
ar
X

iv
:2

20
3.

15
42

9v
1

 [
cs

.D
S]

 2
9

M
ar

 2
02

2

Heterogeneous Differential Privacy via Graphs

Sahel Torkamani∗, Javad B. Ebrahimi∗§, Parastoo Sadeghi†, Rafael G. L. D’Oliveira‡, Muriel Médard‡

∗ Sharif University of Technology, Tehran, Iran, {sahel.torkamani, javad.ebrahimi}@sharif.edu
§Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

†SEIT, University of New South Wales, Canberra, Australia, p.sadeghi@unsw.edu.au
‡RLE, Massachusetts Institute of Technology, USA, {rafaeld, medard}@mit.edu

Abstract—We generalize a previous framework for design-
ing utility-optimal differentially private (DP) mechanisms via
graphs, where datasets are vertices in the graph and edges
represent dataset neighborhood. The boundary set contains
datasets where an individual’s response changes the binary-
valued query compared to its neighbors. Previous work was
limited to the homogeneous case where the privacy parameter
ε across all datasets was the same and the mechanism at
boundary datasets was identical. In our work, the mechanism
can take different distributions at the boundary and the privacy
parameter ε is a function of neighboring datasets, which
recovers an earlier definition of personalized DP as special case.
The problem is how to extend the mechanism, which is only
defined at the boundary set, to other datasets in the graph in a
computationally efficient and utility optimal manner. Using the
concept of strongest induced DP condition we solve this problem
efficiently in polynomial time (in the size of the graph).

I. INTRODUCTION

Differential privacy (DP) [1] is a mathematical standard

for quantifying the privacy performance of a data publishing

or data analysis mechanism [2]. To conceal the presence of

any individual in the dataset, DP mechanisms perturb the

query response or the outcome of an analysis according to

a random distribution. The main DP parameter is called ε.

If ε is small, then any mechanism output is almost as likely

to occur whether or not any particular individual’s data was

used in the database.

Despite many scientific and operational challenges [3], the

United States Census Bureau has implemented differential

privacy for the 2020 Census release [4]. One challenge, which

is also documented in many other works including [5], [6],

is the difficulty in choosing an appropriate value for ε. Two

possible reasons for such a challenge are as follows.

First, differential privacy is not well-equipped with theories

that maximize utility subject to a privacy constraint or

minimize ε subject to a utility constraint [3]. In [7]–[9],

the staircase, geometric and Laplace mechanisms were re-

spectively identified as utility-maximizing mechanisms under

various notions of utility. However, only the global sensitivity

of the query across all datasets is taken into account. Such

data-independent mechanisms can adversely affect utility,

especially when an individual’s response does not change

the query outcome compared to any of its neighboring

datasets [10]. Data-dependent mechanisms aim to enhance

utility. However, since utility is not provably optimized,

the challenge remains to determine which data-dependent

algorithm is best for a given application [11].

Second, a “one-size-fits-all” [12] approach to setting a

global privacy level can be damaging to both utility and

privacy. Current implementations of differential privacy lack

sufficient flexibility for accommodating data-dependent pri-

vacy setting. For example, there may be minority groups

whose data must be better protected. There may also be

statutory mandates, demanding publication of certain datasets

with more accuracy. The authors of [5], [12] present several

social reasons in favor of incorporating users’ preferences

when choosing ε.

Towards addressing these challenges, the authors in [13]

proposed a methodology for data-dependent utility-optimal

mechanism design for binary-valued queries. This was done

via representing datasets as vertices and dataset neighbor-

hoods as edges on a graph. Boundary datasets are those where

an individual’s data changes the query outcome compared to

its neighbors. For the case that the mechanism was defined

only partially at the boundary datasets, [13] showed it is

possible to extend the mechanism over the entire graph in

an optimal manner. To solve the problem efficiently, [13] fo-

cused on the homogeneous case where the partial mechanism

had the same probability distribution at the boundary and

also ε was the same across the graph. However, an efficient

solution to the general problem remained open.

This paper generalizes the work [13] in two main direc-

tions.1 First, we study heterogeneous mechanisms where the

partial mechanism can have different probability distributions

at the boundary. Second, we study a general heterogeneous

privacy setting on neighboring datasets, which recovers per-

sonalized DP [12] as a special case. Efficiently solving

both generalizations required a radically different way of

thinking about the problem compared to [13]. Instead of

using graph morphism to simple path graphs, we use the

partial mechanism as seed to optimally grow via the concept

of strongest induced DP condition. We show this can be done

in polynomial time.

After recalling standard definitions for graphs and differ-

ential privacy in Section II, we introduce heterogeneous DP

in Section III. Section IV presents our main results in a semi-

informal manner, focusing on insights and intuitions. Section

V contains the technical statements and the Algorithm for

finding the optimal mechanism.

II. DIFFERENTIAL PRIVACY AND UTILITY VIA GRAPHS

Let G(V,E) be a simple, connected, and undirected graph

with vertex set V and edge set E. A sequence of vertices

u = u0, u1, · · · , un = v is said to form a path from u to v,

denoted by (u, v)-path, if (u0, u1), · · · , (un−1, un) ∈ E.

