
ar
X

iv
:2

20
5.

05
12

2v
1

 [
cs

.I
T

]
 1

0
M

ay
 2

02
2

Multichannel Optimal Tree-Decodable Codes

are Not Always Optimal Prefix Codes

Hoover H. F. Yin, Harry W. H. Wong, Mehrdad Tahernia, and Russell W. F. Lai

Abstract—The theory of multichannel prefix codes aims to
generalize the classical theory of prefix codes. Although single-
and two-channel prefix codes always have decoding trees, the
same cannot be said when there are more than two channels.
One question is of theoretical interest: Do there exist optimal
tree-decodable codes that are not optimal prefix codes? Existing
literature, which focused on generalizing single-channel results,
covered little about non-tree-decodable prefix codes since they
have no single-channel counterparts. In this work, we study
the fundamental reason behind the non-tree-decodability of
prefix codes. By investigating the simplest non-tree-decodable
structure, we obtain a general sufficient condition on the channel
alphabets for the existence of optimal tree-decodable codes that
are not optimal prefix codes.

I. INTRODUCTION

Prefix-free codes, or conventionally called prefix codes, are

a class of zero-error uniquely decodable source code being ap-

plied in a wide range of scenarios including the country codes

[1], UTF-8 [2], [3], and most importantly, data compression

[4]–[6]. In a traditional sense, an optimal prefix code is a

symbol-by-symbol prefix code having the lowest redundancy

when the probability of the information source is known.1

Huffman code [6] is an iconic optimal prefix code which

can be encoded in linear time (in the support size) for sorted

probability [11] and be decoded in linear time (in the codeword

length) by using the constructed decoding tree. To better un-

derstand the nature of prefix codes, literature also include the-

oretical research such as those for infinite sources [12]–[15].

Another theoretical generalization of prefix codes is to

use more channels [16].2 Not all single-channel results hold

when generalized to the multichannel setting. One example

is that the satisfiability of the multichannel Kraft inequality

[16] is insufficient for the existence of prefix codes. Instead,

a rectangle packing formulation is needed to capture the

geometry of prefix codes [18], [19]. Worse, [16] showed an

example of a prefix code having no decoding tree. While

single- and two-channel prefix codes are tree-decodable [20],

H. H. F. Yin is with the Institute of Network Coding, The Chinese
University of Hong Kong. H. W. H. Wong is with the Department
of Information Engineering, The Chinese University of Hong Kong.
M. Tahernia is an independent researcher. R. W. F. Lai is with the Chair of
Applied Cryptography, Friedrich-Alexander-Universität Erlangen-Nürnberg.

1It is possible for a non-symbol-by-symbol prefix code to achieve a lower
redundancy, e.g., the arithmetic codes [7], [8]. It is also possible for a symbol-
by-symbol non-instantaneous code to do so, e.g., the AIFV codes [9], [10].

2Multichannel prefix codes can be interpreted as multidirectional context
sets [17]. Although some structural results in context sets are isomorphic
to those in prefix codes, e.g., context trees versus decoding trees, the
optimization problems on the relevant structures are quite different.

for three or more channels, we are only assured that tree-

decodable codes are prefix codes [16], but not the converse.

Non-tree-decodable prefix codes are not well-studied, to say

the least, as they have no single-channel counterparts.

When the channel alphabet sizes are the same, an optimal

tree-decodable code is an optimal prefix code [16], which can

be constructed by manipulating the decoding tree of the single-

channel Huffman code. Much less is known for differing

alphabet sizes. To begin, although a modified Huffman

procedure can produce an optimal multichannel tree-decodable

code [20], the procedure is not known to be efficiently

computable at this moment. Furthermore, it is unclear

whether the resulting tree-decodable code is also optimal

as a prefix code. One question is of interest: is an optimal

tree-decodable code also an optimal prefix code in general?

In this work, we first study the fundamental reason –

the interweave structures – behind the non-tree-decodability

of prefix codes. After that, we make use of the simplest

interweave structure to construct a class of non-tree-decodable

prefix codes called the selvage codes. By investigating the

selvage codes, we prove that if the channel alphabets

satisfy a “separable” property, then there exists an optimal

tree-decodable code which is not an optimal prefix code.

II. PRELIMINARIES

Denote by N and Z+ the sets of non-negative integers and

positive integers respectively. For any q ∈ Z+, define Zq =
{0, 1, . . . , q− 1}. We always count objects from the 0-th. The

notation ⊎ denotes the multiset sum. Let ǫ be the empty string.

A. Multichannel Prefix Codes

Suppose there are n channels. For each i ∈ Zn, each

symbol sent on the i-th channel is from the alphabet Zi where

|Zi| = qi ≥ 2. Since we can map Zi to Zqi bijectively, we

assume Zi = Zqi in the rest of this work. For any k ∈ Z+,

we write Zk
qi

as the set of strings of k symbols from Zqi .

Define Z0
qi

= {ǫ}.
For any n ∈ Z+, define Qn := (q0, q1, . . . , qn−1) =

(qi)i∈Zn
. We drop the subscript of Qn when it is clear

from context. A Qn-ary word is an n-tuple where the i-th
component of the word is in Z∗

i :=
⋃∞

k=0 Z
k
qi

, the set of all

possible strings built using the alphabet Zqi . For any word c,

the i-th component is denoted by c(i).
Let Z be an information source and Z be the alphabet of Z .

A Qn-ary source code for Z is a map Q : Z →
∏

i∈Zn
Z∗

i .

For each z ∈ Z , Q(z) is the codeword for z. The i-th

http://arxiv.org/abs/2205.05122v1

Huffman

tree-decodable

prefix

uniquely

decodable

all codes

optimal

prefix

below tree line above tree line

optimal tree-decodable

Fig. 1: The relations between certain classes of source codes.

component of any codeword is sent through the i-th channel.

When we send more than one codeword, the codewords are

concatenated component-wise so that the boundaries of the

codewords are not explicit. The image of Q is called the

codebook of the source code. For convenience, we also refer a

source code to its codebook. The codeword matrix M of a Qn-

ary source code C = {cj}j∈Zm
is an m×n matrix where the

j-th row of M is cj . If the multiset P is the probability of Z ,

then the source code for Z is also called a source code on P .

Two words c, c′ are prefix-free, denoted by c 6⊃⊂ c
′, if there

exists a channel i such that c(i) and c
′(i) are prefix-free.

Definition 1 (Prefix Codes [16]). A Q-ary prefix code is

a Q-ary source code such that every pair of codewords are

prefix-free.

A (multichannel) decoding tree is a tree that every non-leaf

node belongs to a class. A class i node means that this node

is associated with the i-th channel. Each branch of a class

i node corresponds to a distinct symbol in Zqi , i.e., a class

i node has at most qi children. Every leaf corresponds to a

codeword and associates with a source symbol. To decode

a codeword, we traverse the tree from the root node. When

we reach a class i node, we read a symbol of the codeword

from the i-th channel and traverse through the corresponding

branch. We can decode the codeword once we reach a leaf.

