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Abstract—We consider information-theoretic bounds on ex-
pected generalization error for statistical learning problems in
a networked setting. In this setting, there are K nodes, each
with its own independent dataset, and the models from each
node have to be aggregated into a final centralized model. We
consider both simple averaging of the models as well as more
complicated multi-round algorithms. We give upper bounds on
the expected generalization error for a variety of problems,
such as those with Bregman divergence or Lipschitz continuous
losses, that demonstrate an improved dependence of 1/K on the
number of nodes. These “per node” bounds are in terms of the
mutual information between the training dataset and the trained
weights at each node, and are therefore useful in describing the
generalization properties inherent to having communication or
privacy constraints at each node.

I. INTRODUCTION

A key property of machine learning systems is their ability
to generalize to new and unknown data. Such a system is
trained on a particular set of data, but must then perform well
even on new datapoints that have not previously been consid-
ered. This ability, deemed generalization, can be formulated in
the language of statistical learning theory by considering the
generalization error of an algorithm, i.e, the difference between
the population risk of a model trained on a particular dataset
and the empirical risk for the same model and dataset. We say
that a model generalizes well if it has a small generalization
error, and because models are often trained by minimizing
empirical risk or some regularized version of it, a small
generalization error also implies a small population risk which
is the average loss over new samples taken randomly from
the population. It is therefore of interest to upper bound
generalization error and understand which quantities control
it, so that we can quantify the generalization properties of a
machine learning system and offer guarantees about how well
it will perform.

In recent years, it has been shown that information theoretic
quantities such as mutual information can be used to bound
generalization error under assumptions on the tail of the
distribution of the loss function [1], [2], [3]. In particular, when
the loss function is sub-Gaussian, the expected generalization
error can scale at most with the square root of the mutual infor-
mation between the training dataset and the model weights [2].
These bounds offer an intuitive explanation for generalization
and overfitting – if an algorithm uses only limited information
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from its training data, then this will bound the expected
generalization error and prevent overfitting. Conversely, if a
training algorithm uses all of the information from its training
data in the sense that the model is a deterministic function of
the training data, then this mutual information can be infinite
and there is the possibility of unbounded generalization error
and thus overfitting.

Another modern focus of machine learning systems has
been that of distributed and federated learning [4], [5], [6]. In
these systems, data is generated and processed in a distributed
network of machines. The main differences between the dis-
tributed and centralized settings are the information constraints
imposed by the network. There has been considerable interest
in understanding the impact of both communication constraints
[7], [8] and privacy constraints [9], [10], [11], [12] on the
performance of machine learning systems, and in designing
protocols that efficiently train systems under these constraints.

Since both communication and local differential privacy
constraints can be thought of as special cases of mutual
information constraints, they should pair naturally with some
form of information theoretic generalization bound in order to
induce control over the generalization error of the distributed
machine learning system. The information constraints inherent
to the network can themselves give rise to tighter bounds
on generalization error and thus provide better guarantees
against overfitting. Along these lines, in recent work [13],
a subset of the present authors introduced the framework of
using information theoretic quantities to bound both expected
generalization error and a measure of privacy leakage in
distributed and federated learning systems. The generalization
bounds in this work, however, are essentially the same as those
obtained by thinking of the entire system, from the data at
each node in the network to the final aggregated model, as
a single centralized algorithm. Any improved generalization
guarantees from these bounds would remain implicit in the
mutual information terms involved.

In this work, we develop improved bounds on expected
generalization error for distributed and federated learning
systems. Instead of leaving the differences between these
systems and their centralized counterparts implicit in the
mutual information terms, we bring analysis of the structure
of the systems directly into the bounds. By working with the
contribution from each node separately, we are able to derive
upper bounds on expected generalization error that scale with
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the number of nodes K as O
(

1
K

)
instead of O

(
1√
K

)
. This

improvement is shown to be tight for certain examples such
as learning the mean of a Gaussian with squared ℓ2 loss. We
develop bounds that apply to distributed systems in which the
submodels from each one of K different nodes are averaged
together, as well as bounds that apply to more complicated
multiround stochastic gradient descent (SGD) algorithms such
as in federated learning. For linear models with Bregman
divergence losses, these “per node” bounds are in terms of
the mutual information between the training dataset and the
trained weights at each node, and are therefore useful in
describing the generalization properties inherent to having
communication or privacy constraints at each node. For arbi-
trary nonlinear models that have Lipschitz continuous losses,
the improved dependence of O

(
1
K

)
can still be recovered,

but without a description in terms of mutual information.
We demonstrate the improvements given by our bounds over
the existing information theoretic generalization bounds via
simulation of a distributed linear regression example.

