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Abstract—We consider the problem of parameter estimation
in a Bayesian setting and propose a general lower-bound that
includes part of the family of f -Divergences. The results are
then applied to specific settings of interest and compared to other
notable results in the literature. In particular, we show that the
known bounds using Mutual Information can be improved by
using, for example, Maximal Leakage, Hellinger divergence, or
generalizations of the Hockey-Stick divergence.

Index Terms—Bayesian Risk, Parameter Estimation, Infor-
mation Measures, f−Divergences, Mutual Information, Hockey-
Stick Divergence

I. INTRODUCTION

In this work we consider the problem of parameter esti-
mation in a Bayesian setting. The connection between said
problem and information measures has been established mul-
tiple times over the years [1]–[3]. Here we further develop
the perspective undertaken in [2] and in [4]. Similarly to [2]
and [4] we will look at the problem through an information-
theoretic lens and we will thus treat the parameter to be
estimated as a message sent through a channel. The family
of bounds one can derive in this framework generally give
rise to two objects:
• a measure of information (Shannon’s Mutual Information

was employed in [2], Sibson’s α-Mutual Information in
[4], Hockey-Stick Divergence in [3], etc.);

• a small-ball probability;
The main advantage of this is that both terms can be rendered
independent of the specific choice of the estimator, which
in turns renders these lower-bounds quite general. Our main
focus will not be on asymptotic results but rather on finite
sample lower-bounds. In particular, we will expand upon [4],
utilizing the same approach but focusing on f−Divergences
rather than on Sibson’s Mutual Information.

II. BACKGROUND AND DEFINITIONS

Definition 1. Given a function f : X → Y , the Legendre-
Fenchel transform of f is defined as

f?(x?) = sup
x∈X
〈x?, x〉 − f(x), (1)

where 〈x?, x〉 denotes the natural pairing between a space
X and its topological dual X ?, i.e., 〈x?, x〉 = x?(x). Given
a function f , f? is guaranteed to be lower semi-continuous
and convex. If f is convex and lower semi-continuous then
f = f??|X (the restriction of f?? on X agrees with f ).

A. f−Divergences

A straightforward generalization of the KL-Divergence can
be obtained by considering a generic convex function f : R→
R, usually with the simple constraint that f(1) = 0.

Definition 2. Let (Ω,F ,P), (Ω,F ,Q) be two probability
spaces. Let f : R → R be a convex function such that
f(1) = 0. Consider a measure µ such that P � µ and Q � µ
(i.e., P and Q are absolutely continuous with respect to µ).
Denoting with p, q the densities of the measures with respect
to µ, the f−Divergence of P from Q is defined as follows:

Df (P‖Q) =

∫
qf

(
p

q

)
dµ. (2)

Note that f−divergences are independent from the choice
of the dominating measure µ [5]. When absolute continuity
between P,Q holds, denoted with P � Q one retrieves the
following [5]:

Df (P‖Q) =

∫
f

(
dP
dQ

)
dQ. (3)

This generalization includes the KL divergence (by simply
setting f(t) = t log(t)), but it also includes:
• Total Variation distance, with f(t) = 1

2 |t− 1|;
• Hellinger distance, with f(t) = (

√
t− 1)2;

• Pearson χ2-divergence, with f(t) = (t− 1)2.
In particular, in this paper, we will be interested in two families
of divergences. The first family, also known as Hellinger
Divergences, is typically characterized by a parameter p > 0.
More precisely, we are referring to the f–Divergences that
stem from fp(t) = tp−1

p−1 and that will be denoted as follows:

Hp(P‖Q) = Dfp(P‖Q). (4)

The second family we consider is characterized by two param-
eters, namely β > 0 and γ ≥ β, and arise from the parametric
family of functions fβ,γ(t) = max{0, βt − γ}. We denote it
as:

Eβ,γ(P‖Q) = Dfβ,γ (P‖Q). (5)

For the case β = 1, one retrieves the family of so-called Eγ–
Divergences [6, Eq. (47)].