An example of decoding tree can be found in Fig. 4, where

the codewords are (0, ǫ), (1, 0) and (11, 1).

Definition 2 (Tree-Decodable Code [16]). A source code is a

tree-decodable code if it has a decoding tree such that every

codeword can be decoded by this tree. A codeword matrix

M of a source code C is called tree decodable if and only if

C is tree decodable.

Every tree-decodable code is a prefix code but not the

converse [16]. All single- and two-channel prefix codes are

tree decodable [20].

As the alphabets of the channels can be different, we need

to use a unified unit to measure the amount of information. In

this work, we use the unit “nat” (natural unit of information),

i.e., we use ln, the natural logarithm, in the evaluation of

entropy. All results in this work are valid if we use another

base for the logarithm.

Definition 3 (Lengths). The length tuple of a Qn-ary word

c is denoted by len(c) := 〈ℓ0, ℓ1, . . . , ℓn−1〉 = 〈ℓi〉i∈Zn
,

where ℓi is the number of symbols in c(i). The Qn-

descriptive length of a length tuple 〈ℓi〉i∈Zn
is defined as

|〈ℓi〉i∈Zn
|Qn

:=
∑

i∈Zn
ℓi ln qi. The descriptive length of a

Qn-ary word c is defined as |c| := | len(c)|Qn
.

The descriptive length of a word is the number of nats we

need to represent the word. The multichannel entropy bound

[16], [18] below states that the expected descriptive codeword

length is no less than the entropy of the source, which is

consistent with the single-channel one.

If the finite sequences of codewords of any two distinct

finite sequences of source symbols are different, then the

source code is a uniquely decodable code. Any codeword of

a uniquely decodable code can be decoded without referring

to the symbols of any future codewords if the code is

tree-decodable [16], [18].

Entropy Bound: For any uniquely decodable code {cj}j∈Zm

for a source random variable with probability {pj}j∈Zm
,∑

j∈Zm
pj |cj | ≥ −

∑
j∈Zm

pj ln pj . The equality holds if and

only if |cj | = − ln pj , ∀j ∈ Zm.

The value |cj | + ln pj is the local redundancy of the

codeword cj and the sum
∑

j∈Zm
pj(|cj | + ln pj) is the

redundancy of the source code. An optimal code of a certain

class of codes (e.g., tree-decodable codes, prefix codes, etc.)

on a multiset P of probabilities is a (symbol-by-symbol) code

of that class having the lowest redundancy.

Definition 4 (Tree Line). A tuple Q of alphabet sizes is said

to be above tree line on a multiset of probabilities P if there

exists an optimal Q-ary tree-decodable code C on P such

that C is not an optimal Q-ary prefix code on P . If Q is

above tree line on some P , we say that Q is above tree line,

otherwise it is below tree line.

As a brief summary, the relations between the classes of

source codes we have mentioned are illustrated in Fig. 1.

B. Rectangle Packing Graph

The rectangle packing graph (RPG) [18], [19] is a

graphical tool to visualize the geometric nature of prefix

codes. Consider a Qn-ary source code C. For each c ∈ C,

let len(c) = 〈ℓci 〉i∈Zn
. Let ℓmax

i := maxc∈C ℓci . The size of a

w0×w1× . . .×wn−1 hyper-rectangle is denoted by 〈wi〉i∈Zn
.

To draw an RPG for C, we first draw a container R,

which is a hyper-rectangle of size 〈q
ℓmax
i

i 〉i∈Zn
. For the i-th

dimension, the edge is an interval [0, q
ℓmax
i

i). We write each

integer s in the above interval in its unique qi-ary numeral

representation as a string of length ⌈logqi(s + 1)⌉, then

left-pad 0’s to the string until the length becomes ℓmax
i . That

is, each unit hyper-cube in the RPG, which is called a cell,

corresponds to a word in
∏

i∈Zn
Z
ℓmax
i
qi .

Next, each codeword c corresponds to a hyper-rectangle of

size 〈q
ℓmax
i −ℓci

i 〉i∈Zn
, which is called a block. The symbols of c

specify the location where the block is put into the container.

Concretely, the block occupies exactly those cells whose

common prefix of length len(c) is given by the codeword c.

Example 1. The RPG of a binary codebook {0, 10, 110} is

illustrated in Fig. 2. The container is of length 8. The blocks

000 001 010 011 100 101 110 111

Fig. 2: The RPG in Example 1.

00
1

01
1

10
1

11
1

00
0

01
0

10
0

11
0

Fig. 3: The RPG in Example 2.

for 0 (red), 10 (blue) and 110 (green) have length 4, 2 and 1
respectively.

Example 2. The RPG of a (2, 2)-ary codebook {(0, ǫ),
(1, 0), (11, 1)} is illustrated in Fig. 3, where the horizontal

and vertical axes corresponds to the 0-th and 1-st channels

respectively. The container is a 4 × 2 rectangle. The blocks

for (0, ǫ) (red), (1, 0) (blue) and (11, 1) (green) are 2 × 2,

2× 1 and 1× 1 rectangles respectively.

All the blocks bc for c ∈ C do not overlap with each

other if and only if C is a prefix code [18]. We can write

bc ∩ bc′ = ∅ to indicate that these two blocks do not overlap,

but we cannot write c ∩ c
′ = ∅ as codewords are not sets.

So, we use the notation c 6⊃⊂ c
′, which symbolizes that the

corresponding blocks do not overlap.

Suppose C is a prefix code. Let Vol(R) =
∏

i∈Zn
q
ℓmax
i

i

be the hyper-volume of the container. The hyper-volume of

the block bc is Vol(c) = Vol(R) exp(−|c|). As the blocks

do not overlap, the sum of volumes of the blocks must be

no larger than Vol(R). This coincides with the multichannel

Kraft inequality [16], [18].

Kraft Inequality: For any uniquely decodable code

{cj}j∈Zm
, the descriptive lengths of the codewords satisfy∑

j∈Zm
exp(−|cj |) ≤ 1.

III. NON-TREE-DECODABLE PREFIX CODES

A. Guillotine-Cuts and Tree Decodability

In the view of RPG, a decoding tree is a variant of a k-d

tree constructed as follows. The root node corresponds to

the container and is assigned a class i ∈ Zn. Each internal

or leaf node, corresponding to a subspace of the container,

is constructed recursively using the following procedure: For

each node of class i, we guillotine-cut the space corresponding

to the node by (qi − 1) hyper-planes perpendicular to the i-th
dimension into qi subspaces of equal size, and assign a node

to each subspace. Upon completion, each leaf corresponds

to a block, i.e., a codeword. Summarizing, the decoding tree

is a k-d tree formed by performing equal-space partitioning

where the number of children and the orientation depend on

the class of the node.