A. Technical Preliminaries

Suppose we have independent and identically distributed
(i.i.d.) data Zi ∼ π for i = 1, . . . , n and let S = (Z1, . . . , Zn).
Suppose further that W = A(S) is the output of a potentially
stochastic algorithm. Let ℓ(W,Z) be a real-valued loss func-
tion and define

L(w) = Eπ[ℓ(w,Z)]

to be the population risk for weights (or model) w. We
similarly define

Ls(w) =
1

n

n∑
i=1

ℓ(w, zi)

to be the empirical risk on dataset s for model w. The
generalization error for dataset s is then

∆A(s) = L(A(s))− Ls(A(s))

and the expected generalization error is

ES∼πn [∆A(S)] = ES∼πn [L(A(S))− LS(A(S))] (1)

where the expectation is also over any randomness in the
algorithm. Below we present some standard results on the
expected generalization error that will be needed.

Theorem 1 (Leave-one-out Expansion – Lemma 11 in [14]).
Let S(i) = (Z1, . . . , Z

′
i, . . . , Zn) be a version of S with Zi

replaced by an i.i.d. copy Z ′
i. Denote S′ = (Z ′

1, . . . , Z
′
n).

Then

ES∼πn [∆A(S)] =
1

n

n∑
i=1

ES,S′ [ℓ(A(S), Z ′
i)−ℓ(A(S(i)), Z ′

i)] .

Proof. Observe that

ES∼πn [L(A(S))] = ES,S′ [ℓ(A(S), Z ′
i)] (2)

for each i and that

ES∼πn [LS(A(S))] =
1

n

n∑
i=1

ES∼πn [ℓ(A(S), Zi)]

=
1

n

n∑
i=1

ES,S′∼πn

[
ℓ(A(S(i)), Z ′

i)
]
.

(3)

Putting (2) and (3) together with (1) yields the result.

In many of the results in this paper, we will use one of the
two following assumptions.

Assumption 1. The loss function ℓ(W̃ , Z̃) satisfies

logE
[
exp

(
λ
(
ℓ(W̃ , Z̃)− E[ℓ(W̃ , Z̃)]

))]
≤ ψ(−λ)

for λ ∈ (b, 0], ψ(0) = ψ′(0) = 0, where W̃ , Z̃ are taken
independently from the marginals for W,Z, respectively,

The next assumption is a special case of the previous one with
ψ(λ) = R2λ2

2 .

Assumption 2. The loss function ℓ(W̃ , Z̃) is sub-Gaussian
with parameter R2 in the sense that

logE
[
exp

(
λ
(
ℓ(W̃ , Z̃)− E[ℓ(W̃ , Z̃)]

))]
≤ R2λ2

2
.

Theorem 2 (Theorem 2 in [3]). Under Assumption 1,

ES∼πn [∆A(S)] ≤
1

n

n∑
i=1

ψ∗−1(I(W ;Zi))

where
ψ∗−1(y) = inf

λ∈[0,b)

(
y + ψ(λ)

λ

)
.

Recall that for a continuously differentiable and strictly
convex function F : Rm → R, we define the associated
Bregman divergence [15] between two points p, q ∈ Rm to
be

DF (p, q) = F (p)− F (q)− ⟨∇F (q), p− q⟩ ,

where ⟨·, ·⟩ denotes the usual inner product.

II. DISTRIBUTED LEARNING AND MODEL AGGREGATION

Now suppose that there are K nodes each with n samples.
Each node k = 1, . . . ,K has dataset Sk = (Z1,k, . . . , Zn,k)
with Zi,k taken i.i.d. from π. We use S = (S1, . . . , SK) to
denote the entire dataset of size nK. Each node locally trains
a model Wk = Ak(Sk) with algorithm Ak. After each node
locally trains its model, the models Wk are then combined
to form the final model Ŵ using an aggregation algorithm
Ŵ = Â(W1, . . . ,WK). See Figure 1. In this section we will
assume that Wk ∈ Rd and that the aggregation is done by
simple averaging, i.e.,

Ŵ =
1

K

K∑
k=1

Wk .