Definition 1 ((u, v)-path set): For every two vertices

u, v ∈ V , we define P(u, v) := {all the (u, v)-paths in G}.

1We remark that [13] considered approximate (ε, δ)-DP. Here we set δ =
0 and consider pure-DP. This will make the analysis manageable.

http://arxiv.org/abs/2203.15429v1

For subsets A1, A2 ⊆ V , we define P(A1, A2) :=
∪u∈A1,v∈A2P(u, v). Finally, P is the set of all paths in G.

Let ρ be a path and w be a neighbor of ρ’s tail not on ρ.

The path obtained from adding w to ρ is denoted by ρw.

Definition 2 (Neighborhood): The neighborhood of a sub-

set S ⊆ V of the vertices, denoted by N(S) is the set of

all the vertices in V \ S which are connected to at least one

element of S by an edge.

In this work, the vertices represent datasets and the

edges represent neighborhood relationships between pairs of

datasets. Neighboring datasets u and v are also denoted by

u ∼ v. The true query function T : V → Q, associates to

each dataset a query value from a finite set Q.

Definition 3 (Boundary set): The boundary set of G with

respect to T is denoted by ∂T (G) and is the set of vertices

in G whose neighborhood contains at least one vertex with a

different true query value. Formally,

∂T (G) = {u ∈ V : ∃v ∈ N(u), T (v) 6= T (u)}.

For privately responding to T , a privacy-preserving mech-

anism M randomizes the response.

Definition 4 (Differential privacy [1]): Let ε ≥ 0. Then, a

mechanism M : V → Q on G is ε-differentially private (in

short is ε-DP) if, for every u ∼ v and S ⊆ Q,

Pr[M(u) ∈ S] ≤ eε Pr[M(v) ∈ S].

In this paper we consider the case where Q = {1, 2} of

binary-valued queries. It then suffices to use the following

notion of binary-valued differential privacy.

Definition 5 (Binary-valued differential privacy): Let ε ≥ 0
and p : V → [0, 1]. We say p is binary-valued ε-DP if for

every pair u ∼ v, we have:

p(u) ≤ eεp(v), (1)

1− p(v) ≤ eε(1− p(u)). (2)

Due to the symmetry of dataset neighborhood, v ∼ u will

yield the other two inequalities involving p(v) and p(u).

Lemma 1: Let M : V → {1, 2} be a mechanism. Then,

M is ε-DP if p := Pr[M(v) = 1] is binary-valued ε-DP.

The proof is straightforward and is omitted here. The fol-

lowing definition captures the optimal utility of a binary

mechanism over the space of datasets. Roughly speaking, a

mechanism is said to be optimal if for every dataset v ∈ V ,

the probability of correctly outputting the true query value

T (v) is the highest it can be. Recall that p := Pr[M(v) = 1]
and 1− p := Pr[M(v) = 2].

Definition 6 (Optimal binary mechanism): A binary-valued

ε-DP mechanism p∗ is said to be optimal on G if, for every

other binary-valued ε-DP mechanism p on G and every vertex

v ∈ V , we have:

{

p∗(v) ≥ p(v), if T (v) = 1,

1− p∗(v) ≥ 1− p(v), if T (v) = 2.
(3)

We denote this ordering with respect to T by p ≤T p∗.

III. HETEROGENEOUS DIFFERENTIAL PRIVACY

The standard definition of differential privacy in Defini-

tion 4 is homogeneous in the sense that the privacy conditions

between any two neighboring datasets are given by the same

ε. In this section, we extend the homogeneous ε-DP to the

heterogeneous case. For each edge (u, v) ∈ E, there is an

ε(u, v), which specifies how neighboring datasets u and v
should be protected with respect to each other. Throughout

the paper, we assume ε(·) is symmetric, i.e, ε(u, v) = ε(v, u),
for every (u, v) ∈ E.

Definition 7 (Heterogeneous differential privacy): A mech-

anism M : V → Q on G is heterogeneous ε(·)-differentially

private if, for every u ∼ v and S ⊆ Q,

Pr[M(u) ∈ S] ≤ eε(u,v) Pr[M(v) ∈ S].

If ε(·) = ε is a constant function, we recover the standard

differential privacy in Definition 4. A small ε(u, v) means

high privacy and vice versa. Whenever we write ε(·)-DP as

opposed to just ε-DP, it is to emphasize that we mean a

heterogeneous DP mechanism on G.

Definition 7 is more general than the personalized DP

[12] as follows. In [12], the variability of ε is tied to

the identity of an individual i. To clarify, for any v =
(v1, · · · , vi, · · · , vn) ∈ V , where n is the dimension of the

dataset, let V −i(v) ⊂ V denote all vertices in V whose i-th
element differs from v. That is, v−i = (v1, · · · , v′i, · · · , vn).
In [12], ε(v, v−i) = εi for all v−i ∈ V −i. In this paper,

there is no such constraint and ε(v, v−i) has full degrees of

freedom to depend on both v and v−i.