Example 3. We take the RPG in Example 2 (Fig. 3) as

an example. The decoding tree is illustrated in Fig. 4. The

number in each non-leaf node is the class of the node. Each

color of the branches corresponds to the guillotine-cuts with

the same color in the RPG below the tree. The orientation of

each guillotine-cut depends on the class of the node.

Theorem 1. A prefix code is tree decodable if and only if

all the blocks representing the codewords in the rectangle

packing graph can be obtained by guillotine-cuts.

B. Interweave Structures

We need to use a more-than-3-D RPG in the following dis-

cussion. To illustrate a 4-D hyper-rectangle of size 〈2〉i∈Z4
, we

concatenate the 0-th and the 1-st channels into one dimension

and use a Gray code to let consecutive symbols of the same

channel adjacent to each other. Then, we can transform the

RPG into a cuboid as shown in Fig. 5.3 For the 5-D hyper-

rectangle of size 〈2〉i∈Z5
, besides merging the first two chan-

nels, we merge the 2-nd and the 3-rd channels by a Gray code.

Similarly, we can transform the RPG into a cuboid as shown

in Fig. 6.4 Note that a block can be sheared into subblocks.

We consider a space containing more than one block such

that no guillotine-cut is possible without cutting through a

block. For each dimension, there must be a block of length

matching the one of the space at this dimension, or otherwise

we can further guillotine-cut the space due to the constraints

on the location and the size of the blocks. By removing the

common prefix of the blocks, we can treat the space as the

container itself and thus the blocks form a prefix code. If

there is a dimension such that the length of every block in

this dimension matches the one of the space, we can safely

remove this whole dimension. This dimension corresponds to

a dummy channel, which is unused by any codeword.

In the following discussion, we regard the resulting space

after performing the actions described above as the container,

i.e., the common prefix is removed from all the codewords

and then the dummy channels are removed. Let T be the

set of all codewords in this space and t be the number of

dimensions of this space. Without loss of generality, assume

these t channels are the first t channels.

Definition 5. An ǫ-locating function for an m × n coding

matrix M is a function EM : Zn → 2Zm defined as

EM (i) = {j : Mj,i = ǫ}.

Theorem 2. Let M be an n-column codeword matrix. If

EM (i) 6= ∅ for all i ∈ Zn, then M is not tree decodable.

Example 4. Suppose the space which cannot be guillotine-cut

contains the codewords (1, 01, 10, 0), (10, 0, 11, 0) and

(11, 00, 1, 0). By removing the common prefix, the codewords

become (ǫ, 1, 0, ǫ), (0, ǫ, 1, ǫ) and (1, 0, ǫ, ǫ). By removing

the dummy channel, the codewords become (ǫ, 1, 0), (0, ǫ, 1)
and (1, 0, ǫ). By Theorem 2, these codewords cannot form a

decoding tree. This fact can be visualized in the RPG of this

code illustrated in Fig. 7. The blocks interweave with each

3The RPG is a cylinder with a hole in the middle as shown in Fig. 5a. When
we perform a guillotine-cut on the 0-th channel, we need to cut through both
sides of the cylinder, i.e., cut both the red planes in the figure. Similarly, we
need to cut both blue planes to guillotine-cut the 1-st channel. For a simpler
illustration, we can cut one of the red plane and bend the structure into a
rectangle as shown in Fig. 5c. This way, each guillotine-cut on the 0-th or the
1-st channel in the 4-D space becomes two guillotine-cuts in this rectangle.

4The RPG is a bicycle tube: a torus with thickness and with a hollow tube
inside. Figs. 6a and 6b illustrate the bicycle tube and one of its cross sections
respectively. By cutting Fig. 6a at one side of the cross section shown in
Fig. 6b, we bend the tube into a cylinder structure as in the 4-D RPG shown
in Fig. 6c. By further cutting one side (the red plane) of the cylinder, we can
bend the structure into a rectangle shown in Fig. 6d.

0

1

0

0 1

0 1

1

Fig. 4: An example of the relation between
guillotine-cuts and RPG.

2
-n

d
ch

an
n

el

(a) The cylinder structure after merg-
ing the 0-th and the 1-st channels.

3-rd channel3-rd channel

0 101

00

01

11

10

0
-t

h
an

d
1

-s
t

ch
an

n
el

s

(b) The top view of the cylinder
structure.

0-th and 1-st channels 2-nd ch
an

nel

3
-r

d
ch

an
n

el

00
01

11
10

(c) The rectangle representation after
cutting the red plane between 00
and 10.

Fig. 5: The representation of a 4-D RPG by a 3-D rectangle.

2-nd
and

3-rd

channels

0-th and 1-st

channels

(a) The bicycle tube
formed after merging
the 0-th and the 1-st
channels, and merging
the 2-nd and the 3-rd
channels.

4-th channel4-th channel

0 101

00

01

11

10

0
-t

h
an

d
1

-s
t

ch
an

n
el

s

4-th channel4-th channel

0 101

00

01

11

10

0
-th

an
d

1
-st

ch
an

n
els

(b) One of the cross sections of the bicycle tube.

2
-n

d
an

d
3

-r
d

ch
an

n
el

s

(c) The cylinder after cutting at one
side of the cross section shown in
Fig. 6b.

0-th and 1-st channels
2-nd an

d 3-rd
ch

an
nels

4
-t

h
ch

an
n

el
00

01
11

10

00
01

11
10

(d) The rectangle formed after
further cutting the cylinder at the
red plane.

Fig. 6: The representation of a 5-D RPG by a 3-D rectangle.

other so that it is impossible to separate these blocks using

guillotine-cuts. This is one of the interweave structures which

makes prefix codes not tree decodable.

Note that it is not necessary to have t interweaving blocks

to form a t-channel non-tree-decodable prefix code. Also,

we can have more than one ǫ per column or per row in the

codeword matrix. To demonstrate these, we need to consider

a higher dimensional hyper-rectangle. Below is an example

using a 5-D RPG.

Example 5. Consider a (2, 2, 2, 2, 2)-ary codeword matrix

red

blue

green

yellow

gray




ǫ ǫ 1 0 0
0 ǫ ǫ 1 0
0 0 ǫ ǫ 1
1 0 0 ǫ ǫ
ǫ 1 0 0 ǫ




.

0-th channel 1-
st

ch
an

ne
l

2
-n

d
ch

an
n

el

(a) Q = (2, 2, 2).

0-th channel
1-st

ch
an

nel

2
-n

d
ch

an
n

el

(b) Q = (5, 3, 2).