Much like f–Divergences, a generalization of Shannon’s
Mutual Information, denoted in the literature as f–Mutual
Information, can be defined starting from f–Divergences as
follows:
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Definition 3. Let X and Y be two random variables jointly
distributed according to PXY over a measurable space (X ×
Y,FXY ). Let (X ,FX ,PX), (Y,FY ,PY ) be the correspond-
ing probability spaces induced by the marginals. Let f : R→
R be a convex function such that f(1) = 0. The f–Mutual
Information between X and Y is defined as:

If (X,Y ) = Df (PXY ‖PXPY ). (6)

If f is strictly convex at 1 and satisfies f(1) = 0, then
If (X,Y ) = 0 if and only if X and Y are independent [5,
Theorem 5]. Choosing f(t) = t log t, one recovers the Mu-
tual Information. With a slight abuse of notation, we will
denote f–Mutual Informations with the same symbols used to
characterize the corresponding divergences, e.g., Hp(X,Y ) =
Hp(PXY ‖PXPY ) will represent the fp–Mutual Information,
while Eβ,γ(X,Y ) = Eβ,γ(PXY ‖PXPY ) will represent the
fβ,γ–Mutual Information.

B. Problem Setting - the Bayesian framework

LetW denote the parameter space and assume that we have
access to a prior distribution over this space PW . Suppose
then that we observe W through the family of distributions
P = {PX|W=w : w ∈ W}. Given a function φ : X → W one
can then estimate W from X ∼ PX|W via φ(X) = Ŵ . Let us
denote with ` : W ×W → R+ a loss function, the Bayesian
risk is defined as:

R = inf
φ

E[`(W,φ(X)] = inf
φ

E[`(W, Ŵ )]. (7)

Our purpose will be to lower-bound R using the tools de-
scribed in the previous section. To this end, we will be using a
simple Markov’s inequality approach: i.e., for every estimator
φ and ρ ≥ 0, one can do the following

E[`(W, Ŵ )] ≥ ρ
(
PWŴ (`(W, Ŵ ) ≥ ρ)

)
. (8)

With further manipulations we can actually relate
P(`(W, Ŵ ) ≥ ρ) to the information-measures described
before and some function ψ of PWPŴ (`(W, Ŵ ) ≥ ρ) (the
measure of {`(W, Ŵ ) ≥ ρ} under the product of the marginals
PWPŴ ). Let us denote PWPŴ (`(W, Ŵ ) ≤ ρ) = LW (Ŵ , ρ).
In some cases, this ψ will lead us to considering the so-called
small-ball probability

LW (ρ) = sup
ŵ∈Ŵ

LW (ŵ, ρ) = sup
ŵ∈Ŵ

P(`(W, ŵ) ≤ ρ). (9)

The purpose is to render both of these quantities independent
of φ, granting us the tools to provide general lower-bounds on
the risk R.

C. Related Works

A survey of early works in this area, mainly focusing
on asymptotic settings, can be found in [7]. More recent
but important advances are instead due to [1], [8]. Closely
connected to this work is [2]. The approach is quite similar,
with the main difference that we employ a family of bounds
involving a variety of divergences while [2] relies solely on

Mutual Information and the Kullback-Leibler Divergence. [4]
focuses on Sibson’s α-Mutual Information, and [3] uses
the Eγ-Divergence. A similar approach was also undertaken
in [9]. The authors focused on the notion of f−informativity
(cf. [10]) and leveraged the data processing inequality simi-
larly to [11, Theorem 3]. In particular, f−informativities are
more general than the f−Mutual Informations considered in
this work (cf. Definition 3) and they can potentially lead to
tighter results. The technique used to provide lower-bounds
on the Bayesian risk for general non-negative losses (cf. [9,
Section 4]) is, however, different. It is unclear whether the
results provided in this work are equivalent (or weaker) with
respect to those obtained in [9].

III. THE LOWER BOUNDS

Let us start with our main result and then show how it is
connected to the Bayesian Risk.