In [14], the authors define ε(u, v) for all u, v ∈ V and

assume d(·) is a metric function, which satisfies the triangle

inequality ε(u, v) ≤ ε(u,w) + ε(w, v) for all u, v, w ∈ V .

Here, we define ε(u, v) for neighboring vertices u ∼ v only.

See the examples in Fig. 1 that clarify these distinctions.

IV. MAIN RESULTS

Let G be a graph with privacy function ε(·). Let T be a

binary-valued query function on V and p : S → [0, 1] be a

partial function such that S ⊆ V contains the boundary set

∂T (G). An extension of p is a function p̃ : V → [0, 1] such

that for all v ∈ S, we have p̃(v) = p(v). The main result of

this paper is as follows.

Theorem 1: There exists a polynomial time algorithm

which takes a graph G, a privacy function ε(·), a binary-

valued query T , and a partial function p as input and outputs

as follows. If p cannot be extended to an ε(·)-DP mechanism,

it outputs “no ε-DP extension of p exists”. Otherwise, it

outputs an extension p̃ of p which is ε(·)-DP and is also

the unique optimal with respect to the ≤T ordering.

Before we outline the main steps of the proof of Theo-

rem 1, we explain some helpful facts.

A. Initial DP Conditions:

The notion of the ε(·)-DP on G is a local property in

the sense that for a mechanism to be ε(·)-DP, certain local

conditions must be satisfied. For binary-valued heterogeneous

mechanisms, this is captured in Definition 8.

Definition 8 (Binary-valued heterogeneous differential pri-

vacy): The function p : V → [0, 1] is called binary-valued

111 211

121

212112

221

122 222

(a) Heterogeneous DP

111 211

121

212112

221

122 222

(b) Personalized DP

111 211

212
112

ε1

ε1

ε2

ε1
≤ ε1 + ε2

(c) d-metric privacy

Fig. 1: Examples of heterogeneous DP in this paper, personalized DP [12], and d-metric DP [14]. Each dataset v = (v1, v2, v3)
contains three votes, vi ∈ {1, 2}. The query is the majority vote which is color coded as blue or red. A higher privacy

ε2 < ε1 is schematically shown with thicker lines . Imagine the first person’s vote needs to better protected, but only if it is

the deciding vote. In heterogeneous DP, it is possible to assign higher privacy only on edges (121)−(221) and (112)−(212).
In personalized DP, all datasets in which the first person’s vote is different must be assigned the same privacy parameter. In

d-metric privacy, privacy conditions between all datasets must be pre-specified subject to the triangular inequality.

heterogeneous ε(·)-differentially private if, for every u ∼ v,

the following conditions are satisfied:

p(u) ≤ eε(u,v)p(v), (4)

1− p(u) ≤ eε(u,v)(1− p(v)). (5)

Furthermore, by the symmetry, the same set of inequalities

hold if we interchange u and v:

p(v) ≤ eε(u,v)p(u), (6)

1− p(v) ≤ eε(u,v)(1− p(u)). (7)

We refer to (4)-(7) as the initial DP conditions.

Note that (4)-(7) can be rearranged to obtain two upper

bounds on p(u) and two lower bounds on p(u). In particular,

(7) can be rewritten as

p(u) ≤
p(v)− 1 + eε(u,v)

eε(u,v)
. (8)

That is, (4) and (8) impose two upper bounds on the

mechanism p(u). Because of this simple fact and also the fact

that neighboring relationship is a symmetric relationship, we

may only consider the upper bounds. That is, if all the upper

bound inequalities hold for every adjacent pair of vertices,

the lower bounds automatically hold.

B. Strongest Induced DP Condition:

Despite the fact that an ε(·)-DP mechanism has a very

localized definition as described above, it must also satisfy

less local conditions as follows. If two vertices u, v are not

neighbors, but both satisfy local ε(·)-DP conditions with

a third mutual neighboring vertex u0, then a weaker set

of inequalities must hold for the value of the mechanism

at u and v. As we take different (u, v)-paths, still certain

inequalities, depending on that path, on the value of the

mechanism at the two end vertices must be satisfied.

The upper bounds a vertex imposes on another vertex via

some path are called induced DP conditions. However, as the

path is incremented, the induced conditions become weaker.

In fact, for every pair of nodes u, v ∈ V , any ε(·)-DP

mechanism on G, and any path ρ ∈ P(u, v), the vertex u
imposes an upper bound on p(v), which depends on both

p(u) and ρ. We denote this upper bound by Uρ,p(u)(v). Thus,

from now on, every time we talk about the best bound u

imposes on p(v), we mean the smallest upper bound on p(v)
among all ρ ∈ P(u, v), i.e., minρ∈P(u,v) Uρ,p(u)(v). We call

this smallest bound the strongest induced condition of u on

p(v). The following lemma summarizes these facts.