Fig. 7: The RPG of the Q-ary codebook {(ǫ, 1, 0), (0, ǫ, 1), (1, 0, ǫ)} in
Example 4.

We have two ǫ’s per row and per column. The RPG is

illustrated in Fig. 8. We can see that if we remove the blue

and the yellow blocks, the remaining three blocks can still

make the 5-D container not guillotine-cutable, i.e., the code

is still not tree decodable. In this new codeword matrix, we

still have two ǫ’s in the first column, one ǫ in each other

column, and each row has two ǫ’s.

IV. MAIN RESULT

In this section, we will show a sufficient condition for the

channel alphabets Q being above tree line. At the core of our

result is the construction of a Q-ary prefix code, called the

Q-ary selvage code, which achieves the entropy bound on

a special multiset of probabilities called the Q-ary selvage

probability assembly (SPA).

A. Selvage Code and Selvage Probability Assembly (SPA)

We now construct the Q-ary selvage code and then assign

probabilities, i.e., the Q-ary SPA, to the codewords so that

the code achieves the entropy (bound) on these probabilities.

To ensure that the Q-ary selvage code is not tree-decodable,

our strategy is to construct its codeword matrix such that

it consists of an n × n cyclic codeword submatrix as the

interweave core, called the selvage core, where the diagonal

is filled with ǫ, the off-diagonal above the main one is filled

with 1 cyclically, and the remaining entries are 0. Then, we

assign probability pj to the j-th codeword in the core such

that the local redundancy |cj |+ ln pj is zero. Concretely, we

set pj := qj
∏

i∈Zn
q−1
i .

Example 6. Below is the codeword matrix of a (2, 2, 2, 2)-ary

selvage core with its RPG shown in Fig. 9:

red

blue

green

gray




ǫ 1 0 0
0 ǫ 1 0
0 0 ǫ 1
1 0 0 ǫ




← probability (q1q2q3)
−1,

← probability (q0q2q3)
−1,

← probability (q0q1q3)
−1,

← probability (q0q1q2)
−1.

We can see from the above example that the RPG of a

selvage code has a simple interweave structure: Each block in

the interweave core has exactly one edge fitting an edge of the

container in the same dimension. The RPGs in Fig. 7 fall in

this category. For each plane, this structure looks like a selvage

at the edges of denim, so we name our construction “selvage”.

After that, we pad sufficiently many codewords of length

〈1, . . . , 1〉, each assigned with a probability
∏

i∈Zn
q−1
i , so

that the sum of probabilities becomes 1 while the local

0-th and 1-st channels
2-nd an

d 3-rd
ch

an
nels

4
-t

h
ch

an
n

el

00
01

11
10

00
01

11
10

Fig. 8: The RPG of the (2, 2, 2, 2, 2)-
ary codebook in Example 5.

0-th and 1-st channels 2-nd ch
an

nel

3
-r

d
ch

an
n

el

00
01

11
10

Fig. 9: A (2, 2, 2, 2)-ary selvage
core.

TABLE I
THE DESCRIPTIVE CODEWORD LENGTHS OF OPTIMAL CODES ON SPA

Optimal Prefix (Entropy) Optimal Tree-Decodable

(2, 2, 2)-ary 1.559581 1.559581
(5, 3, 2)-ary 2.976887 2.980124
(6, 3, 2)-ary 3.154833 3.154833

redundancy is zero everywhere. This corresponds to filling

the RPG with as many unit hyper-cubes as possible until the

container is full. The fully-filled RPG corresponds to a prefix

code as the blocks do not overlap. Since the local redundancy

of each codeword is zero, the overall redundancy of the code

is also zero. In other words, the Q-ary selvage code achieves

the entropy on the Q-ary SPA, which is the multiset of the

probabilities assigned above. On the other hand, since for

each channel i there exists a codeword in the interweave core

such that its i-th component is ǫ, we know from Theorem 2

that the selvage code is not tree-decodable.

We now formally state the above construction.

Definition 6 (Selvage Code). Let n ≥ 3. The Q-ary selvage

core, denoted by C⊙
Q , is a codebook {c⊙j }j∈Zn

where for

every j ∈ Zn,

c
⊙
j (i) =





ǫ if i = j,

1 if i = (j + 1) mod n,

0 otherwise.

The Q-ary selvage code, denoted by C§
Q, is the codebook

C⊙
Q ∪ {s ∈

∏
i∈Zn

Zqi : s 6⊃⊂ c, ∀c ∈ C⊙
Q}.

Theorem 3. Let n ≥ 3. Then, |C§
Q \ C⊙

Q | =∏
i∈Zn

qi −
∑

i∈Zn
qi. Also, both C⊙

Q and C§
Q are Q-

ary non-tree-decodable prefix codes.

Given the number of unit hyper-cubes introduced, we can

define the Q-ary SPA on which the Q-ary selvage code

achieves the entropy.

Definition 7 (SPA). Let n ≥ 3 and k := |C§
Q \ C

⊙
Q |. The

Q-ary selvage probability assembly (SPA) is the multiset of

probabilities
(⊎

j∈Zn

{
qj
∏

i∈Zn
q−1
i

})
⊎
(⊎

j∈Zk

{∏
i∈Zn

q−1
i

})
.

Theorem 4. Let n ≥ 3. The Q-ary selvage code C§
Q achieves

the entropy on the Q-ary SPA.

B. Sufficient Condition

Before we start, we first examine the expected descriptive

codeword lengths of the (entropy-achieving) Q-ary selvage

code and an optimal Q-ary tree-decodable code on the Q-ary

SPA for some choices of Q. Table I shows the expected

lengths for Q being (2, 2, 2), (5, 3, 2), or (6, 3, 2), where the

optimal tree-decodable codes are found using the multichannel

Huffman procedure described in [20].

For the (2, 2, 2)-ary case, we observe that optimal tree-

decodable codes are entropy-achieving. This is as expected

since, when all channel alphabets in Q are of the same size q,

a Q-ary code is equivalent to a single-channel q-ary code [16],

and single-channel Huffman codes are optimal prefix codes.

For the (5, 3, 2)-ary case, we observe that all 170, 625
possible trees produced by the multichannel Huffman

procedure [20] have non-zero redundancy. On the other hand,

for the (6, 3, 2)-ary case, some of the 1, 467, 357 trees achieve

the entropy. This suggests that besides the case where all

channels having the same alphabet size, there are other Q’s

which are below tree line. In fact, we know that Q = (6, 3, 2)
is below tree line because each 6-ary symbol can be split

into a tuple consisting of a 2-ary and a 3-ary symbol, and all

two-channel prefix codes are tree-decodable [20].

We now define the notion of t-separation which will serve

as a sufficient condition for Q being above tree line. For

convenience, we regard the tuple Q as a multiset of the

channel alphabets.