Theorem 1. Consider the Bayesian framework described in
Sec. II-B. Let f : [0,+∞) → R be an increasing convex
function such that f(1) = 0 and suppose that the generalized
inverse, defined as f−1(y) = inf{t ≥ 0 : f(t) > y}, exists.
Then the following must hold for every ρ > 0 and every
estimator Ŵ :

E[`(W, Ŵ )] ≥ ρ

(
1− LW (Ŵ , ρ)·

f−1

(
If (W, Ŵ ) + (1− LW (Ŵ , ρ))f?(0)

LW (Ŵ , ρ)

))
. (10)

Moreover, if f?(0) ≤ 0, the bound simplifies to

E[`(W, Ŵ )] ≥ ρ

(
1− LW (Ŵ , ρ) · f−1

(
If (W, Ŵ )

LW (Ŵ , ρ)

))
.

(11)

Proof. To prove the statement we use [11, Theorem 3]. In our
notation, it states that for every function f with the desired
properties, we have

PWŴ (`(W, Ŵ ) ≤ ρ) ≤ LW (Ŵ , ρ)· (12)

f−1

(
If (W, Ŵ ) + (1− LW (Ŵ , ρ))f?(0)

LW (Ŵ , ρ)

)
.

(13)

In particular when f?(0) ≤ 0, the bound reduces to

PWŴ (`(W, Ŵ ) ≤ ρ) ≤ LW (Ŵ , ρ) · f−1
(
If (W, Ŵ )

LW (Ŵ , ρ)

)
.

(14)

Rewriting PWŴ (`(W, Ŵ ) ≥ ρ) as 1 − PWŴ (`(W, Ŵ ) ≤ ρ)
and combining this with Equations (8) and (13) concludes the
proof.

In order to provide a lower-bound on the Bayesian Risk,
one needs to render the right-hand side of Equations (10) (or



(11)) independent of Ŵ = φ(X) and, in order to do that, one
needs to render independent of Ŵ :

1) The information-measure, e.g., through the data-
processing inequality If (W, Ŵ ) ≤ If (W,X);

2) The quantity LW (Ŵ , ρ), that can be easily upper-
bounded in the following way: LW (Ŵ , ρ) ≤
supŵ LW (ŵ, ρ) = LW (ρ).

For simplicity, consider Equation (11) and introduce the fol-
lowing object

Gf (If , LW ) := LW (Ŵ , ρ) · f−1
(
If (W, Ŵ )

LW (Ŵ , ρ)

)
. (15)

To use the two inequalities just stated above in items 1) and
2), one thus needs that for a given choice of f , Gf (If , LW ) is
increasing in If for a given value of LW and vice-versa. This
allows us to further lower-bound (11) and render the quantity
independent of the specific choice of φ. Hence, starting from
(7) one can provide a lower-bound on the risk R that is
independent of φ. Let us now look at some specific choices of
f such that Gf satisfies the desired properties and for which
a bound on the Bayesian risk can indeed be retrieved.

Corollary 1. Consider the Bayesian framework described in
Sec. II-B. The following must hold for every p > 1 and ρ > 0:

R ≥ ρ
(

1− LW (ρ)
p−1
p · ((p− 1)Hp(W,X) + 1)

1
p

)
. (16)

Proof. Since f(x) = xp−1
p−1 , we have that f?(0) =

supx≥0(−f(x)) = 1
p−1 and f−1(t) = ((p− 1)t+ 1)

1
p .

For every estimator Ŵ ,

LW (Ŵ , ρ) · f−1
(
If (W, Ŵ ) + (1− LW (Ŵ , ρ))f?(0)

LW (Ŵ , ρ)

)
(17)

= LW (Ŵ , ρ)

(
(p− 1)Hp(W, Ŵ ) + 1

LW (Ŵ , ρ)

) 1
p

(18)

= LW (Ŵ , ρ)
p−1
p

(
(p− 1)Hp(W, Ŵ ) + 1

) 1
p

(19)

≤ LW (ρ)
p−1
p ((p− 1)Hp(W,X) + 1)

1
p , (20)

where in (20) we used the data-processing inequality for f–
divergences. Using (20) with Theorem 1, we retrieve that for
every estimator Ŵ

E[`(W, Ŵ )] ≥ ρ
(

1− LW (ρ)
p−1
p ((p− 1)Hp(W,X) + 1)

1
p

)
.