Lemma 2: Let ρ be a (u, v)-path and v′ be a middle vertex

of this path. Let ρ′ and ρ′′ be (u, v′) and (v′, v) subpaths

on ρ. Then, for the upper bound U function we obtain the

expression Uρ,p(u)(v) = Uρ′′,Uρ′,p(u)(v
′)(v). Also, for every

ε(·)-DP mechanism p, the upper bounds u imposes on p(v′)
are smaller than the ones it imposes on p(v).

The above lemma follows from Theorem 3 that will appear

later in the paper.

C. Finding the Strongest Induced DP Condition

For a single path graph, finding the strongest induced

DP condition can be solved efficiently. The closed-form

expression of the optimal induced DP conditions for a path

graph is derived in Theorem 3.

However, finding the strongest induced condition is chal-

lenging in a general graph, since the number of the paths

in the graph can be exponentially large on the number of

vertices. However, in Algorithm 2, we show that this task

can be accomplished in polynomial time. In the next section,

we describe this algorithm, prove its correctness, and analyze

its time complexity.

We now explain the proof of Theorem 1 and the construc-

tion of Algorithm 2.

• Checking the extendibility: The idea is very simple.

We find a necessary condition that any extendable

function must satisfy to be ε(·)-DP and we check it

in polynomial time. If it is not satisfied, the algorithm

declares that no ε(·)-DP extension exists.

Actually, the necessary conditions are the induced DP

conditions over the pairs u, v ∈ S. In fact, all the

induced conditions are necessary, but since we only have

access to partial p, over the set S, we only consider those

ones. Note that it is enough to only check the strongest

induced conditions. The number of the ordered pairs in

S is |S| ·(|S|−1) and hence, polynomial. Also checking

if the strongest condition is satisfied over any pair in S
can be done using Algorithm 2.

• Finding an extension: Note that if the necessary con-

dition is satisfied in the previous part, then Algorithm 2

outputs some extension function of p. If we can prove

that the output in this case is indeed an ε(·)-DP mech-

anism, firstly it shows that the checking extendibility

is indeed sufficient, and more importantly, the output

satisfies ε(·)-DP.

The way the algorithm extends the function p over the

entire V is as follows. For a vertex v outside S, and

based on the value of T (v) it does the following. When

T (v) = 1, the algorithm searches over all the vertices

u ∈ S and finds the one whose strongest induced

condition on the vertex v is the smallest. In other

words, among all the paths of the form ρ ∈ P(u, v) in

which u ∈ S, it takes the one with minimum possible

Uρ,p(u)(v). For any fixed u, this can be done by using

Algorithm 1. Since |S| has also polynomial size, the

entire task can be done in polynomial time.

When T (v) = 2, the symmetry in the problem can be

used to perform exactly the same steps except that we

call Algorithm 2 with the input 1 − p instead of p. In

Section V-B, we prove that the resulting extension of p
is ε(·)-DP.

• Optimality with respect to ≤T : This part is a direct

consequence of the previous item. The reason is that

for every vertex v ∈ V \ S, depending on whether

T (v) = 1 or 2, we assigned the minimum upper bound

(respectively, maximum lower bound) that is necessary

for any ε(·)-DP mechanism. In other words, if we

increase the value of p(v) (for the case T (v) = 1) by

any positive value, then one necessary condition fails

and therefore the function cannot be ε(·)-DP.

V. TECHNICAL STATEMENTS AND PROOFS

A. The Path Graph

Let ρ = v0, · · · , vn be a path graph of length n with

the mechanism specified only at the head node v0, i.e.,

p(v0) = Pr[M(v0) = 1] = α is given. The query value at

v0 can be either T (v0) = 1 or T (v0) = 2, but it is assumed

T (vi) = 1 across every other node on the path. This ensures

that extending p(v0) in an optimal manner across the rest of

the path is equivalent to maximizing p(vi), for 1 ≤ i ≤ n.

Since we are dealing with a path graph only and for simplicity

of notation, we use the shorthand εi := ε(vi, vi+1) here.

Therefore, (4) and (8) are re-written for i = 0, · · · , n− 1 as

p(vi+1) ≤ eεip(vi), (9)

p(vi+1) ≤
p(vi)− 1 + eεi

eεi
. (10)

Among the two upper bounds (9) and (10) on p(vi+1), the

smallest one prevails at dictating the optimal mechanism:

p(vi+1) ≤ min

{

eεip(vi),
p(vi)− 1 + eεi

eεi

}

.

We first present a simple lemma that characterizes which

upper bound among (9) and (10) is the tightest.

Lemma 3: A necessary and sufficient condition for

min

{

eεip(vi),
p(vi)− 1 + eεi

eεi

}

= eεip(vi)

is that p(vi) ≤ (eεi + 1)−1.