Definition 8 (t-Separation). Let Q′ ⊆ Q and write

Q̄′ := Q \ Q′. We say that Q′ is separated from Q if any

non-negative integral solution (xq)q∈Q ∈ N|Q| to the equation

∏

q∈Q

qxq =
∏

q∈Q̄′

q (1)

satisfies xq = 0 for all q ∈ Q′. Let {Qj}j∈Zt
be a partition of

Q, i.e., Q =
⊎

j∈Zt
Qj . We say that {Qj}j∈Zt

is a t-separation

of Q if, for each j ∈ Zt, Qj is separated from Q. We say

that Q is t-separable if there exists a t-separation of Q.

A linear-algebraic interpretation of Definition 8 is to

view Eq. (1) as a system of linear Diophantine equations

AQx = AQeQ̄′ defined as follows: AQ is a matrix

determined by Q with rows indexed by prime factors of

elements in Q and columns indexed by elements in Q. The

(p, q)-th entry of AQ, where p is a prime and q ∈ Q, is the

exponent of p in the unique prime factorization of q. The

vectors x and eQ̄′ have their entries indexed by elements in

Q, and eQ̄′ is the binary vector where those entries indexed

by Q̄′ are 1 and other entries are 0. The separation condition

is equivalent to that if AQx = AQeQ̄′ for x ∈ N|Q|, then the

entries of x indexed by Q̄′ must be 0.

Example 7. Consider Q = (4, 6, 10, 15) and hence

AQ =
p=2

p=3

p=5



2 1 1 0
0 1 0 1
0 0 1 1


 row op.
∼ A

′
Q =



2 2 0 0
0 1 0 1
0 0 1 1


 .

We can easily see that {4} is not separated from Q because

AQ(1, 0, 0, 2)
⊺ = AQ(0, 1, 1, 1)

⊺,

where (0, 1, 1, 1)⊺ = eQ\{4}. Similarly, we observe that each

of {6}, {10} and {15} is also not separated from Q. We

therefore conclude that Q has no 3- nor 4-separation as each

of them must contain a singleton chunk. On the other hand,

by transforming AQ to A
′
Q via elementary row operations,

we see that any solution x ∈ N4 satisfying

(2, 2, 0, 0)x = (2, 2, 0, 0)(0, 0, 1, 1)⊺

must have its first two entries, i.e., those corresponding to

{4, 6}, set to 0. Similar holds for

(0, 0, 1, 1)x = (0, 0, 1, 1)(1, 1, 0, 0)⊺,

which concerns the entries of x corresponding to {10, 15}. We

therefore conclude that {{4, 6}, {10, 15}} is a 2-separation of

Q.

The following lemma gives a natural class of separations

of Q, which can be used to identify certain special cases with

ease.

Lemma 1 (Natural Separation). A partition {Qj}j∈Zt
of Q

is a t-separation of Q if, for each j ∈ Zt and for every

q′ ∈ Qj , there exists a prime pq′ such that pq′ | q′ but pq′ ∤ q
for all q ∈

⊎
k∈Zt\{j}

Qk.

If for each j ∈ Zt, there exists a prime pj such that pj | q
for all q ∈ Qj but pj ∤ q for all q ∈

⊎
k∈Zt\{j}

Qk, we can also

apply Lemma 1 to conclude the t-separation of Q. This lemma

also covers the n-separation where Q = (qi)i∈Zn
is a tuple of

distinct primes. For such Q, a natural n-separation consists of

Qi = {qi} for all i ∈ Zn. There are, however, separations of

Q which do not satisfy the condition of Lemma 1, e.g., the

separation {{6}, {4}, {3}} of Q = (6, 4, 3). A reason is that

the power of q on the RHS of Eq. (1) is fixed to 1, which means

that we do not require the set of columns of AQ to be a basis.

Theorem 5. Let t ≥ 3. If Q is t-separable, then Q is above

tree line.

We remark that Q being t-separable does not imply that

any superset Q′ ⊃ Q is t-separable. Indeed, we can check

that (4, 6, 10) is 3-separable but (4, 6, 10, 15) is not. This

aligns with our geometric intuition that, when there are

more dimensions, it is easier to pack blocks into a container

without them interweaving with each other.

The proof of Theorem 5 can be done by showing that if

Q is t-separable, then Q is above tree line on the Q×-ary

SPA where Q× := (
∏

q∈Qj
q)j∈Zt

is the product channel

alphabets. In the following, we state a partial converse – if Q
is above tree line on the Q×-ary SPA then Q is t-separable.

We note, however, that this is not the converse of Theorem 5

since, for Q to be above tree line, it could be above tree line

for some P different from the Q×-ary SPA.

Theorem 6. Let {Qj}j∈Zt
be a t-partition of Q for some

t ≥ 3. If Q is above tree line on the Q×-ary SPA, where

Q× = (
∏

q∈Qj
q)j∈Zt

, then {Qj}j∈Zt
is a t-separation.

We outline the high level idea of the proof of

Theorem 6. Suppose Qj∗ is not separated from Q, then

∏
q∈Q qxq =

∏
Q̄j

q admits a solution (x∗
q)q∈Q where

x∗
q 6= 0 for some q ∈ Qj∗ . We show how to construct a

Q-ary tree-decodable code which is entropy-achieving on the

Q×-ary SPA, contradicting the assumption. The basic idea is

to first interpret the Q×-ary selvage code as a Q-ary code,

then use the above equation to move codeword symbols in

the selvage core across different channels without affecting

the descriptive length of each codeword. The second step

“disentangles” the selvage core, making it tree-decodable.

More concretely, suppose Q+ denotes the set of q for

which x∗
q > 0. We consider two cases: 1) qi∗ > 2 for some

qi∗ ∈ Qj∗ ∩Q+; 2) q = 2 for all q ∈ Qj∗ ∩Q+.

For Case 1, we change the j∗-th codeword in the selvage

code so that its i∗-th component is an all-2 string of length

x∗
qi∗

, its i-th component is an all-0 string of length x∗
qi

for all

i ∈ Q+ \ {qi∗}, and all other components are empty strings.

Consequently, the i∗-th components of all codewords are all

non-empty, which allows us to build a decoding tree with a

root assigned to channel i∗.

For Case 2, we can derive that all q ∈ Q̄j∗ \ Q+ are

powers of 2. Therefore we can write qi† = qri∗ for some

qi† ∈ Q̄j∗ \ Q+ and some qi∗ ∈ Qj∗ ∩ Q+. Using this

relation, we can replace each qi† -ary symbol in the selvage

code with r qi∗ -ary symbol (while choosing symbols carefully

so that prefix-freeness is preserved). Consequently, channel

i† becomes a dummy channel and the i∗-th component of all

codewords are non-empty. The latter again allows us to build

a decoding tree with a root assigned to channel i∗.