(21)
Since the right-hand side of (21) is independent of Ŵ = φ(X)
one can use it to lower-bound the risk R.

Restricting the choice of f to this family of polynomials
we can thus state the following lower-bound on the risk:

R ≥ sup
ρ>0

sup
p>1

ρ
(
1− LW (ρ)

p−1
p ·
(

(p− 1)Hp(W, Ŵ ) + 1
)

1
p

)
.

(22)

Remark 1. Using the one-to-one mapping connecting
Hellinger divergences and Rényi’s α−Divergence [6, Eq.
(30)], the bound above can be re-written as follows:

R ≥ sup
ρ>0

sup
α>1

ρ

(
1− LW (ρ)

α−1
α ·

exp

(
α− 1

α
Dα(PWŴ ‖PWPŴ )

))
. (23)

In addition, given the generality of Theorem 1 we can also
recover other notable results present in the literature (cf. [3,
Remark 1]) through the following:

Corollary 2. Consider the Bayesian framework described in
Sec. II-B. The following must hold for every β > 0, γ ≥ β,
and ρ > 0:

R ≥ ρ

(
1− Eβ,γ(W, Ŵ ) + γLW (ρ)

β

)
. (24)

Proof. We take the same approach as in Corollary 1. Let
f(x) = max{0, βx − γ}, consequently one has that f?(0) =
supx≥0(−f(x)) = 0 and that the generalized inverse corre-
sponds to f−1(t) = t+γ

β . Using Theorem 1, along with the
fact that f?(0) ≤ 0 we have that for every estimator Ŵ ,

E[`(W, Ŵ )] ≥ ρ

(
1− Eβ,γ(W, Ŵ ) + γLW (Ŵ , ρ)

β

)
(25)

≥ ρ
(

1− Eβ,γ(W,X) + γLW (ρ)

β

)
. (26)

Since (26) is independent of Ŵ = φ(X) one can use it to
lower-bound the risk R.

We thus retrieve the following lower-bound on the risk:

R ≥ sup
ρ>0

sup
β>0,γ≥β

ρ

(
1− Eβ,γ(W, Ŵ ) + γLW (ρ)

β

)
. (27)

Remark 2. Note that setting β = 1 (24) recovers the result in
[3, Remark 1]. In fact, by introducing an additional degree
of freedom through the β parameter in Equation (27), the
resulting lower-bound can only be tighter than [3, Remark
1].

IV. EXAMPLES

In this section we apply Corollaries 1 and 2 to two clas-
sical estimation settings. The resulting lower-bounds are then
compared with those obtained in [4] involving Sibson’s α-
Mutual Information and Maximal Leakage and with those
in [2] involving Shannon’s Mutual Information and Maximal
Leakage.

Ultimately, for each example, we would like to compare the
tightest versions of our bounds, which are given by Equation
(22) for theHp–Divergence and (27) for the Eβ,γ–Divergence.
However, since their computations involve a maximization
problem over some parameters (p or β, γ) that we cannot
analytically solve, we compute these lower-bounds only for
specific values of the parameters. The choice of parameters
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Fig. 1: Setting: Example 1. Comparison between the largest
lower-bounds one can retrieve for different information mea-
sures in Example 1: that is between (27), (28), [4, Eq. (16)]
and [2, Corollary 2, Eq. (19)]. The quantities are analytically
maximized over ρ (cf. Appendix A) and numerically optimized
over, respectively, p > 1, β > 0, and γ ≥ β.

we use might seem arbitrary but it correctly captures the
behavior of the bounds. Indeed, experiments show that when
solving the maximization over p or β, γ (e.g., through the
scipy.optimize.minimize function from the Python
library SciPy) the same behaviors are observed, like Figure
1 shows in the context of Example 1.

A. Example 1: Bernoulli Bias Estimation

Example 1. Suppose that W ∼ U [0, 1] and that for each i ∈
[n], Xi|{W = w} ∼ Ber(w). Also, assume that `(w, ŵ) =
|w − ŵ|.

