure 2.

To describe the monitor age Am(n) in an arbitrary slot n, we
look backwards in time and define Z ′n as the age of the renewal

process defined by the inter-renewal times Y ′k associated with
sampling the server. In Fig. 2 for example, in slot n = 11,
the last update was sampled by the server at time s2 = 7 and
Z ′11 = 11 − 7 = 4. We note that the Z ′n process is the same
as the Zn process, modulo the inter-renewal times now being
labeled Y ′k rather than Yk. In particular the PMF P[Z ′n = z]
and expected value E[Z ′n] are described by (13) and (14) with
Y ′k replacing Yk.

The age at the monitor in slot n is then

Am(n) = Ai(n− Z ′n) + Z ′n. (15)

When the age process Ai(n) at the input to the monitor
is stationary and the sampling process that induces Z ′n is
independent of the Ai(n) age process, it follows that Ai(n)
and Ai(n−Z ′n) are identically distributed. Thus, the average
age at the monitor is

E[Am(n)] = E[Ai(n− Z ′n)] + E[Z ′n]

= E[Ai(n)] + E[Z ′n]. (16)

Employing (14) to evaluate both E[Ai(n)] and E[Z ′n], we
obtain

E[Am(n)] =
E
[
Y 2
k

]
2E[Yk]

+
1

2
+

E
[
(Y ′k)

2
]

2E[Y ′k]
+

1

2
. (17)

For both the DAD and RAD servers, the source generates
packets as a rate λ Bernoulli process with E[Yk] = 1/λ and
E
[
Y 2
k

]
= (2 − λ)/λ2. It follows from (14) that E[Ai(n)] =

1/λ. For the DAD server, Y ′k = τ is deterministic and (14)
implies E[Z ′n] = (τ + 1)/2. For the RAD server, the inter-
sample times Y ′k at the monitor are geometric (µ) and E[Z ′n] =
1/µ. With these observations, we have the following theorem.

Theorem 3. When the source emits updates as a rate λ
Bernoulli process, the average age at the monitor is

E[Am(n)] =

{
1/λ+ (τ + 1)/2, DAD server,
1/λ+ 1/µ, RAD server.

(18)

V. MAXIMAL LEAKAGE VS AVERAGE AOI
Fig. 3 shows the variation of age with maximal leakage

rate for MBT with α = 1 (which is Geo/Geo/1), DAD, and
RAD systems with arrival rate λ = 0.5. As the service rate for
these systems increases, the maximal leakage rate for the three
service policies increases and the age decreases. Note that for
the service rate of 1 (µ = 1 or τ = 1), the three systems have
identical service service processes and thus the same average
age of 3 slots.

At other values of the service rate, the DAD system has
better age than the other two systems for the same maximal
leakage rate. The DAD system keeps the age small by not
queueing packets. It delivers only the most recent update
packet. From Theorem 3, we see for the DAD and RAD
systems that for a fixed value of the maximal leakage rate
(as specified by τ or µ) the age is decreasing in the source
rate λ and this is illustrated in Fig. 4.

In Fig. 5 we show the variation of the age with the maximal
leakage rate for the MBT server for various arrival rates λ.
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Fig. 3. The age vs. maximal leakage rate for the MBT (α = 1), DAD,
and RAD servers with arrival rate λ = 0.5. The service rate µ varies over
[0.524, 1] for Geo/Geo/1 and over [0.05, 1] for RAD. For DAD, τ varies
from 1 to 39.
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Fig. 4. The age vs. maximal leakage rate for the RAD and DAD policies for
λ = 0.1, λ = 0.5 and λ = 0.9.

With fixed λ and α = 1, the server controls the leakage via the
service rate µ. As µ is reduced and approaches λ, the maximal
leakage is reduced but the age blows up as the queue backlog
increases. In fact, we can achieve better trade-offs by varying
both µ and the admission probability α. For a given λ, we
can choose α to operate at an effective arrival rate αλ < λ.
This stabilizes the queue by throwing away arrivals to keep
the backlog small. With λ fixed, for each µ (which specifies
the leakage), the α ∈ (0, 1] that minimizes E[AMBT] in (10) is
calculated. This is shown in Fig. 5 by the solid blue-orange-
green “αλ” trade-off curve. The blue segment is achievable
for λ ≥ 0.1, the orange segment is achievable for λ ≥ 0.5 and
the green segment is achievable for λ ≥ 0.9.