V. CONCLUDING REMARKS

We investigated the interweave structure of non-tree-

decodable prefix codes and then filled a theoretical gap by

giving a sufficient condition for the existence of optimal

multichannel tree-decodable codes that are not optimal prefix

codes. We leave proving that (a relaxation of) the sufficient

condition is necessary as one of the future research directions

on the theory of multichannel source coding.

APPENDIX I

PROOF OF THEOREM 1

Proof: If a prefix code is not tree decodable, then it

means that there is a subspace S guillotine-cut from the

container, or S is the container itself, such that S is occupied

by more than one block but no guillotine-cut is possible

without cutting through a block. That is, there is no way to

obtain any block in S by guillotine-cuts.

Conversely, suppose some blocks cannot be obtained by

guillotine-cuts. We consider a subset T of these blocks having

the same prefix where |T | > 1 such that the smallest space

S containing the blocks in T is not possible to be separated

by guillotine-cuts without cutting through a block. Suppose

the prefix code is tree decodable, then there is a non-leaf

node corresponds to the space S. However, there is no way

to further guillotine-cut S, so we cannot find a class for this

node, which contradicts that the code is tree decodable.

APPENDIX II

PROOF OF THEOREM 2

Proof: Suppose M is tree decodable. The root node of

the decoding tree must belong to one of the classes in Zn.

However, for each possible class k, there exists at least one

codeword that is not a descendant of the root node. This

contradicts that M is tree decodable.

APPENDIX III

PROOF OF THEOREM 3

Proof: Recall that, for every channel i ∈ Zn and every

codeword j ∈ Zn in the core, we have

c
⊙
j (i) =





ǫ if i = j,

1 if i = (j + 1) mod n,

0 otherwise.

For any j, k ∈ Zn with k /∈ {j, (j + 1) mod n}, we

have c
⊙
j ((j + 1) mod n) = 1 and c

⊙
k ((j + 1) mod n) = 0,

which means c
⊙
j 6⊃⊂ c

⊙
k in the ((j + 1) mod n)-th channel.

On the other hand, for k = (j + 1) mod n, we have

c
⊙
j ((k + 1) mod n) = 0 and c

⊙
k ((k + 1) mod n) = 1,

which means c
⊙
j 6⊃⊂ c

⊙
k in the ((k + 1) mod n)-th channel.

Summarizing, we have c
⊙
j 6⊃⊂ c

⊙
k for all j, k ∈ Zn with j 6= k,

i.e., C⊙
Q is a prefix code. Let M be the codeword matrix of

C⊙
Q where the j-th row is c

⊙
j . It is clear that EM (i) = {i}

for all i ∈ Zn, so C⊙
Q is not tree decodable by Theorem 2.

Now, we consider C§
Q. Note that the words in

∏
i∈Zn

Zqi

are distinct but have the same length tuple 〈1〉i∈Zn
, so every

pair of words in this set are prefix-free. As C⊙
Q is a prefix

code, C§
Q is also a prefix code by its definition. Let M ′ be

the codeword matrix of C§
Q where the first t rows are the

matrix M . Again, we have EM ′(i) = {i}, so by Theorem 2,

C§
Q is also not tree decodable.

We now calculate the size of |C§
Q \C

⊙
Q |. Recall that C§

Q is

a prefix code. In this code, ℓmax
i = 1 for all i ∈ Zn, so the

container in its RPG is a hyper-rectangle of size 〈qi〉i∈Zn
.

The codeword c
⊙
j ∈ C⊙

Q corresponds to a block of size

〈q
1−δi,j
i 〉i∈Zn

, where δi,j is the Kronecker delta, so Vol(c⊙j) =
qj . The smallest possible block has size 〈1〉i∈Zn

, which corre-

sponds to a codeword having the same length as any of those in

C§
Q\C

⊙
Q . That is, Vol(c) = 1 for any c ∈ C§

Q\C
⊙
Q . As a prefix

code, the blocks for C§
Q must packable in the container. The

construction of C§
Q includes all codewords of length 〈1〉i∈Zn

which are prefix-free to those in C⊙
Q , which means that besides

the blocks for C⊙
Q , we put as many blocks of size 〈1〉i∈Zn

as

possible to fully fill the container. In other words, the sum of

volumes of the blocks equals the volume of the container, i.e.,

∑

i∈Zn

Vol(c⊙i) +
∑

c∈C
§
Q
\C⊙

Q

Vol(c) =
∏

i∈Zn

qi.

The proof is done by reordering the terms.

APPENDIX IV

PROOF OF THEOREM 4

Proof: We define the source code as follows. For each

j ∈ Zn, we map the probability qj
∏

i∈Zn
q−1
i to c

⊙
j ∈ C⊙

Q .

We have

∣∣c⊙j
∣∣ =

∑

i∈Zn

ln qi − ln qj = − ln

(
qj
∏

i∈Zn

q−1
i

)
. (2)

Next, we map each of the remaining probabilities
∏

i∈Zn
q−1
i

to an arbitrary codeword c ∈ C§
Q \ C⊙

Q bijectively,

which is possible according to Theorem 3. Recall that

len(c) = 〈1〉i∈Zn
, so we have

|c| =
∑

i∈Zn

ln qi = − ln
∏

i∈Zn

q−1
i . (3)

Eqs. (2) and (3) imply that the condition for the equality of

the entropy bound holds.

APPENDIX V

PROOF OF LEMMA 1

Proof: Fix any j ∈ Zt. Let (xq)q∈Q ∈ N|Q| solves

Eq. (1) where Q′ = Qj . If xq′ 6= 0 for some q′ ∈ Qj , then

pq′ |
∏

q∈Q qxq but pq′ ∤
∏

q∈Q̄′ q, which contradicts that

(xq)q∈Q solves Eq. (1).

APPENDIX VI

PROOF OF THEOREM 5

Proof: Let {Qj}j∈Zt
be a t-separation of Q,

Q× = (q×i)i∈Zt
be the product channel alphabets where

q×i =
∏

q∈Qi
q for i ∈ Zt, and P be the Q×-ary SPA.

By Theorem 4, the Q×-ary selvage code C§
Q× on P achieves

the entropy bound. Interpreting C§
Q× as a Q-ary code, we

obtain an entropy-achieving Q-ary prefix code on P .

Suppose there is an entropy-achieving Q-ary tree-

decodable code C on P . Recall that q×j /
∏

i∈Zt
q×i ∈ P for

all j ∈ Zt. Let 〈xi,j〉i∈Zn
be the length of the codeword for

the probability q×j /
∏

i∈Zt
q×i . Since C achieves the entropy

bound, we have
∏

i∈Zn
q
xi,j

i = (
∏

i∈Zt
q×i)/q

×
j =

∏
q∈Q\Qj

q.

