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Abstract—We present a semi-decentralized federated learning
algorithm wherein clients collaborate by relaying their neighbors’
local updates to a central parameter server (PS). At every
communication round to the PS, each client computes a local
consensus of the updates from its neighboring clients and
eventually transmits a weighted average of its own update and
those of its neighbors to the PS. We appropriately optimize
these averaging weights to ensure that the global update at
the PS is unbiased and to reduce the variance of the global
update at the PS, consequently improving the rate of convergence.
Numerical simulations substantiate our theoretical claims and
demonstrate settings with intermittent connectivity between the
clients and the PS, where our proposed algorithm shows an
improved convergence rate and accuracy in comparison with the
federated averaging algorithm.

I. INTRODUCTION

Federated learning (FL) algorithms iteratively optimize a
common objective function to learn a shared model over data
samples that are localized over multiple distributed clients
[1]. FL approaches aim to reduce the required communi-
cation overhead and improve clients’ privacy by training
local models of private dataset at the clients and forwarding
them periodically to a centralized parameter server (PS). In
practical FL setups, some clients are stragglers and cannot
send their updates regularly, either because: (i) they cannot
finish their computation within a prescribed deadline, or (ii)
due to communication limitations [2], where they suffer from
intermittent connectivity to the PS since their wireless channel
is temporarily blocked [3]–[8]. Stragglers deteriorate the con-
vergence of FL as the computed local updates become stale.
This can even result in bias in the final model in the case of
persistent stragglers. On the other hand, Communication strag-
glers (type (ii)) are inherently different from computation-
limited stragglers (type (i)), since it can be solved by relaying
the updates to the PS via neighboring clients.

Communication quality at the wireless edge as a key design
principle is considered in the federated edge learning (FEEL)
framework [9], which takes into account the wireless channel
characteristics from the clients to the PS to optimize the
convergence and final model performance at the PS. So far the
FEEL paradigm has mainly focused on direct communication
from the clients to the PS, and aimed at improving the
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performance by resource allocation across clients [9]–[18];
these approaches have ignored possible cooperation between
clients in the case of intermittent communication blockages.

Motivated by our prior works [19]–[21], where client co-
operation is used to improve the connectivity to the cloud
and to reduce the latency and scheduling overhead, this work
proposes a new FEEL paradigm, where the clients cooperate to
mitigate the detrimental effects of communication stragglers.
In our proposed method, clients share their local updates with
neighbors so that each client sends to the PS a weighted
average of its current update and those of its neighbors. Using
this approach, the PS receives new updates from disconnected
clients, which would otherwise become stale and be discarded.
We demonstrate the success of our relaying scheme through
both theoretical analysis and numerical simulations.

Related Works: Decentralized collaborative learning
frameworks have been introduced as an alternative to central-
ized FL, in which the PS is removed to mitigate a potential
communication bottleneck and a single point of failure [22]–
[33]. In decentralized learning, each client shares its local
model with its neighbors through device-to-device (D2D)
communications, and model aggregation is executed at each
client in parallel. This aggregation strategy is determined
at each client according to the network topology, i.e., the
connection pattern between the clients.

An alternative approach to both centralized and decentral-
ized schemes is hierarchical FL (HFL) [21], [34]–[36], where
multiple PSs are employed for the aggregation to prevent a
communication bottleneck. In HFL, clients are divided into
clusters and a PS is assigned to each cluster to perform
local aggregation. The aggregated models at the clusters are
later aggregated at the main PS in a subsequent step to
obtain the global model. HFL has significant advantages over
centralized and decentralized schemes, particularly when the
communication takes place over wireless channels since it
allows spatial reuse of available resources [21]. Nonetheless,
HFL requires employing multiple PSs that may not be practical
in certain scenarios. Instead, the idea of hierarchical collabo-
rative learning can be redesigned to combine hierarchical and
decentralized learning, which is referred as semi-decentralized
FL, where the local consensus follows decentralized learning
with D2D communications, whereas the global consensus is
orchestrated by the PS [37], [38]. One of the major challenges
in FL that is not considered in [37], [38] is the partial
client connectivity [39], [40]. Unequal client participation due
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to intermittent connectivity exacerbates the impact of data
heterogeneity [41]–[44], and increases the generalization gap.