Define A to be the total algorithm from data S to the final
weights Ŵ so that Ŵ = A(S) .



S1

· · ·
SK

model aggregation

Ŵ = Â(W1, . . . ,WK)

W1 WK

Fig. 1. The distributed learning setting with model aggregation.

Theorem 3. Suppose that ℓ(·, z) is a convex function of
w ∈ Rd for each z and that Ak represents the empirical risk
minimization algorithm on local dataset Sk in the sense that

Wk = Ak(Sk) = argmin
w

n∑
i=1

ℓ(w,Zi,k) .

Then

∆A(s) ≤
1

K

K∑
k=1

∆Ak
(sk) .

Proof.

∆A(s) = EZ∼π[ℓ(A(s), Z)]− 1

nK

∑
i,k

ℓ(A(s), zi,k)

= EZ∼π

[
ℓ

(
1

K

K∑
k=1

wk, Z

)]
− 1

nK

∑
i,k

ℓ(A(s), zi,k)

≤ 1

K

K∑
k=1

EZ∼π[ℓ(wk, Z)]−
1

nK

∑
i,k

ℓ(A(s), zi,k) (4)

≤ 1

K

K∑
k=1

EZ∼π[ℓ(wk, Z)]−
1

K

K∑
k=1

min
w

1

n

n∑
i=1

ℓ(w, zi,k)

(5)

=
1

K

K∑
k=1

∆Ak
(sk).

In the above display, line (4) follows by the convexity of ℓ via
Jensen’s inequality, and line (5) follows by minimizing the
empirical risk over each node’s local dataset, which exactly
corresponds to what each node’s local algorithm Ak does.

While Theorem 3 seems like a nice characterization of
generalization bounds for the aggregate model – in that the
aggregate generalization error cannot be any larger than the
average generalization errors over each node – it does not
offer any improvement in the expected generalization error
that one might expect given nK total samples instead of just
n samples. A naive application of the information theoretic
generalization bounds from Theorem 2, followed by the data
processing inequality I(Ŵ ;Zi,k) ≤ I(Wk;Zi,k), runs into the
same problem.

A. Improved Bounds

In this subsection, we prove bounds on expected generaliza-
tion error that remedy the above shortcomings. In particular,
we would like the following two properties.

(a) The bound should decay with the number of nodes K in
order to take advantage of the total dataset from all K
nodes.

(b) The bound should be in terms of the information theoretic
quantities I(Wk;Sk) which can represent (or be upper
bounded by) the capacities of the channels that the nodes
are communicating over. This can, for example, represent
a communication or local differential privacy constraint
for each node.

At a high level, we will improve on the bound from Theorem
3 by taking into account the fact that a small change in Sk

will only change Ŵ by a fraction 1
K of the amount that it

will change Wk. In the case that W is a linear or location
model, and the loss ℓ is a Bregman divergence, we can obtain
an upper bound on expected generalization error that satisfies
both properties (a) and (b) as follows.

Assumption 3. When Z = (X,Y ) are labeled pairs and for
loss functions of type (i) in Theorem 4 below, we assume that

ES,S′ [F (⟨X ′
i,k,A(S)⟩)− F (⟨X ′

i,k,A(S(i,k))⟩)]

≤ 1

K

(
ES,S′ [F (⟨X ′

i,k,Ak(Sk)⟩)− F (⟨X ′
i,k,Ak(S

(i)
k )⟩)]

)
.

Whether or not this assumption holds true will depend on
the distributions involved, the training algorithms, and the
function F . For least squares regression examples similar to
those discussed in the last section of this paper, we have
verified, through Monte Carlo simulation, that this assumption
appears to hold for all parameter values that we tested. It
remains an interesting open problem to understand when this
holds true.