We first provide a closed-form expression of the lower-
bound resulting from Corollary 1 for a specific choice of p
which enables to match the upper-bound up to a constant
factor. In fact in general, the tightest bound in this family
comes from Equation (22) and can, in this example, be stated
as follows:

R ≥ sup
ρ>0

sup
p>1

ρ
(
1− (2ρ)

p−1
p · ((p− 1)Hp(W,Xn) + 1)

1
p

)
.

(28)
The value of Hp(W,Xn) for this setting is expressed in the
following Lemma.

Lemma 1. Consider the setting described in Example 1. Then
for every p > 1,

(p− 1)(Hp(W,Xn) + 1)

= (n+ 1)p−1
n∑
k=0

(
n

k

)p
Γ(kp+ 1)Γ((n− k)p+ 1)

Γ(np+ 2)
.

(29)

In particular with p = 2, one recovers:

χ2(W,Xn) + 1 =
n+ 1

2n+ 1
· 4n(

2n
n

) ≤ 16
√
πn

21
. (30)

Proof. See Appendix B.

Corollary 3. Consider the setting described in Example 1.
The Bayesian risk is lower-bounded by

R ≥ 7

72
√
πn

. (31)

Proof. Let p = 2 in Corollary 1 along with LW (ρ) ≤ 2ρ, one
has that

R ≥ sup
ρ>0

ρ
(

1−
√

2ρ(χ2(W,Xn) + 1)
)
. (32)

Solving the maximization over ρ (cf. Appendix A) ) and using
(30) we conclude that

R ≥ 2

27
· 1

χ2(W,Xn) + 1
≥ 7

72
√
πn

. (33)

Notice that (31) matches the upper-bound up to a constant,
and tightens the result in [2, Corollary 2] while not requiring
that n→∞.
Remark 3. As mentioned in previous proof, Stirling’s approx-
imation yields (χ2(W,Xn)+1) ∼

√
πn
2 when n is large. This

implies that for n large one can show that R & 4
27
√
πn

, thus
leading to a slight improvement over (31).

Similarly, one can do the same steps used to retrieve
Corollary 3, but this time using the Eβ,γ–Divergence instead
of the Hp–Divergence. In particular, for the case β = 0.75
and γ = 2.2, Eq. (24) in this example can be expressed as

R ≥ sup
ρ>0

ρ

(
1− 4

3
(E0.75,2.2(W,Xn) + 4.4ρ)

)
(34)

=
5(0.75− E0.75,2.2(W,Xn))2

66
. (35)

A direct comparison between the bounds we provide and
those already present in the literature can be seen in Figure 2.
The lower-bounds are computed as a function of the number of
samples n, which we consider to be in the range {1, . . . , 50}.
The figure shows that all the divergences we considered in
this work provide a larger (and thus, better) lower-bound
on the Bayesian risk when compared with results that stem
from using Shannon’s Mutual Information (cf. [2, Corollary
2]). In particular, the lower-bound involving the Eβ,γ–Mutual
Information represents the largest among the ones we consider.
Given the lack of a closed-form expression for Eβ,γ in this
example the quantities (35) along with ([2, Corollary 2, Eq.
(19)] and [4, Eq. (16)]) and (31) are computed numerically.

B. Gaussian prior with Gaussian noise in d dimensions
Example 2. Assume that W ∼ N(0, σ2

W ) and that for i ∈ [n],
Xi = W + Zi where Zi ∼ N(0, σ2). Assume also that the
loss is s.t. `(w, ŵ) = |w − ŵ|.

Using the estimator Ŵ = E[W |X̄] with X̄ = 1
n

∑n
i=1Xi ∼

N (0, σ
2

n ), one has that R ≤
√
σ2
W /
(

1 + n
σ2
W

σ2

)
. Moreover,

the small-ball probability can be upper-bounded as follows

LW (ρ) ≤
(

sup
w∈R

PW (w)

)(∫ ρ

−ρ
1du

)
=

2ρ√
2πσ2

W

. (36)
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Fig. 2: Setting: Example 1. The picture shows the behaviour
of (31), (35), [4, Eq. (16)], and [2, Corollary 2, Eq. (19)]
as a function of n. The values of E0.75,2.2(W,Xn) for each
n are computed numerically. Here, unlike in Figure 1 where
parameters are optimized, the values are fixed to γ = 2.2, β =
0.75 and p = 2.