Most existing works on FL assume error-free rate-limited
orthogonal communication links, with an underlying commu-
nication protocol that takes care of wireless imperfections.
However, this separation between the communication medium
and the learning protocol can be suboptimal [9]. An alternative
approach treats the communication of the model updates to the
PS as an uplink communication problem and jointly optimizes
the learning algorithm and the communication scheme [9].
Within this framework is an original and promising approach
known as over-the-air computation (OAC) [14]–[16], which
exploits the superposition property of wireless signals to
convey the sum of the model updates that are transmitted by
each client in an uncoded fashion. In addition to bandwidth
efficiency, the OAC framework provides a certain level of
anonymity to clients due to its superposition nature; hence,
it can enhance the privacy of the participating clients [17],
[18]. We emphasize that in OAC, PS receives the aggregate
model, and it is not possible to disentangle the individual
model updates. Therefore, any strategy that utilizes a PS
side aggregation mechanism with individual model updates to
address unequal client participation is not compatible with the
OAC framework. One of the major advantages of our proposed
scheme is that it mitigates the drawbacks of unequal client
participation without requiring the identity of transmitting
clients or their individual updates at the PS. Therefore, our
solution is compatible with OAC.

Client connectivity is a particularly significant challenge
in FEEL, where the clients and the PS communicate over
unreliable wireless channels. Due to their different physical
environments and distances to the PS, clients can have dif-
ferent connectivity to each other and the PS. This problem
has been recently addressed in [10]–[13], [45]–[48] by con-
sidering customized client selection mechanisms to balance
the participation of the clients and the latency for the model
aggregation in order to speed up the learning process. We
adopt a different approach to this problem, where instead of
designing a client selection mechanism, or optimizing resource
allocation to balance client participation, we introduce a relay-
ing mechanism that takes into account the nature of individual
clients’ connectivity to the PS and ensures that, in case of poor
connectivity, their local updates are conveyed to the PS with
the help of their neighboring clients.

Paper Organization: Sec. II presents the FL system
model and the proposed FL collaborative relaying scheme.
Sec. III presents conditions for the unbiasedness of our pro-
posed scheme and an analysis of the convergence rate. Sec. IV
optimizes the convergence rate of our proposed scheme, while
Sec. V presents numerical results that validate our theoretical
analysis and highlight the performance improvement in terms
of training accuracy. Finally, Sec. VI concludes this paper.

Remark. Due to space limitations, all proofs are omitted, and
can be found in an online extended version of this paper [49].
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Fig. 1: System model with intermittent uplink communication be-
tween clients and PS (dotted lines) and reliable communication
between neighboring clients (solid lines).

II. SYSTEM MODEL FOR COLLABORATIVE RELAYING

Consider n clients communicating periodically with a PS
that trains a global model x ∈ Rd. Let L(x, ζ) be the loss
evaluated for a model x at data point ζ. Denote the local
loss at client i by fi : Rd × Zi → R, where f(x;Zi) =
1
|Zi|

∑
ζ∈Zi

L(x; ζ). Here, Zi is the local dataset of client
i. The goal of PS is to solve the following empirical risk
minimization (ERM) problem:1

x∗ = arg min·
x∈Rd

f(x) , arg min·
x∈Rd

1

n

n∑
i=1

fi(x;Zi).

A. FL with Local SGD at Clients

Denote the local gradient as ∇fi(x) , ∇xf(x;Zi), and let
gi(x) be an unbiased estimate of it. In the rth round of FL,
the PS broadcasts the global model x(r) to the clients. For a
local averaging period of T , each client performs T iterations
of local training, after which the local models are sent to the
PS for aggregation. For local iteration k ∈ [0 : T ] of the rth

round, client i applies the local update rule:

x
(r,k+1)
i = x

(r,k)
i − ηrgi

(
x
(r,k)
i

)
, (1)

where ηr is the learning rate for round r and x
(r,0)
i = x(r).