VI. CONCLUSIONS AND FUTURE WORK

In this work we examined the trade-off between the maximal
leakage and the average age for three service policies. For a
given arrival rate λ, the DAD server is constrained by integer

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Maximal Leakage Rate

5
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15
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30

35
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e

= 0.9
= 0.5
= 0.1
, 0.1
, 0.5
, 0.9

Fig. 5. The age vs. maximal leakage rate for the MBT system: for α = 1,
the λ = 0.1, λ = 0.5 and λ = 0.9 age-leakage trade-off curves are obtained
by varying µ over the interval [λ + ε, 1]. With λ fixed, for each µ (which
specifies the leakage), the α ∈ (0, 1] that minimizes E[AMBT] in (10) is also
calculated. This yields the solid blue-orange-green trade-off curve. The blue
segment shows αλ ∈ [0.054, 0.1] and is achievable for λ ≥ 0.1. The orange
segment shows αλ ∈ [0.1, 0.5] and the green segment shows αλ ∈ [0.5, 0.9];
these segments are achievable for λ ≥ 0.5 and λ ≥ 0.9 respectively.

values of τ to certain age-leakage operating points. For the
same maximal leakage, neither the RAD server nor the MBT
server could achieve the same average age. However, the MBT
and the RAD servers have the flexibility to choose the service
rate µ continuously. In addition, the MBT server can choose
to thin the arrival process by operating at an effective arrival
rate αλ to achieve better age-leakage trade-off.

Our initial results here suggest several interesting avenues
for future investigation. We limited our analysis to Bernoulli
arrival processes that simplify the leakage analysis because all
input sequences xn are in the support set. Extending the anal-
ysis beyond Bernoulli arrival processes could change which
policies have more favorable trade-offs. Other arrival processes
may not have support over all possible input sequences xn

which may make the calculation of maximal leakage more
challenging. Likewise, we have limited our attention to spe-
cific server policies. More generally, we would like to find
“optimal” policies (within a given class) to manage the age-
leakage trade-off for a given arrival process or arrival rate.
Finally, understanding these trade-offs in networks of status
updating systems might open up new avenues for modeling
the interplay between delay and privacy.
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VII. APPENDIX

Proof of Lemma 1

We prove this claim by induction. We start by showing the
claim is true for n = 1. For n = 1,

P(Y1 = 1|X1 = 1) = µ, P(Y1 = 1|X1 = 0) = 0. (19)

It follows from (19) that

max
x∈X

P (Y1 = 1|X1 = x) = µ. (20)

Similarly,

P(Y1 = 0|X1 = 1) = 1− µ, P(Y1 = 0|X1 = 0) = 1. (21)

It follows from (21) that

max
x∈X

P (Y1 = 0|X1 = x) = 1. (22)

From (20) and (22) we can say,

max
x∈X

PY1|X1
(y1|x) = µy1 , (23)

and the maximum is achieved when x1 = y1. Thus the claim
holds for n = 1.

Now let us say the claim holds for some n = k. Then,

max
xk∈Xk

PY k|Xk

(
yk|xk

)
= µ

∑k
i=1 yi , (24)

and this maximum is achieved when xk = yk.
Now we need to show the claim holds for n = k + 1.

P
(
yk+1|xk+1

)
= P

(
yk|xk+1

)
P
(
yk+1|yk, xk+1

)
. (25)

Since the departure process until time k does not depend on
the arrival at time k + 1, we can write

PY k|Xk+1

(
yk|xk+1

)
= PY k|Xk

(
yk|xk

)
. (26)

Hence,

max
xk+1∈Xk+1

PY k+1|Xk+1

(
yk+1|xk+1

)
= max
xk+1∈Xk+1

P
(
yk|xk

)
P
(
yk+1|yk, xk+1

)
≤ [ max

x̂k+1∈Xk+1
P
(
yk|x̂k

)
][ max
xk+1∈Xk+1

P
(
yk+1|yk, xk+1

)
]