Proof:

eεip(vi) ≤
p(vi)− 1 + eεi

eεi
⇐⇒

e2εip(vi) ≤ p(vi)− 1 + eεi ⇐⇒

e2εip(vi)− p(vi) ≤ eεi − 1 ⇐⇒

(e2εi − 1)p(vi) ≤ eεi − 1 ⇐⇒ p(vi) ≤
1

eεi + 1

where the last step follows from eεi − 1 ≥ 0. Note, that if

eεi − 1 = 0 then, the inequality is trivial.2

The optimal binary-valued heterogeneous differentially

private mechanism p∗ with initial condition p∗(v0) = α,

follows from Lemma 3 and induction on i, and is given by3

p∗(vi+1) = min

{

eεip∗(vi),
p∗(vi)− 1 + eεi

eεi

}

. (11)

Theorem 2: The function p∗ given in (11) is the unique

optimal ε(·)-DP mechanism on the path graph ρ.

Proof: Assume that p∗ is not optimal. Let p′ : V → [0, 1]
be another binary-valued heterogeneous ε(·)-differentially

private function and let k ∈ N be the smallest number such

that p∗(vk) < p′(vk).
As k is the smallest number which satisfies the statement

above, we obtain p′(vk−1) ≤ p∗(vk−1). This means we have

eεk−1p′(vk−1) ≤ eεk−1p∗(vk−1), (12)

p′(vk−1)− 1 + eεk−1

eεk−1
≤

p∗(vk−1)− 1 + eεk−1

eεk−1
. (13)

Since p′ is an ε(·)-differentially private function, it satisfies

(9) and (10). Combining this with (12) and (13) we obtain

p′(vk) ≤ min

{

eεk−1p′(vk−1),
p′(vk−1)− 1 + eεi

eεk−1

}

(14)

≤ min

{

eεip∗(vk−1),
p∗(vk−1)− 1 + eεk−1

eεk−1

}

(15)

= p∗(vk), (16)

where the last equality is due to the construction of p∗ in

Theorem 2. This contradicts the first assumption. The proof

of uniqueness is straightforward.

We now show how to find the optimal ε(·)-DP mechanism

for the path graph.

Theorem 3: Let the path graph ρ = v0, · · · , vn and the

mechanism at its head vertex p(v0) = α be given. Assume

that T (vi) = 1 and εi > 0 is fixed, for 1 ≤ i ≤ n. Then,

the optimal binary-valued heterogeneous differentially private

mechanism p∗ is given by

p∗(vi) :=

eεi−1+···+ε0α, i ≤ τ,

e−εi−1−···−ετ+1−ετ+ετ−1···+ε0α i > τ.

+1− e−εi−1−···−ετ ,

where

τ = argmin
i∈[n]

{

1

α
≤ eεi−1+εi−2+···+ε0(eεi + 1)

}

. (17)

Proof: First assume that there exists some k ∈ [n] such

that for all 1 ≤ i < k, we have min{eεip(vi),
p(vi)−1+eεi

eεi
} =

2Note that Lemma 3 is true for the general graph and general ε(u, v).
3We check if (11) gives a value greater than 1 and if so, set p∗(vi+1) = 1.

eεip(vi). That is, (9) is the tightest upper bound on p(vi+1).
We will soon find the largest k for which this can happen.

Iterating over i = k, k − 1, · · · , 1, we will construct the

mechanism p∗ through induction

p∗(vk) = eεk−1p∗(vk−1) (18)

= eεk−1
(

eεk−2p∗(vk−2)
)

(19)

· · · (20)

= eεk−1

(

eεk−2

(

· · ·
(

eε0p(v0)
)

· · ·
)

)

(21)

= eεk−1+εk−2+···+ε0α. (22)

We now want to find the smallest index on the path for which

(9) is not tight. This is, we want to find the last index for

which the iterations (18)-(22) hold. Let this parameter to be

τ . Therefore, on the one hand, τ satisfies

p∗(vτ) = eετ−1+ετ−2+···+ε0α. (23)

On the other hand, by the definition of τ , for i = τ +1, (10)

will give the tightest upper bound on p(vτ+1). That is,

min

{

eετ p∗(vτ),
p∗(vτ)− 1 + eετ

eετ

}

=
p∗(vτ)− 1 + eετ

eετ
.

Therefore, from Lemma 3, we must have

p∗(vτ) ≥
1

eετ + 1
. (24)

Combining (24) and (23) and taking the minimum over all

i ∈ [n] gives (17).

We need to verify that the upper bounds (9) and (10) do

not “toggle” or “alternate” in providing the tightest bound on

p∗(vi) for i > τ . Referring to Lemma 3, this is equivalent to

verifying that for every τ ≤ i ≤ n we will have

p∗(vi) ≥
1

eεi + 1
.