B. Communication Model

Communication between clients and PS. We consider a
setting where the uplink connections between the clients and
the PS are intermittent. As shown in Fig. 1, we model the
connectivity of client i to the PS at round r by the Bernoulli
random variable τi(r) ∼ Bern(pi), where τi = 1 indicates
the presence of an uplink communication opportunity, whereas
τi(r) = 0 indicates a blocked uplink. For simplicity of expo-
sition, we consider the uplink channel to be either completely
blocked or perfectly available without any noise, and the
downlink from PS to clients does not suffer from intermittent
dropouts.

Remark 1. The connectivity probabilities {pi}i∈[n] can be
easily estimated using pilot signals. Moreover, clients can
share their pi with each other using local links in a pre-
training phase. On the other hand, we do not assume that

1For simplicity, we assume |Zi| = |Zj | for all i, j ∈ [n]. Our method can
be extended to the setting of imbalanced local dataset sizes as well.



Algorithm 1 COLREL-CLIENT: Collaborative Relaying
Input: Round index r, Step-size ηr, Local avg. period T ,
Neighborhood of client i Ni, αij for every j ∈ Ni ∪ {i}.
Output: ∆x̃r+1

i .
1: Receive x(r) from PS.
2: Set x(r,0)

i = x(r).
3: for k ← 0 to T − 1 do

Compute (stochastic) gradient gi(x
(r,k)
i t).

x
(r,k+1)
i = x

(r,k)
i − ηrgi

(
x
(r,k)
i

)
.

4: end for
5: Set ∆xr+1

i = x
(r,T )
i − x(r).

6: Send ∆xi to every j ∈ Ni.
7: Receive ∆xj from every j ∈ Ni.
8: Compute ∆x̃r+1

i =
∑
j∈Ni∪{i} αij ·∆xr+1

j .
9: Transmit (relay) ∆x̃r+1

i to the PS.

the instantaneous connectivity information, i.e., τi(r), r ∈ [n]
is available to any of the clients.

Communication between clients. The connectivity be-
tween clients is modeled by an undirected graph G = (V,E)
where V = [n] and (i, j) ∈ E ⇐⇒ client i can communicate
with client j. Let Ni , {j ∈ V : {i, j} ∈ E}. We do
not assume that the graph G is connected. Instead, it can be
composed of multiple connected subgraphs.

C. Collaborative Relaying of Local Updates

Let ∆x
(r+1)
i denote client i’s update at the end of T th

local iteration of round r, i.e., ∆x
(r+1)
j = x

(r,T )
j − x(r). We

assume that client i’s update ∆x
(r+1)
j is readily available to

its neighbors. Then client i computes a weighted average of
its own update and those of its neighbors in Ni, i.e.,

∆x̃
(r+1)
i =

∑
j∈Ni∪{i}

αij∆x
(r+1)
j =

∑
j∈Ni∪{i}

αij

(
x
(r,T )
j − x(r)

)
,

where αij is a non-negative importance weight assigned by
client i while relaying the client j’s update. Note that weighted
averaging entails a complexity of O

(
maxi∈[n] |Ni|+ 1

)
.

D. PS Aggregation

In our setting, the PS does not explicitly select the subset
of clients from which it wants to receive information, rather
it receives updates from all communicating clients at the
beginning of every round. The PS uses the following re-scaled
sum of received updates:

x(r+1) = x(r) + w
∑
i∈[n]

τi(r + 1)∆x̃
(r+1)
i . (2)

This update can be computed over-the-air and does not require
the PS to know the identities of the communicating clients.
We set w=1/n to preserve the unbiasedness of the objective
function at the PS, as discussed in Sec. III. Our Collaborative
Relaying (ColRel) algorithm is presented in Algs. 1 and 2.