Theorem 4 (Linear or Location Models with Bregman Loss).
Suppose that Assumption 1 holds for each node. Consider the
following two cases:

(i) ℓ(w, (x, y)) = DF (⟨x,w⟩, y) (with Assumption 3),

then

ES∼πnK [∆A(S)] ≤
1

nK2

∑
i,k

ψ∗−1 (I(Wk;Zi,k))

≤ 1

K2

K∑
k=1

ψ∗−1

(
I(Wk;Sk)

n

)
.

(ii) ℓ(w, z) = DF (w, z) ,

then

ES∼πnK [∆A(S)] =
1

K2

K∑
k=1

ESk∼πn [∆Ak
(Sk)]



and

ES∼πnK [∆A(S)] ≤
1

nK2

∑
i,k

ψ∗−1 (I(Wk;Zi,k))

≤ 1

K2

K∑
k=1

ψ∗−1

(
I(Wk;Sk)

n

)
.

Proof. Here we restrict our attention to case (ii), but the two
cases have nearly identical proofs. Using Theorem 1,

ES∼πnK [∆A(S)]

=
1

nK

∑
i,k

ES,S′

[
ℓ(A(S), Z ′

i,k)− ℓ(A(S(i,k)), Z ′
i,k)
]

≤ 1

nK

∑
i,k

ES,S′

[
F (A(S))− F (Z ′

i,k)

−
〈
∇F (Z ′

i,k),A(S)− Z ′
i,k

〉
− F (A(S(i,k))) + F (Z ′

i,k)

+
〈
∇F (Z ′

i,k),A(S(i,k))− Z ′
i,k

〉]
=

1

nK

∑
i,k

ES,S′

[〈
∇F (Z ′

i,k),A(S(i,k))−A(S)
〉]

(6)

=
1

nK2

∑
i,k

ES,S′

[〈
∇F (Z ′

i,k),W
(i)
k −Wk

〉]
. (7)

In (7), we use W (i)
k to denote Ak(S

(i)
k ). Line (6) follows by

the linearity of the inner product and by canceling the higher
order terms F (A(S)) and F (A(S(i,k))) which have the same
expected values. The key step (7) then follows by noting that
A(S(i,k)) only differs from A(S) in the submodel coming
from node k, which is multiplied by a factor of 1

K when
averaging all of the submodels. By backing out step (6) and
re-adding the appropriate canceled terms we get

ES∼πnK [∆A(S)] =
1

K2

K∑
k=1

ESk∼πn [∆Ak
(Sk)] .

By applying Theorem 2,

ES∼πnK [∆A(S)] ≤
1

nK2

∑
i,k

ψ∗−1 (I(Wk;Zi,k)) .

Then, by noting that ψ∗−1 is non-decreasing and concave,

1

nK2

∑
i,k

ψ∗−1 (I(Wk;Zi,k))

≤ 1

K2

K∑
k=1

ψ∗−1

(
n∑

i=1

I(Wk;Zi,k)

n

)
.

And using
n∑

i=1

I(Wk;Zi,k)

=

n∑
i=1

H(Zi,k)−H(Zi,k|Wk)

≤
n∑

i=1

H(Zi,k|Zi−1,k, . . . , Z1,k)

−H(Zi,k|Zi−1,k, . . . , Z1,k,Wk)

= I(Wk;Sk)

we have

1

K2

K∑
k=1

ψ∗−1

(
n∑

i=1

I(Wk;Zi,k)

n

)

≤ 1

K2

K∑
k=1

ψ∗−1

(
I(Wk;Sk)

n

)
as desired.

The result in Theorem 4 is general enough to apply to many
problems of interest. For example, if F (p) = ∥p∥22, then the
Bregman divergence DF gives the ubiquitous squared ℓ2 loss,
i.e.,

DF (p, q) = ∥p− q∥22 .

For a comprehensive list of realizable loss functions, the inter-
ested reader is referred to [16]. Using the above F , Theorem
4 can apply to ordinary least squares regression which we
will look at in more detail in Section IV. Other regression
models such as logistic regression have a loss function that
cannot be described with a Bregman divergence without the
inclusion of an additional nonlinearity. However, the result in
Theorem 4 is agnostic to the algorithm that each node uses to
fit its individual model. In this way, each node could be fitting
a logistic model to its data, and the total aggregate model
would then be an average over these logistic models. Theorem
4 would still control the expected generalization error for the
aggregate model with the extra 1

K factor, however, critically,
the upper bound would only be for generalization error that
is with respect to a loss of the form DF (⟨x,w⟩, y) such as
squared ℓ2 loss.