Once again the largest lower bound on the risk, in the family of
bounds provided by Corollary 1, can be expressed as follows

R≥sup
ρ>0

sup
p>1

ρ

1−( 2ρ√
2πσ2

W

) p−1
p

((p− 1)Hp(W,Xn)+1)
1
p

 .

(37)
To compute the Hellinger information, we make use of the
following lemma:

Lemma 2. Let W ∼ N (0, σ2
W Id) and Z ∼ N (0, σ2Id) be

two Gaussian random variables, where Id denotes the d × d
identity matrix. Moreover, let X = W + Z and p > 1. Then

(p− 1)(Hp(W,X) + 1) =


(

1 +
σ2
W

σ2

)p
1 + (2− p)pσ

2
W

σ2


d
2

. (38)

In particular, with p = 3/2 and d = 1, one recovers:

1

2
(H3/2(W,X) + 1) =

√√√√√(1 +
σ2
W

σ2

) 3
2

1 +
3σ2
W

4σ2

. (39)

Proof. See Appendix C.

Setting p = 3/2 in (37) leads to the following result:

Corollary 4. Consider the setting described in Example 2.
The Bayesian risk is lower-bounded by

R ≥ 81
√

2π

2048

√√√√ σ2
W

1 + n
σ2
W

σ2

. (40)

Proof. Given that X̄ is a sufficient statistic we have that
Hp(W,Xn) = Hp(W, X̄). Plugging this choice of X̄ in (39),
substituting in (37), and then optimizing over ρ (cf. Eq. (45)
), yields the statement after some algebraic manipulations.

Note that (40) matches the upper-bound up to a constant
factor, and provides a strengthening of the bounds obtained in
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Fig. 3: Setting: Example 2 with σ2
W = 1 and σ2 = 2. The

picture shows the behaviour of (40), (42), [4, Eq. (21)], and
[2, Corollary 1, Eq. (16)] as a function of n. The values
of E0.75,2.2(W,Xn) for each n are computed numerically.
Here, the values of the parameters are fixed to γ = 2.2, β =
0.75, α = 2 and p = 1.5.

[2, Corollary 1]. One can, as in Example 1, repeat the analysis
with the fβ,γ–Divergence instead of the fp–Divergence. In
particular for the case β = 0.75 and γ = 2.2, Equation (24)
in this example can be expressed as

R ≥ sup
ρ>0

ρ

(
1− 4

3

(
E0.75,2.2(W,Xn) +

4.4ρ√
2πσ2

W

))
(41)

=
5
√

2πσ2
W (0.75− E0.75,2.2(W,Xn))2

66
, (42)

where the optimization over ρ stems from Appendix A.
Similarly to Example 1, we numerically evaluate (42) and

compare it with [2, Corollary 1, Eq. (16)], [4, Eq. (21)]
(with α = 2), and (40). Figure 3 shows the resulting lower-
bounds as a function of the number of samples n. One can
observe similar behaviors when comparing with the results
from previous example: the bounds retrieved through the Hp–
and Eβ,γ–Divergences are able to both improve on the lower-
bound relying on Shannon’s Mutual Information. Once again,
Equation (27) gives the largest lower-bound in this example,
while Sibson’s α-Mutual Information is still able to provide a
stronger result than (22).

APPENDIX

A. Maximization over ρ

In the two examples considered, one can notice that the
lower-bounds resulting from Corollaries 1 and 2 have the
following form

sup
ρ>0

ρ(1− cρt − b), (43)

for some c, t, b ≥ 0. Letting h(ρ) := ρ(1−cρt−b), the optimal
value is found by setting h′(ρ?) = 0, which yields

1− (t+ 1)cρt? − b = 0 ⇐⇒ ρ? =

(
1− b

(t+ 1)c

) 1
t

. (44)



Since h′′(ρ?) = −t(t + 1)cρt−1? ≤ 0, this ensures ρ? is a
maximum. Substituting ρ? back in (43), we find

sup
ρ>0

ρ(1− cρt − b) =
t

c
1
t

(
1− b
t+ 1

)1+ 1
t

. (45)

B. Proof of Lemma 1

In order to prove Lemma 1, let us introduce a technical
lemma which will be useful in subsequent computations.