Algorithm 2 COLREL-PS: PS Aggregation
Input: Number of rounds R, a set of clients [n].
Output: Global model x(R).

1: Set x(0) = 0
2: for k ← 0 to T − 1 do

Broadcast x(r) to all clients.
Set τi(r + 1) = 1 or 0 depending on connectivity.
Update x(r+1) = x(r) + 1

n

∑
i∈[n] τi(r + 1)∆x̃r+1

i

3: end for

III. CONVERGENCE ANALYSIS

A. Unbiasedness of COLREL FL

In our collaborative relaying scheme, the local update of a
particular client i can be transmitted to the PS by itself, or
by one or more of its neighbors j ∈ Ni. Since the PS may
be blind to the identities of the clients, the clients collaborate
among themselves to ensure that this redundancy is mitigated.
This is done by appropriately choosing the weights αij . In
particular, Lemma 1 gives a sufficient condition on the values
of {αij}i,j∈[n] that ensures that the aggregated global update
at the PS is an unbiased estimate of 1

n

∑
i∈[n] ∆x

(r)
i , the true

aggregate in the case of perfect channel connectivity.

Lemma 1. Let w = 1/n and {αij}i,j∈[n] be such that

E

 ∑
j∈Ni∪{i}

τj(r + 1)αji

 = piαii +
∑
j∈Ni

pjαji = 1. (3)

Then, for every i ∈ [n],

w · E

 ∑
j∈Ni∪{i}

τj(r + 1)αji∆xr+1
i

∣∣∣∆xr+1
i

 =
1

n
∆xr+1

i .

Note that the standard FL setting under intermittent client
connectivity to the PS but with no collaboration between the
clients is captured by the choice w = 1/n, Ni = ∅, pi =
p, αii = 1, αij = 0 for all i, j ∈ [n] and j 6= i.

B. Expected Suboptimality Gap

Next, Thm. 1 presents the convergence rate of COLREL as
a function of {αij}, under the following assumptions.

Assumption 1. For any i, the local loss fi is L-smooth w.r.t.
x, i.e., for any x,y ∈ Rd, ‖∇fi(x)−∇fi(y)‖2 ≤ L‖x−y‖2.

Assumption 2. The stochastic gradients gi(x) are unbiased
and have bounded variance, i.e., ∀ i ∈ [n]:
1) E[gi(x)] = ∇fi(x), and
2) E‖gi(x)−∇fi(x)‖22 ≤ σ2 for some finite σ2.

Assumption 3. For any i, the loss fi is µ-strongly convex, i.e.,
for any x,y ∈ Rd, (∇fi(x)−∇fi(y))>(x−y) ≥ µ‖x−y‖22.



Algorithm 3 OPT-α: Optimization of relay weight matrix A
Input: Connectivity graph G, Transmission probability vector
p, Maximum number of iterations L.
Output: Relay weight matrix A(L) that approximately solves
(6).

1: Set A(0)
ji = 1

(|Ni|+1)·pj · 1{j∈Ni∪{i}:pj>0}.
2: for `← 0 to L− 1 do

Set `← `+ 1.
Set i = ` mod n+ n · 1{` mod n=0}.

Compute Â
(`)

i according to (9).
Set A(`)

k according to (7) for every k ∈ [n].
3: end for

Let A = (αij)i,j∈[n] denote the n × n matrix of relay
weights, and let Nil = (Ni ∪ {i}) ∩ (Nl ∪ {l}) denote the
common neighborhood of nodes i and j. Suppose,

S(p,A) =
∑
i,l∈[n]

∑
j:j∈Nil

pj(1− pj)αjiαjl. (4)

Theorem 1. Under Asms. 1-3 and condition (3), COLREL, as
specified by Algs. 1 and 2, with ηr = 4µ−1

rT +1 , satisfies for every
r ≥ r0(p,A),

E‖x(r+1) − x?‖2 ≤ (r0T + 1)

(rT + 1)2
‖x(0) − x?‖2 +

C1(p,A)T
kT + 1

+C2
(T − 1)2

kT + 1
+ C3(p,A)

T
(kT + 1)2

,

where B(p,A) = 2L2

n2 S(p,A), C1(p,A) = 42

µ2 · 2σ
2

n2 S(p,A),

C2 = 42

µ2 ·L2 σ2

n e, C3(p,A) = 44

µ4 ·
(
L2σ2e+ 2L2σ2e

n2 S(p,A)
)

,

and r0(p,A) = max
{
L
µ , 4

(
B(p,A)
µ2 + 1

)
, 1
T ,

4n
µ2T

}
.