In order to show that the dependence on the number of
nodes K from Theorem 4 is tight for certain problems,
consider the following example from [3]. Suppose that Z ∼
π = N (µ, σ2Id) and ℓ(w, z) = ∥w−z∥22 so that we are trying
to learn the mean µ of the Gaussian. An obvious algorithm
for each node to use is simple averaging of its dataset:

wk = Ak(sk) =
1

n

n∑
i=1

zi,k .

For this algorithm, it can be shown that

I(Ŵ ;Zi,k) =
d

2
log

nK

nK − 1



and

ψ∗−1(y) = 2

√
d

(
1 +

1

nK

)2

σ4y

(see Section IV.A. in [3]). If we apply the existing information
theoretic bounds from Theorem 2 in an end-to-end way, such
as would be the approach from [13], we would get

ES∼πnK [∆A(S)] ≤ σ2d

√
2

(
1 +

1

nK

)2

log
nK

nK − 1

= O

(
1√
nK

)
.

However, for this choice of algorithm at each node, the true
expected generalization error can be computed to be

ES∼πnK [∆A(S)] =
2σ2d

nK
.

Applying our new bound from Theorem 4, we get

ES∼πnK [∆A(S)] ≤
σ2d

K

√
2

(
1 +

1

n

)2

log
n

n− 1

≤ O

(
1

K
√
n

)

which recovers the correct dependence on K and improves
upon the O

(
1√
K

)
result from previous information theoretic

methods.

B. General Models and Losses

In this section we briefly describe some results that hold
for more general classes of models and loss functions, such
as deep neural networks and other nonlinear models.

Theorem 5 (Lipschitz Continuous Loss). Suppose that ℓ(w, z)
is Lipschitz continuous as a function of w in the sense that

|ℓ(w, z)− ℓ(w′, z)| ≤ C∥w − w′∥2

for any z, and that

E [∥Wk − E[Wk]∥2] ≤ σ0

for each k. Then

ES∼πnK [∆A(S)] ≤
2Cσ0
K

.

Proof. Starting with Theorem 1,

ES∼πnK [∆A(S)]

=
1

nK

∑
i,k

ES,S′

[
ℓ(A(S), Z ′

i,k)− ℓ(A(S(i,k)), Z ′
i,k

]
≤ 1

nK

∑
i,k

ES,S′

[
C
∥∥∥A(S)−A(S(i,k))

∥∥∥
2

]
(8)

=
1

nK2

∑
i,k

ES,S′

[
C
∥∥∥Wk −W

(i)
k

∥∥∥
2

]
≤ C

nK2

∑
i,k

ES,S′ [∥Wk − E[Wk]∥2]

+ ES,S′

[∥∥∥W (i)
k − E[Wk]

∥∥∥
2

]
(9)

≤ 2Cσ0
K

. (10)

Equation (8) follows due to Lipschitz continuity, equation
(9) uses the triangle inequality, and equation (10) is by
assumption.

The bound in Theorem 5 is not in terms of the information
theoretic quantities I(Wk;Sk), but it does show that the
O
(

1
K

)
upper bound can be shown for much more general

loss functions and arbitrary nonlinear models.

C. Privacy and Communication Constraints

Both communication constraints and local differential pri-
vacy constraints can be thought of as special cases of mu-
tual information constraints. Motivated by this observation,
Theorem 4 immediately implies corollaries for these types of
system.

Corollary 1 (Privacy Constraints). Suppose each node’s algo-
rithm Ak is an ε-local differentially private mechanism in the
sense that p(wk|sk)

p(wk|s′k)
≤ eε for each wk, sk, s

′
k. Then for losses

ℓ of the form in Theorem 4, and under Assumption 2,

ES∼πnK [∆A(S)] ≤
1

K

√
2R2 min{ε, (e− 1)ε2}

n
.

Corollary 2 (Communication Constraints). Suppose each
node can only transit B bits of information to the model
aggregator, meaning that each Wk can only take 2B distinct
possible values. Then for losses ℓ of the form in Theorem 4,
and under Assumption 2,

ES∼πnK [∆A(S)] ≤
1

K

√
2(log 2)R2B

n
.