Since {Qj}j∈Zt
is a t-separation of Q, for each j ∈ Zt, we

must have xi,j = 0 for all qi ∈ Qj . In other words, for every

channel i ∈ Zn, there exists a codeword in C such that its

i-th component is ǫ. By Theorem 2, C is not tree-decodable,

which is a contradiction.

APPENDIX VII

PROOF OF THEOREM 6

Proof: In the proof below, we adopt the following

notion. For any strings a, b, denote by a‖b the concatenation

of a and b. To represent a string formed by duplicating the

same symbol, we bold the symbol and write the number of

repetitions as its exponent. We will always use i and j as

running variables over Zn and Zt respectively.

We prove Theorem 6 by contrapositive. Suppose for some

j∗ ∈ Zt, Qj is not separated from Q, i.e., there is some

(x∗
q)q∈Q ∈ N|Q| solving Eq. (1) such that x∗

q 6= 0 for

some q ∈ Qj∗ . We construct an entropy-achieving Q-ary

tree-decodable code on the Q×-ary SPA.

Since (x∗
q)q∈Q solves Eq. (1), we have

∏

q∈Q

qx
∗
q =

∏

q∈Q̄j∗

q.

Define Q+ := {q ∈ Q : x∗
q > 0} ⊆ Q. We have

∏

q∈Q+

qx
∗
q =

∏

q∈Q̄j∗

q. (4)

Note also that Qj∗ ∩Q+ 6= ∅ and Q̄j∗ \Q+ 6= ∅.
For j ∈ Zt, let q×j =

∏
q∈Qj

q be the product channel

alphabet sizes. By Theorem 4, the Q×-ary selvage code C§

is entropy-achieving on the Q×-ary SPA. The Q×-ary selvage

core C⊙ can be interpreted as a Q-ary code using the following

transform: For each Q×-ary codeword c
× of C§, define the

Q-ary codeword c by c(i) = c
×(j) where qi ∈ Qj for all

i ∈ Zn and j ∈ Zt. This is possible as c
×(j) ∈ {ǫ, 0, 1}. We

denote this Q-ary form of the selvage core by C⊙. It is easy to

check that C⊙ is a prefix code whose codewords have one-to-

one correspondence to those of C⊙, and each codeword in C⊙

has the same descriptive length as that of its counterpart in C⊙.

Case 1: qi∗ > 2 for some qi∗ ∈ Qj∗ ∩ Q+. We modify

the core C⊙ = {c⊙j }j∈Zt
to construct a new codebook

Ĉ⊙ = {ĉ⊙j }j∈Zt
by ĉ

⊙
j = c

⊙
j for j 6= j∗, and

ĉ
⊙
j∗(i) =





2
x∗
qi if i = i∗,

0
x∗
qi if qi ∈ Q+ \ {qi∗},

ǫ otherwise.

By Eq. (4), we know that |ĉ⊙j∗ | = |c
⊙
j∗ |.

As C⊙ is a prefix code, C⊙ \ {c⊙j∗} also is. From the i∗-th

component, we know that ĉ⊙j∗ 6⊃⊂ ĉ
⊙
j for all j ∈ Zt \ {j∗}.

Therefore, Ĉ⊙ is a prefix code.

Next, we extend the core Ĉ⊙ into a prefix code Ĉ by

building its decoding tree:

1) The root node belongs to class i∗.

2) The 0-child of the root node is the root of a subtree

constructed by first building a tree whose leaves are

labelled by the set {0}×
∏

q∈Q\{qi∗}
Zq , and then removing

the subtree under the node labelled by ĉ
⊙
j for all j ∈

Zt\{j∗, (j∗−1) mod t}. Let S0 denote the set of leaves of

this subtree except ĉ⊙j for all j ∈ Zt\{j∗, (j∗−1) mod t}.
3) The 1-child of the root node is the root of a subtree

constructed by first building a tree whose leaves are

labelled by the set {1}×
∏

q∈Q\{qi∗}
Zq , and then removing

the subtree under the node labelled by ̂
c
⊙
(j∗−1) mod t

. Let S1

denote the set of leaves of this subtree except ̂
c
⊙
(j∗−1) mod t

.

4) The 2-child of the root node is the root of a subtree con-

structed by first building a tree whose leaves are labelled by

the set {2}×Z
x∗
qi∗

−1
qi∗ ×

∏
q∈Q+\{qi∗}

Z
x∗
q

q ×
∏

q∈Qj
Zq , and

then removing the subtree under the node labelled by ĉ
⊙
j∗ .

Let S2 denote the set of leaves of this subtree except ĉ⊙j∗ .

5) For i = 3, . . . , qi∗ − 1, the i-child of the root node is

the root of a subtree whose leaves are labelled by the set

{i} ×
∏

q∈Q\{qi∗}
Zq . Let S3 denote the set of leaves of

these subtrees.

We now count |Ĉ \ Ĉ⊙| =
∑

i∈Z4
|Si|. We observe that

|S0| =
∏

i∈Zn\{i∗}

qi −
∑

j∈Zt\{j∗,(j∗−1) mod t}

q×j ,

|S1| =
∏

i∈Zn\{i∗}

qi − q×(j∗−1) mod t
,

|S2| = q
x∗
qi∗

−1

i∗

∏

q∈Q+\{qi∗}

qx
∗
q

∏

q∈Qj

q − q×j∗

= q−1
i∗

∏

q∈Q̄j∗

q
∏

q∈Qj

q − q×j∗

=
∏

i∈Zn\{i∗}

qi − q×j∗ ,

|S3| = (qi∗ − 3)
∏

i∈Zn\{i∗}

qi.

Summing them up, we have |Ĉ\Ĉ⊙| =
∏

i∈Zn
qi−

∑
j∈Zt

q×j ,

which is the same size as |C§
Q \C

⊙
Q | =

∏
j∈Zt

q×j −
∑

j∈Zt
q×j

according to Theorem 3. Therefore, we have a bijective

mapping from C§
Q to Ĉ where the descriptive length of every

codeword is preserved. That is, Ĉ is an entropy-achieving

Q-ary tree-decodable code on the Q×-ary SPA.