As a consequence of Thm. 1, it follows that,

E
∥∥∥x(r+1) − x?

∥∥∥2 = O

(∥∥x(0) − x?
∥∥2

r2
+
S(p,A)

r

)
. (5)

Therefore, the convergence rate can be improved by minimiz-
ing the term S(p,A) subject to the unbiasedness condition in
Lemma 1. Minimizing S(p,A) can also reduce r0(p,A).

IV. OPTIMIZING THE RELAYING WEIGHTS

We choose the relay weight matrix A to minimize the upper
bound on the expected distance to optimality as given by
Thm. 1. Thus, we solve the following optimization problem:

arg min
A

S(p,A),

s.t.:
∑
j:j∈Ni

pjαji = 1, αji ≥ 0 ∀i, j ∈ [n]. (6)

The function S(p,A) is convex with respect to (w.r.t.) A for
p ∈ [0, 1]n. It can be shown that the domain of (6) is separable
w.r.t. Ai, the ith column of A, and we can use the Gauss-
Seidel method [50, Prop. 2.7.1] to iteratively solve (6). At
every iteration `, we compute the estimate A` as

Fig. 2: Homogeneous connectivity with pi = 0.2, ∀i ∈ [n] and FCT.

A
(`)
i =

{
Â

(`)

i if ` mod n+ n · 1{`mod n=0} = i,

A
(`−1)
i otherwise

. (7)

Here, Â
(`)

i is given by

Â
(`)

i = arg min
∑

j∈Ni∪{i}

pj(1− pj)α2
ji

+ 2
∑

l∈[n],l 6=i

∑
j∈Nil

pj(1− pj)αjiα(`−1)
jl ,

s.t.:
∑

j∈Ni∪{i}

pjαji = 1, αji ≥ 0 ∀j ∈ [n]. (8)

Let Lji = {l : l ∈ [n], l 6= i, j ∈ Nil}, that is, the set of all
clients that have j as a mutual neighbor with i, and let βji =∑
l∈Lji

α
(`−1)
jl . Let p(i) = maxk∈Ni∪{i} pk. Using Lagrange

multipliers we solve (8) for j ∈ Ni ∪ {i} as follows:

α̂
(`)
ji =


(
−βji + λi

2(1−pj)

)+
if pj ∈ (0, 1), p(i) < 1,

1∑
k∈[n] 1{pk=1,k∈Ni∪{i}}

if pj = 1,

0 otherwise.

(9)

Here, λi satisfies
∑
j∈Ni∪{i} pj

(
−βji + λi

2(1−pj)

)+
= 1, and

(·)+ , max{·, 0}. We can find λi using the bisection method.
The complete algorithm is detailed in Alg. 3. Its overall
complexity is O(L · (n2 + K)), where K is the number of
iterations used in the bisection method for optimizing λi.

Remark 2. The optimization (6) only requires client i to know
the weight values for its neighbors of distance 2. Thus, we can
exploit the communication links between clients, and optimize
(6) distributively. We present the distributed algorithm in [49].

V. NUMERICAL SIMULATIONS

We consider training a ResNet-20 model for image classi-
fication on CIFAR-10 dataset over 10 clients; each executes 8
local training steps of local-SGD. All plots have been averaged
over 5 different realizations. We used a learning rate of 0.1 for
SGD, a coefficient of 1e − 4 for `2-regularization to prevent
overfitting, and a batch-size of 64.