For i = τ this holds by definition. For τ < i ≤ n, this can

be proved via contradiction. Assume there exists i > τ such

that the following statements are satisfied.

p∗(vi) ≥
1

eεi + 1
, (25)

p∗(vi+1) <
1

eεi+1 + 1
. (26)

Since (25) is satisfied, from Lemma 3, we must have:

p∗(vi+1) = min

{

eεip∗(vi),
p∗(vi)− 1 + eεi

eεi

}

(27)

=
p∗(vi)− 1 + eεi

eεi
. (28)

Therefore, substituting p∗(vi+1) with the above equation in

(26) leads us to:

p∗(vi+1) =
p∗(vi)− 1 + eεi

eεi
<

1

eεi+1 + 1
. (29)

Using the bound in (25) on p∗(vi) in the above gives

1
eεi+1 − 1 + eεi

eεi
<

1

eεi+1 + 1
,

which is equivalent to:

1+e2εi−1
eεi+1

eεi
<

1

eεi+1 + 1
⇐⇒ (30)

eεi

eεi + 1
<

1

eεi+1 + 1
⇐⇒ eεieεi+1 < 1. (31)

The last statement is a contradiction as 0 < εi + εi+1.

Having proved that the optimal mechanism has at most

two regimes, as determined by a single τ , the last step is to

provide a closed-form expression for the iterations τ < i ≤
n. Starting with i = τ + 1, we will have

p∗(vτ+1) =
p∗(vτ)− 1 + eετ

eετ
(32)

=
eετ−1+ετ−2+···+ε0α− 1 + eετ

eετ
(33)

= e−ετ eετ−1+ετ−2+···+ε0α− e−ετ + 1. (34)

For i = τ + 2, we will get

p∗(vτ+2) =
p∗(vτ+1)− 1 + eετ+1

eετ+1

=
e−ετ+ετ−1+ετ−2+···+ε0α− e−ετ + eετ+1

eετ+1

= e−ετ+1−ετ+ετ−1+ετ−2+···+ε0α− e−ετ+1−ετ + 1.

continuing this for i > τ + 2 completes the proof.

We recover the result for the homogeneous case [13].

Corollary 1: Let ε > 0 and set εi = ε for i ∈ [n].
Theorem 3 recovers the results in [13] for δ = 0.

Proof: For εi = ε for i ∈ [n], the value of τ from (17)

is

τ1 =

⌈

1

ε
log

(

1

α(1 + eǫ)

)⌉

. (35)

Under εi = ε for i ∈ [n], p∗ given in Theorem 3 is simplified

to

p∗(vi) :=

{

eiεα, i ≤ τ1,

1− e(i−τ1)ε + e(−i+2τ1)εα, i > τ1.

Note the results in [13] were in terms of “the probability of

being red”: Ri = (1− pi) = Pr[M(vi) = 2]. Also, the head

vertex in [13] started at i = nB instead of i = 0 here, which

is adopted for easier notation in this paper. With appropriate

index conversion, it can be verified that we recover the results

in Theorem 10 in [13] for δ = 0.

B. The General Case

In this section, we generalize the results of the previous

section. We assume for a given general graph G and het-

erogeneous privacy budget ε(·) over E, the mechanism is

specified a priori over a subset of vertices S ⊆ V , such that

∂T (G) ⊆ S, i.e, p(u) = αu, for every u ∈ S, is given with

no additional assumptions on αu. Our goal is to extend p for

all other vertices whose mechanism is to be specified in an

optimal and computationally efficient manner. The following

definition will come handy.

Definition 9 (The path upper bound function): For every

vertex v ∈ G and (u, v)-path ρ ∈ P(u, v) such that its head

node u ∈ S, we define Uρ,αu
(v) to be the upper bound on

the value of p(v) imposed by p(u) = αu.

We prove that the following optimization problem can be

solved in polynomial time for every vertex u with a fixed

value α ∈ [0, 1].

minimize
ρ∈P(u,v)

Uρ,α(v)

To this end, we propose the polynomial Algorithm 1 which

takes u, α and G as the input and outputs Au,α(v) for every

vertex v ∈ V such that Au,α(v) = minρ∈P(u,v) Uρ,α(v).
Theorem 4: If Au,α(v) is the output of the Algorithm 1

then,

Au,α(v) = min
ρ∈P(u,v)

Uρ,α(v).

Proof: Let v1, . . . , vn−1 be the vertices of graph in the

order Algorithm 1 selects. By contradiction, let k be the

smallest index such that Au,α(vk) 6= minρ∈P(u,vk) Uρ,α(v).
First, assume that Au,α(vk) < minρ∈P(u,vk) Uρ,α(vk).
From Algorithm 1 (line 7), we have Au,α(vk) =
minv∈N(Sk) α

∗(v). Define uk as:

uk := argmin
v′∈N∗(vk)

U(v′,vk),Au,α(v′)(vk)

⇒ Au,α(vk) = U(uk,vk),Au,α(uk)(vk).

Then, by the choice of k, uk belongs to Sk and we have:

Au,α(uk) = min
ρ∈P(u,uk)

Uρ,α(uk) = Uρ′,α(uk).

Then, following from Lemma 2 we have:

Au,α(vk) = U(uk,vk),Au,α(uk)(vk)

= U(uk,vk),Uρ′,α(uk)(vk) = Uρ′vk,α(vk).