Case 2: q = 2 for all q ∈ Qj∗ ∩ Q+. We can see from

Eq. (4) that every q ∈ Q̄j∗ \ Q+ is a power of 2. Pick any

i∗, i† ∈ Zn and j† ∈ Zt such that qi∗ ∈ Qj∗ ∩ Q+ and

qi† ∈ Q̄j∗ \Q+. We have

qi† = qri∗ (5)

for some r ∈ Z+. We modify the core C⊙ = {c⊙j }j∈Zt
to con-

struct a new codebook Ĉ⊙ = {ĉ⊙j }j∈Zt
by setting ĉ

⊙
j†

= c
⊙
j†

,

̂
c
⊙
(j†−2) mod t

(i) =





c
⊙
j (i)‖1

r if i = i∗,

ǫ if i = i†,

c
⊙
j (i) if i ∈ Zn \ {i∗, i†}

and

ĉ
⊙
j (i) =





c
⊙
j (i)‖0

r if i = i∗,

ǫ if i = i†,

c
⊙
j (i) if i ∈ Zn \ {i∗, i†}

for j ∈ Zt \ {j∗, j†}. Note that |ĉ⊙j | = |c
⊙
j | for all j ∈ Zt

due to Eq. (5). Moreover, we have ĉ
⊙
j (i

†) = ǫ for all j ∈ Zt

by construction, i.e., channel i† becomes dummy.

Except for (j, j′) = ((j† − 2) mod t, (j† − 1) mod t), for

all other distinct j, j′ ∈ Zt, the original codewords c
⊙
j and

c
⊙
j′ are prefix-free in some channel i 6= i†, so do the modified

codewords ĉ
⊙
j and ĉ

⊙
j′ . For (j, j′) = ((j† − 2) mod t, (j† −

1) mod t), we note that ĉ⊙j (i
∗) = c

⊙
j (i

∗)‖1r and ĉ
⊙
j′ (i

∗) =

c
⊙
j′ (i

∗)‖0r. There are four possibilities: (c⊙j (i
∗), c⊙j′ (i

∗)) ∈

{(ǫ, 0), (1, ǫ), (0, 1), (0, 0)}. Clearly, in each case, ĉ⊙j (i
∗) and

ĉ
⊙
j′ (i

∗) are prefix-free. We conclude that Ĉ⊙ is a prefix code.

Next, we extend the core Ĉ⊙ into a prefix code Ĉ
by building its decoding tree. The tree is constructed by

first building a tree whose leaves are labelled by the set

Z1+r
qi∗
× Z0

q
i†
×
∏

i∈Zn\{i∗,i†}
Zqi , and then removing the

subtrees under the nodes labelled by ĉ
⊙
j , for j ∈ Zt.

Observe that

|Ĉ \ Ĉ⊙| = q1+r
i∗

∏

i∈Zn\{i∗,i†}

qi −
∑

i∈Zt

q×i =
∏

i∈Zn

qi −
∑

i∈Zt

q×i .

By the same argument as in Case 1, Ĉ is an entropy-achieving

Q-ary tree-decodable code on the Q×-ary SPA.

REFERENCES

[1] “List of recommendation ITU-T E.164 assigned country codes,”
International Telecommunications Union, 2011.

[2] F. Yergeau, “UTF-8, a transformation format of ISO 10646,” Internet
Engineering Task Force, 2003.

[3] R. Pike and K. Thompson, “Hello world or Καληµέρα κόσµε or こん
にちは世界,” in Proceedings of the Winter 1993 USENIX Conference.
USENIX Association, 1993, pp. 43–50.

[4] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[5] R. M. Fano, The transmission of information. Massachusetts Institute
of Technology, Research Laboratory of Electronics, 1949.

[6] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, Oct. 1952.

[7] J. J. Rissanen, “Generalized Kraft inequality and arithmetic coding,”
IBM Journal of Research and Development, vol. 20, no. 3, pp. 198–203,
May 1976.

[8] R. C. Pasco, “Source coding algorithms for fast data compression,”
Ph.D. dissertation, Stanford University, May 1976.

[9] H. Yamamoto and X. Wei, “Almost instantaneous FV codes,” in 2013

IEEE International Symposium on Information Theory (ISIT), Jul.
2013, pp. 1759–1763.

[10] H. Yamamoto, M. Tsuchihashi, and J. Honda, “Almost instantaneous
fixed-to-variable length codes,” IEEE Transactions on Information

Theory, vol. 61, no. 12, pp. 6432–6443, Oct. 2015.
[11] J. Van Leeuwen, “On the construction of Huffman trees,” in ICALP,

1976, pp. 382–410.
[12] T. Linder, V. Tarokh, and K. Zeger, “Existence of optimal prefix

codes for infinite source alphabets,” IEEE Transactions on Information

Theory, vol. 43, no. 6, pp. 2026–2028, Nov. 1997.
[13] T. Chow and M. Golin, “Convergence and construction of minimal-cost

infinite trees,” in 1998 IEEE International Symposium on Information

Theory (ISIT), Aug. 1998, p. 227.
[14] M. Klimesh and R. J. McEliece, “Existence, uniqueness, and

optimality of sibling-property codes for infinite sources,” in 2006 IEEE

International Symposium on Information Theory (ISIT), Jul. 2006, pp.
2536–2540.

[15] M. Klimesh, “Redundancy and optimality of codes for infinite-entropy
sources,” in 2008 IEEE International Symposium on Information Theory

(ISIT), Jul. 2008, pp. 1949–1953.
[16] H. Yao and R. W. Yeung, “Zero-error multichannel source coding,”

in 2010 IEEE Information Theory Workshop on Information Theory

(ITW), Jan. 2010, pp. 1–5.
[17] E. Ordentlich, M. J. Weinberger, and C. Chang, “On multi-directional

context sets,” IEEE Transactions on Information Theory, vol. 57,
no. 10, pp. 6827–6836, Oct. 2011.

[18] H. H. F. Yin, K. H. Ng, Y. T. Shing, R. W. F. Lai, and X. Wang,
“Decision procedure for the existence of two-channel prefix-free codes,”
in 2019 IEEE International Symposium on Information Theory (ISIT),
Jul. 2019, pp. 1522–1526.

[19] ——, “Polynomial-time construction of two-channel prefix-free codes
with given codeword lengths,” in 2021 IEEE Information Theory

Workshop (ITW), Oct. 2021.
[20] H. H. F. Yin, X. Wang, K. H. Ng, R. W. F. Lai, L. K. L. Ng, and

J. P. K. Ma, “On multi-channel Huffman codes for asymmetric-alphabet
channels,” in 2021 IEEE International Symposium on Information

Theory (ISIT), Jul. 2021.

	I Introduction
	II Preliminaries
	II-A Multichannel Prefix Codes
	II-B Rectangle Packing Graph

	III Non-Tree-Decodable Prefix Codes
	III-A Guillotine-Cuts and Tree Decodability
	III-B Interweave Structures

	IV Main Result
	IV-A Selvage Code and Selvage Probability Assembly (SPA)
	IV-B Sufficient Condition

	V Concluding Remarks
	Appendix I: Proof of thm:guillotine
	Appendix II: Proof of thm:E
	Appendix III: Proof of thm:interweave
	Appendix IV: Proof of thm:spaoptimal
	Appendix V: Proof of lem:naturalseparation
	Appendix VI: Proof of thm:main
	Appendix VII: Proof of thm:converse
	References