III. ITERATIVE ALGORITHMS

We now turn to considering more complicated multi-round
and iterative algorithms. In this setup, after T rounds there is
a sequence of weights W (T ) = (W 1, . . . ,WT ) and the final
model ŴT = fT (W

(T )) is a function of that sequence where
fT gives a linear combination of the T vectors W 1, . . . ,WT .
The function fT could represent, for example, averaging over
the T iterates, picking out the last iterate WT , or some



weighted average over the iterates. On each round t, each
node k produces an updated model W t

k based on its local
dataset Sk and the previous timestep’s global model W t−1.
The global model is then updated via an average over all K
updated submodels:

W t =
1

K

K∑
k=1

W t
k .

The particular example that we will consider is that of dis-
tributed SGD, where each node constructs its updated model
W t

k by taking one or more gradient steps starting from W t−1

with respect to random minibatches of its local data. Our
model is general enough to account for multiple local gradient
steps as is used in so-called Federated Learning [4], [5], [6],
as well as noisy versions of SGD such as in [17], [18]. If
only one local gradient step is taken on each iteration, then
the update rule for this particular example could be written as

W t
k =W t−1 − ηt∇wℓ(W

t−1, Zt,k) + ξt (11)

where Zt,k is a data point (or minibatch) sampled from Sk

on timestep t, ηt is the learning rate, and ξt is some potential
added noise. We assume that the data points Zt,k are sampled
without replacement so that the samples are distinct across
different values of t.

For this type of iterative algorithm, we will consider the
following timestep averaged empirical risk quantity:

1

KT

T∑
t=1

K∑
k=1

ℓ(Ŵt, Zt,k) ,

and the corresponding generalization error

∆sgd(S) =
1

T

T∑
t=1

(
EZ∼π[ℓ(Ŵt, Z)]−

1

K

K∑
k=1

ℓ(Ŵt, Zt,k)

)
.

(12)

Note that the quantity in (12) is slightly different than the end-
to-end generalization error that we would get considering the
final model ŴT and whole dataset S. It is instead an average
over the generalization error we would get from each model
stopping at iteration t. We do this so that when we apply the
leave-one-out expansion from Theorem 1, we do not have to
account for the dependence of W t

k on past samples Zt′,k′ for
t′ < t and k′ ̸= k. Since we expect the generalization error to
decrease as we use more samples, this quantity should result in
a more conservative upper bound and be a reasonable surrogate
object to study. The following bound follows as a corollary to
Theorem 4.

Corollary 3. For losses ℓ of the form in Theorem 4, and under
Assumption 2,

E [∆sgd(S)] ≤
1

T

T∑
t=1

1

K2

K∑
k=1

√
2R2I(W t

k;Zt,k) .

Fig. 2. Information theoretic upper bounds and expected generalization error
for a simulated linear regression example in linear (top) and log (bottom)
scales.

IV. SIMULATIONS

We simulated a distributed linear regression example in
order to demonstrate the improvement in our bounds over the
existing information theoretic bounds. To do this, we generated
n = 10 synthetic datapoints at each of K different nodes for
various values of K. Each datapoint consisted of a pair (x, y)
where y = xw0 + n with x, n ∼ N (0, 1), and w0 ∼ N (0, 1)
was the randomly generated true weight that was common to
all datapoints. Each node constructed an estimate ŵk of w0

using the well-known normal equations which minimize the ℓ2

loss, i.e., ŵk = argminw
∑n

i=1(wxi,k − yi,k)
2. The aggregate

model was then the average ŵ = 1
K

∑K
k=1 ŵk. In order to

estimate the old and new information theoretic generalization
bounds (i.e., the bounds from Theorems 2 and 4, respectively),
this procedure was repeated M = 106 times and the datapoint
and model values were binned in order to estimate the mutual
information quantities. The value of M was increased until
the mutual information estimates were no longer particularly
sensitive to the number and widths of the bins. In order to
estimate the true generalization error, the expectations for both
the population risk and the dataset were estimated by Monte
Carlo with 104 trials each. The results can be seen in Figure
2, where it is evident that the new information theoretic bound
is much closer to the true expected generalization error, and
decays with an improved rate as a function of K.
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