Lemma 3 ([12, Eq. (5.39), p.187]). Let n ≥ 0 be a positive
integer. Then

n∑
k=0

(
2k

k

)(
2(n− k)

n− k

)
= 4n. (46)

We can now move on and prove Lemma 1 which we restate
here for reference.

Lemma. Consider the setting described in Example 1 i.e.,
W ∼ U [0, 1] and Xi|{W = w} ∼ Ber(w) for each i ∈ [n].
Then for every p > 1,

(p− 1)(Hp(W,Xn) + 1)

= (n+ 1)p−1
n∑
k=0

(
n

k

)p
Γ(kp+ 1)Γ((n− k)p+ 1)

Γ(np+ 2)
.

Proof. In this specific setting, one has that PXn|W=w(xn) =
wk(1−w)(n−k) where k =

∑n
i=1 xi, i.e., the hamming weight

of xn. As per assumption PW (w) = 1{0 ≤ w ≤ 1} and
consequently one has that PW |Xn=xn(w) = (n + 1)

(
n
k

)
(1 −

w)n−kwk. Thus we can compute

(p− 1)Hp(W,Xn) + 1 =

(47)∑
xn∈{0,1}n

PXn(xn)

∫ 1

0

PW (w)

(
PW |Xn=xn(w)

PW (w)

)p
dw =

(48)
n∑
k=0

1

n+ 1

∫ 1

0

(
(n+ 1)

(
n

k

)
wk(1− w)(n−k)

)p
dw =

(49)

(n+ 1)p−1
n∑
k=0

(
n

k

)p
Γ(kp+ 1)Γ((n− k)p+ 1)

Γ(np+ 2)
, (50)

where (48) follows from the definition of Hellinger divergence
and (50) uses the identity relating the Beta function with the
Gamma function:

Beta(x, y) =

∫ 1

0

tx−1(1− t)y−1dt =
Γ(x)Γ(y)

Γ(x+ y)
. (51)

If p = 2 one has that:

χ2(W,Xn) + 1 = (n+ 1)

n∑
k=0

(
n

k

)2
(2k)!(2(n− k))!

(2n+ 1)!
(52)

=
n+ 1

(2n+ 1)

n∑
k=0

(n!)2(2k)!(2(n− k))!

(k!)2((n− k)!)2(2n)!
(53)

=
n+ 1

(2n+ 1)
(
2n
n

) n∑
k=0

(
2k

k

)(
2(n− k)

n− k

)
(54)

=
n+ 1

2n+ 1
· 4n(

2n
n

) (55)

≤ 2

3
· 8
√
πn

7
(56)

=
16
√
πn

21
, (57)

where (55) follows from Lemma 3. To obtain (56), we use
n+1
2n+1 ≤

2
3 for n ≥ 1 and Stirling’s approximation to get(

2n
n

)
∼ 4n√

πn
and retrieve

(
2n
n

)
≥ 8

7 ·
4n√
πn

for n ≥ 1.

C. Proof of Lemma 2

Let us re-state the result for ease of reference.

Lemma. Let W ∼ N (0, σ2
W Id) and Z ∼ N (0, σ2Id) be two

Gaussian random variables, where Id denotes the d×d identity
matrix. Moreover, let X = W + Z and p > 1. Then

(p− 1)(Hp(W,X) + 1) =


(

1 +
σ2
W

σ2

)p
1 + (2− p)pσ

2
W

σ2


d
2

.

In particular, with p = 3/2 and d = 1, one recovers:

1

2
(H3/2(W,X) + 1) =

√√√√√(1 +
σ2
W

σ2

) 3
2

1 +
3σ2
W

4σ2

.