Thus, Au,α(vk) (= Uρ′vk,α(vk)) cannot be less than

minρ∈P(u,v) Uρ,α(vk).
It remains to consider the case: Au,α(vk) >
minρ:ρ∈P(u,vk) Uρ,α(vk). Let ρ be the (u, vk)-path that

imposes the strongest induced condition on vk. First observe

that ρ connects a vertex inside Sk (i.e., u) to a vertex outside

(i.e., vk). Following from Lemma 2, if we traverse this path

from head to tail, the first time we leave Sk must be the last

step. Since, otherwise we would not have selected vk.

Let w be the vertex on ρ before we reach vk. Hence, w
is also appeared in N∗(vk). Therefore, by the choice of

α∗(vk), we have Au,α(vk) = α∗(vk) ≤ U(w,vk),Au,α(w)(vk).
The equality is because of the choice of vk and the

inequality is because of the definition of α∗ and the fact

that U(w,vk),Au,α(w) is one of the terms in minimizing the

problem which defines α∗(vk).

Let p : S → [0, 1] be a partial function. We want to

know under what condition p can be extended to an ε-

DP function. To this end, first we define the notion of

“compatible function” and then we show that the necessary

and sufficient condition for p to be extendable to a ε-DP

function is the compatibility condition. We also prove that

testing compatibility can be done in polynomial time.

Definition 10: A partial function p : S → [0, 1] is called

compatible if, for every vertices u, v ∈ S, it follows that

p(v) ≤ minρ∈P(u,v) Uρ,α(u).
Now we give the technical proof of Theorem 1.

Proof of Theorem 1: Since p̃ is an extension function

of p, for the sake of simplicity, in the rest of the proof, we

Algorithm 1: Construction of the A function

Input: Graph G, u ∈ V , αu = p(u).
Output: Function Au,α : V → [0, 1]

1 i← 1
2 S1 ← {u}
3 Au,α(u)← αu

while |Si| < |V | do

for v ∈ N(Si) do

4 N∗(v)← N(v) ∩ Si

5 α∗(v)← minv′∈N∗(v) U(v′,v),Au,α(v′)(v)
end

6 vi ← argminv∈N(Si) α
∗(v)

7 Au,α(vi)← minv∈N(Si) α
∗(v)

8 Si+1 ← Si ∪ {vi}
9 i← i+ 1

end

Algorithm 2: Construction of the extension of a

mechanism

Input: Graph G, subset S ⊆ V which ∂T (G) ⊆ S,

partial function p : S → [0, 1].
Output: Function p̃ : V → [0, 1]

1 S1 ← S if p is not compatible then

2 return No ε(·)-DP extension of p exists.

end

for v ∈ S do

3 p̃(v)← p(v)
end

for v ∈ V \ S do

if T (v) = 1 then

4 p̃(v)← minu∈S Au,p̃(u)(v)
end

if T (v) = 2 then

5 p̃(v)← minu∈S Au,1−p̃(u)(v)
end

end

denote p̃ by p. In Section III, we argued that to complete

the proof of Theorem 1, we must show that if Algorithm 2

outputs a function p, then it is an ε(·)-DP mechanism. By the

definition, to show that a function is ε(·)-DP, we must verify

(4) and (5) hold for every edge (u, v) in E. We consider

three cases.

• Case 1: (u, v ∈ S) In this case, since the algorithm has

passed the compatibility test, the value of p at u, v are

consistent; that is, p(v) is no more than the strongest

condition p(u) imposes on it via all possible (u, v)-
paths. In particular, the one imposed by the edge (u, v)
is also guaranteed. Similarly, the condition p(v) imposes

on p(u) must be satisfied. Thus, the initial conditions on

the edge (u, v) are satisfied.

• Case 2: (u ∈ S, v /∈ S) First, because of the symmetry

and without loss of generality, let us assume that T (v) =
1. In this case, similar to the earlier case, we can observe

that the condition p(u) imposes on p(v) is satisfied.

We just have to show that the converse is also true.

Assuming the opposite we have U(v,u),p(v)(u) < p(u).

Since p(v) is assigned by the algorithm as the least

upper bounds imposed by all the vertices in S via all

the possible paths connecting them to v, let ω and ρ1 be

the vertex and the path that give the least upper bound

to p(v). Then, following from Lemma 2 we have:

Uρ1u,p(ω)(u) = U(v,u),[Uρ1,p(ω)(v)](u)

= U(v,u),p(v)(u).
(36)

Following from the compatibility condition, as ω, u ∈ S:

p(u) ≤ Uρ1u,p(ω)(u). (37)

Finally, (36) and (37) lead us to the following contra-

diction: p(u) ≤ Uρ1u,p(ω)(u) = U(v,u),p(v)(u) < p(u).
• Case 3: (u, v /∈ S) In this case, we first observe that

T (u) = T (v), since if it is not the case, then u and v
are boundary vertices and therefore by the assumption,

u, v ∈ S, which is a contradiction. Now, without loss

of generality, let us assume that T (u) = T (v) = 1
and U(v,u),p(v)(u) < p(u). Then, from the same setting

of the previous case we obtain the following equation:

Uρ1u,p(ω)(u) = U(v,u),p(v)(u) < p(u). Also, Algorithm

2 (line 13) implies that p(u) = minω′∈S Aω′,p(ω′)(u)
and, Theorem 4 leads us to the following:

p(u) = min
ω′∈S

Aω′,p(ω′)(u) = min
ω′∈S,ρ∈P(ω′,u)

Uρ,p(ω′)(u),

which contradicts Uρ1u,p(ω)(u) < p(u).