= [ max
x̂k∈Xk

P
(
yk|x̂k

)
][ max
xk+1∈Xk+1

P
(
yk+1|yk, xk+1

)
]. (27)

By the induction hypothesis,

max
x̂k∈Xk

PY k|Xk

(
yk|x̂k

)
= µ

∑k
i=1 yi , (28)

and the maximum is achieved when x̂k = yk. For the second
factor on the right side of (27), we consider the cases Yk+1 = 1
and Yk+1 = 0 separately. In both cases, we will employ the
binary random sequence Wk such that Wk = 1 if there is a
packet that can be served at time k and otherwise Wk = 0. We
can write Wk+1 = gk+1(Y

k, Xk+1), a deterministic function
of Y k and Xk+1. This implies

PYk+1|Y k,Xk+1

(
yk+1|yk, xk+1

)
= PYk+1|Y k,Xk+1,Wk+1

(
yk+1|yk, xk+1, gk+1(y

k, xk+1)
)
.

(29)

Moreover, there is a Markov chain

(Y k, Xk+1)→Wk+1 → Yk+1 (30)

since

PYk+1|Y k,Xk+1,Wk+1

(
yk+1|yk, xk+1, 0

)
= PYk+1|Wk+1

(yk+1|0) =

{
1 yk+1 = 0,

0 yk+1 = 1,
(31a)

PYk+1|Y k,Xk+1,Wk+1

(
yk+1|yk, xk+1, 1

)
= PYk+1|Wk+1

(yk+1|1) =

{
1− p yk+1 = 0,

p yk+1 = 1.
(31b)

It follows from (29) and (30) that

PYk+1|Y k,Xk+1

(
yk+1|yk, xk+1

)
= PYk+1|Wk+1

(
yk+1|gk+1(y

k, xk+1)
)
. (32)

Now consider the maximization of the second factor in (27).
For the case Yk+1 = 0, it follows

max
xk+1

PYk+1|Y k,Xk+1

(
0|yk, xk+1

)
= max

xk+1
PYk+1|Wk+1

(
0|gk+1(y

k, xk+1)
)
≤ 1, (33)

where the unity upper bound holds trivially. However, it
follows from (31) that this unity upper bound is achieved
by any xk+1 that ensures Wk+1 = 0. Given Y k = yk,
we observe that the upper bound in (33) is achieved by
(xk, xk+1) = (yk, 0). In particular, given the output sequence
yk, the input xk = yk implies that the system is idle at the
end of slot k and, in this case, it follows that xk+1 = 0
implies Wk+1 = 0. Thus for the case that Yk+1 = 0, we
have shown that PYk+1|Y k,Xk+1

(
|yk, xk+1

)
is maximized over

xk+1 ∈ X k+1 by xk+1 = (xk, xk+1) = (yk, 0) = yk+1.
Now for the case Yk+1 = 1, it follows from (31)

max
xk+1

PYk+1|Y k,Xk+1

(
1|yk, xk+1

)
= max

xk+1
PYk+1|Wk+1

(
1|gk+1(y

k, xk+1)
)
≤ p. (34)

The upper bound is achieved by any xk+1 that ensures
Wk+1 = 1. No matter what the past history, xk+1 = 1 ensures
Wk+1 = 1. It follows that the upper bound in (34) is achieved
by (xk, xk+1) = (yk, 1). Thus for the case that Yk+1 = 1,
we have shown that PYk+1|Y k,Xk+1

(
1|yk, xk+1

)
is maximized

over xk+1 ∈ X k+1 by xk+1 = (xk, xk+1) = (yk, 1) = yk+1.
Now returning to (27), the first factor is maximized by x̂k =

yk and the second factor is maximized by xk+1 = yk+1 hence
the product is maximized by xk+1 = (x̂k, xk+1) = (yk, 1) =
yk+1.

Hence,

max
xk+1∈Xk+1

PYk+1|Y k,Xk+1

(
yk+1|yk, xk+1

)
= µyk+1 (35)

From (27), (28) and (35) we get,

max
xk+1∈Xk+1

PY k+1|Xk+1

(
yk+1|xk+1

)
= µ

∑k+1
i=1 yi , (36)



and the maximum is achieved when xk+1 = yk+1.
Thus, the claim holds for n = k + 1, completing the proof

of Lemma 1.
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