Proof. First, note that X|{W = w} ∼ N (w, σ2Id). Since the
Hellinger information of order p is defined as Hp(W,X) =

EPWPX
[
f
(
dPWX

dPWPX

)]
with f(t) = tp−1

p−1 , we have that

(p− 1)Hp(W,X) + 1

=

∫
Rd

∫
Rd
PW (w)PX(x)

(
PX|W=w(x)

PX(x)

)p
dwdx

(58)

=

∫
Rd
PX(x)1−p

∫
Rd
PW (w)PX|W=w(x)pdwdx.

(59)

Let us denote the inner-most integral in (59) as Gp(x). One
has that:

Gp(x) : =

∫
Rd
PW (w)PX|W=w(x)pdw (60)

=

(
(2πσ2)−p

2πσ2
W

) d
2
∫
Rd
e
− ‖w‖

2
2

2σ2
W

− p‖w−x‖
2
2

2σ2 dw. (61)



Let Ip(x) :=
∫
Rd e

− ‖w‖
2
2

2σ2
W

− p‖w−x‖
2
2

2σ2 dw (and thus, Gp(x) =(
(2πσ2)−p

2πσ2
W

) d
2

Ip(x)) one has

Ip(x) =

∫
Rd
e
− 1

2σ2

(
p‖x‖22−2px

>w+

(
σ2

σ2
W

+p

)
‖w‖22

)
dw (62)

= e
−p·‖x‖22

2σ2

∫
Rd
e
− 1

2σ2

(
−2px>w+

(
σ2

σ2
W

+p

)
‖w‖22

)
dw

(63)

Let us now add and subtract c‖x‖22 with c =

−p
(

1 + p
σ2
W

σ2

)−1
in the exponent in Equation (63):

Ip(x) = e
c‖x‖22
2σ2

∫
Rd
e

−
σ2

σ2
W

+p

2σ2


∥∥∥∥∥∥∥w−

√
p+c

σ2

σ2
W

+p
x

∥∥∥∥∥∥∥
2

2


dw (64)

= exp

− p · ‖x‖22
2σ2

(
1 + p

σ2
W

σ2

)
2π

σ2

σ2

σ2
W

+ p

 d
2

. (65)

Substituting (65) in (61) gives

Gp(x) =
1

(2πσ2)
dp
2

e
− p‖x‖22

2(σ2+pσ2
W )
(

1 + p
σ2
W

σ2

)− d2
. (66)

Finally, if we plug in (66) in (59), we retrieve that:

(p− 1)Hp(W,X) + 1

=

∫
Rd
PX(x)1−p

1

(2πσ2)
dp
2

e
− p‖x‖22

2(σ2+pσ2
W )
(

1 + p
σ2
W

σ2

)− d2
dx

(67)

=

(
1 +

σ2
W

σ2

) d(p−1)
2

(2πσ2)
d
2

(
1 + p

σ2
W

σ2

) d
2

∫
Rd
e

(p−1)‖x‖22
2(σ2+σ2

W )
− p‖x‖22

2(σ2+pσ2
W ) dx

(68)

=

(
1 +

σ2
W

σ2

) d(p−1)
2

(2πσ2)
d
2

(
1 + p

σ2
W

σ2

) d
2

∫
Rd
e
− ‖x‖

2
2

2

(
1−p

σ2+σ2
W

+ p

σ2+pσ2
W

)
dx

(69)

=

(
1 +

σ2
W

σ2

) d(p−1)
2

(2πσ2)
d
2

(
1 + p

σ2
W

σ2

) d
2

(
2π

1−p
σ2+σ2

W
+ p

σ2+pσ2
W

) d
2

(70)

=

(
1 +

σ2
W

σ2

) d(p−1)
2

(σ2 + pσ2
W )

d
2

(
1

1−p
σ2+σ2

W
+ p

σ2+pσ2
W

) d
2

(71)

=


(

1 +
σ2
W

σ2

)p−1
(1−p)(σ2+pσ2

W )
σ2+σ2

W
+ p


d
2

(72)

=


(

1 +
σ2
W

σ2

)p
1 + (2− p)pσ

2
W

σ2


d
2

, (73)

which concludes the proof.
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