The proof of uniqueness is straightforward. The last part in

Theorem 1 is regarding the time complexity of Algorithm 2.

This is discussed in the next part.

Now, we analyze the running time of Algorithms. In

Algorithm 1 at each iteration, every edge which has exactly

one endpoint in S is considered, and the one with the best

(minimum) upper bound on the other end is selected. This

will take at most O(|E|) time. Thus, Algorithm 1 runs in

O(|E| · |V |) time. In Algorithm 2, compatibility test takes

O(|V |2) calls of Algorithm 1. If p is compatible, then for

every vertex v ∈ V \ S we check the best bound. For that,

we will call Algorithm 1 O(|S| · |V \ S| = O(|V |2) many

times. In conclusion, we have the following theorem.

Theorem 5: Algorithm 1 and 2 run in O(|E||V |) and

O(|V |3|E|) respectively.

REFERENCES

[1] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in Proc. Theory Cryptography

Conf., New York, NY, Mar. 2006, pp. 265–284.
[2] T. Zhu, G. Li, W. Zhou, and P. S. Yu, “Differentially private data

publishing and analysis: A survey,” IEEE Transactions on Knowledge

and Data Engineering, vol. 29, no. 8, pp. 1619–1638, 2017.
[3] S. L. Garfinkel, J. M. Abowd, and S. Powazek, “Issues encountered

deploying differential privacy,” in Proceedings of the 2018 Workshop

on Privacy in the Electronic Society, 2018, pp. 133–137.
[4] J. M. Abowd, “The US Census Bureau adopts differential privacy,” in

Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, 2018, pp. 2867–2867.
[5] N. Kohli and P. Laskowski, “Epsilon voting: Mechanism design for

parameter selection in differential privacy,” in 2018 IEEE Symposium

on Privacy-Aware Computing (PAC). IEEE, 2018, pp. 19–30.
[6] J. M. Abowd and I. M. Schmutte, “An economic analysis of privacy

protection and statistical accuracy as social choices,” American Eco-

nomic Review, vol. 109, no. 1, pp. 171–202, 2019.
[7] Q. Geng, P. Kairouz, S. Oh, and P. Viswanath, “The staircase mecha-

nism in differential privacy,” IEEE Journal of Selected Topics in Signal

Processing, vol. 9, no. 7, pp. 1176–1184, 2015.

[8] A. Ghosh, T. Roughgarden, and M. Sundararajan, “Universally utility-
maximizing privacy mechanisms,” SIAM Journal on Computing,
vol. 41, no. 6, pp. 1673–1693, 2012.

[9] N. Fernandes, A. McIver, and C. Morgan, “The Laplace mechanism is
optimal for differential privacy over continuous queries.” in ACM/IEEE

Symposium on Logic in Computer Science (LICS) (to appear), 2021.
[10] J. Soria-Comas, J. Domingo-Ferrer, D. Sánchez, and D. Megı́as,

“Individual differential privacy: A utility-preserving formulation of
differential privacy guarantees,” IEEE Trans. Inf. Forensics Security,
vol. 12, no. 6, pp. 1418–1429, June 2017.

[11] I. Kotsogiannis, A. Machanavajjhala, M. Hay, and G. Miklau, “Pythia:
Data dependent differentially private algorithm selection,” 05 2017, pp.
1323–1337.

[12] Z. Jorgensen, T. Yu, and G. Cormode, “Conservative or liberal?
personalized differential privacy,” in 2015 IEEE 31St international

conference on data engineering. IEEE, 2015, pp. 1023–1034.
[13] R. G. L. D’Oliveira, M. Médard, and P. Sadeghi, “Differential privacy

for binary functions via randomized graph colorings,” in IEEE Int.

Symp. Inf. Theory, Melbourne, Victoria, Australia, July 2021, pp. 473–
478.

[14] K. Chatzikokolakis, M. E. Andrés, N. E. Bordenabe, and
C. Palamidessi, “Broadening the scope of differential privacy using
metrics,” in International Symposium on Privacy Enhancing Technolo-

gies Symposium. Springer, 2013, pp. 82–102.

	I Introduction
	II Differential Privacy and Utility via Graphs
	III Heterogeneous Differential Privacy
	IV Main Results
	IV-A Initial DP Conditions:
	IV-B Strongest Induced DP Condition:
	IV-C Finding the Strongest Induced DP Condition

	V Technical Statements and Proofs
	V-A The Path Graph
	V-B The General Case

	References