In Figs. 2 and 3, the dataset is distributed across the clients
in an IID fashion. As benchmarks, we consider Federated



Fig. 3: Different connectivity across clients with a ring topology.

Fig. 4: Non-IID data + global momentum.

Averaging (FedAvg) - No Dropout, in which all clients are able
to successfully transmit their local updates to the PS at every
communication round. We also consider FedAvg - Dropout,
in which the PS is unaware of the identity of the clients,
and simply assumes that the update for any client unable
to successfully transmit is zero. These benchmarks serve as
natural upper and lower bounds to the performance of the
proposed algorithm.

In Fig. 2, we have a homogeneous connectivity setup with
equal probability pi = 0.2 that client i ∈ [n] successfully
transmits its local updates to the PS. Furthermore, we as-
sume a fully-connected topology (FCT) where each clients
is connected to all the other clients in the system. COLREL
achieves a performance on par with FedAvg - No Dropout.
We also consider a non-blind strategy, FedAvg - Dropout (Non-
Blind) where the PS is aware of the identity of the clients, and
knows exactly which clients have been successful in sending
their local updates to the PS. This is common in point-to-point
learning settings. In this case the PS simply ignores the clients
that have been unable to send their updates, and averages the
successful updates by dividing the global aggregate at the PS
by the number of successful transmissions.

In Fig. 3 (and also in Fig. 4), we consider every client has
a different probability of successful transmission to the PS
according to p = [0.1, 0.2, 0.3, 0.1, 0.1, 0.5, 0.8, 0.1, 0.2, 0.9].
We have deliberately chosen some clients to have a very low
connectivity, some others moderate, and others very high. We

consider a ring topology where client i is connected to clients
(i − 1) mod n and (i + 1) mod n. For this setting, we
distinguish the cases with and without optimized weights. The
weights are optimized in order to minimize the term S(p,A),
which consequently minimizes the variance of the iterates,
subject to ensuring that the updates are unbiased according to
Alg. 3. Note that explicitly optimizing the consensus weights
that the clients use for their neighbors was not essential in Fig.
2 because the initial weights of Alg. 3 are optimal for a FCT
with homogeneous connectivity to the PS, i.e., pi = p∀i ∈ [n].

Finally, in Fig. 4, we consider the setting in which the
training data is distributed across the clients in a non-IID
fashion. To emulate non-IID-ness, we consider the sort-and-
partition approach in which the training data is initially sorted
based on labels, and then divided into blocks and distributed
among clients in a skewed fashion so that each client has data
from only a few classes. For the ring topology in this plot, we
have considered each client to be connected to 4 of its nearest
neighbors. We also use global momentum at the PS to update
the global model. Remarkably, FedAvg (even with non-blind
averaging) fails to converge in this setting. This is because
in the absence of collaboration, clients that have important
training samples that are critical for training a good model
with high accuracy, may have a low probability of successful
transmission and thus are rarely able to convey their updates
to the PS. Therefore, when these clients are unable to convey
their updates to the PS, the resulting test accuracy of the global
model is ∼ 10%, as good as a random classifier for 10 classes.
Collaborative relaying ensures that the information from these
critical datapoints are also conveyed to the PS even when the
data owner does not have connectivity to the PS.

VI. CONCLUSIONS

Our goal in this paper is to mitigate the detrimental effect
of clients’ intermittent connectivity on the training accuracy
of FL systems. For this purpose, we proposed a collaborative
relaying strategy, which exploits the connections between
clients to relay potentially missing model updates to the PS
due to blocked clients. Our algorithm allows the PS to receive
an unbiased estimate of the model update, which would not be
possible without relaying. We optimized the consensus weights
at each client to improve the rate of convergence. Our proposed
approach can be implemented even when the PS is blind to
the identities of clients which successfully communicate with
it at each round. Numerical results showed the improvement
in training accuracy and convergence time that our approach
provides under various settings, including IID and non-IID
data distributions, different communication graph topologies,
as well as blind and non-blind PSs.
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