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Abstract—We analyze the fundamental trade-off of secret key-
based authentication systems in the presence of an eavesdropper
for correlated Gaussian sources. A complete characterization of
the trade-off among secret-key, storage, and privacy-leakage rates
of both generated and chosen secret models is provided. One of
the main contributions is revealing that unlike the known results
for discrete sources, there is no need for the second auxiliary
random variable in characterizing the capacity regions for the
Gaussian cases. In addition, it is shown that the strong secrecy for
secrecy-leakage of the systems can be achieved by an information-
spectrum approach, and the parametric expressions (computable
forms) of the capacity regions are also derived.

Index Terms—Gaussian sources, strong secrecy, privacy-
leakage, secret-key agreement, entropy power inequality.

I. INTRODUCTION

Secret key-based authentication (SKA) systems are gener-
ally designed to perform private authentication of users based
on secret keys, usually generated from biometric identifiers
[1] or physical unclonable functions [2]. In recent years, there
has been a bunch of literature focusing on investigating the
fundamental limits of SKA systems from information-theoretic
perspectives. In the analysis of the SKA systems, a new
condition called privacy constraint is added to the problem
formulations of the well-known secret-key agreement (the
source model with one-way communication only) discussed in,
e.g., [3]–[6]. Therefore, many existing tools used for solving
the key agreement problems are quite useful to characterize
the capacity regions of the SKA systems as well.

The seminal works [7] and [8] independently investigated
the trade-off relation between security and privacy-leakage in
the SKA systems. Particularly, in [7], eight different systems
were taken into consideration, but among them the generated
secret (GS) and chosen secret (CS) models are two major
models closely related to real-life applications and frequently
analyzed in the researches taking place later on. Some ex-
tensions of the work [7] for GS and CS models considering a
storage constraint and user identification can be found in, e.g.,
[9]–[11] and [12]–[14], respectively.

An SKA system in which an eavesdropper can observe both
the helper data and correlated side information of the identified
sequence was introduced in [15]. More specifically, the GS
model was discussed in two scenarios; passive and active
eavesdropper scenarios. In the passive case, the eavesdropper
is interested in knowing the biometric identifier and the secret
key based on the available information in his/her hand. On the
other hand, the active eavesdropper tries to cheat the system or

decode the genuine secret key with a mock sequence generated
by his/her own data. Basically, in this setup, the privacy
requirement is more stringent than the one seen in [7], in which
the eavesdropper only has the knowledge of the helper. The
work [15] was further extended in [16], [17] to incorporate
noisy enrollment and a cost-constrained action at the decoder.
The capacity characterizations of each paper were derived via
two auxiliary random variables (RVs) for discrete memoryless
sources as seen in [5]. However, in practical applications, the
biometric signal is usually represented in continuous forms.

Moreover, in information-theoretic security, the weak se-
crecy and the strong secrecy are commonly defined as metrics
to assess the leakage of sensitive data, e.g, secret key used for
private authentication. In [15], [16], the secrecy-leakage of the
systems is evaluated under a weak secrecy criterion, where the
secret-key information is allowed to leak to the eavesdropper
in sub-linear order of the block length. From the security
point of views, this is not preferable for the reason that the
information leaked to the eavesdropper might grow unbounded
with the block length [18]. A tighter security notion imposed
on the secrecy-leakage is seen in [11], [17]. In the papers, an
SKA system, in which the noisy identifiers and the identified
sequences are observed through a broadcast channel [19,
Chapter 8], is analyzed under a strong secrecy criterion for
secrecy-leakage, where the amount of information leaked to
the eavesdropper is demanded to be negligible regardless of
the block length. However, the analyzing technique is different
from the one adopted in this paper.

Motivated by these essential factors, for the same model in
[15], we enhance the security criterion to the strong secrecy
for secrecy-leakage, and characterize the capacity regions
of secret-key, storage, and privacy-leakage rates for Gaus-
sian sources from information-spectrum perspectives [20]. We
solely focus on the passive eavesdropper case, but deal with
both GS and CS models. The main contributions of this paper
are summarized as follows:
• Show that unlike the results of discrete sources [15]–[17],

a single auxiliary RV suffices to characterize the capacity
regions of both models for Gaussian sources. Another
interesting result is when the correlation coefficient of
the channel to the decoder is smaller than that of the
channel to the eavesdropper, the capacity regions of the
two models coincide; the optimal rates of the secret key
and storage become zero, but the minimum value of the
privacy-leakage rate may be positive.
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• Apply a privacy amplification technique developed in [6]
to prove that the strong secrecy for secrecy-leakage of
the SKA systems is achievable.

• Provide complete parametric expressions of the capacity
regions.

As special cases, the capacity characterizations derived in
this paper coincide with the results of [6] for a large enough
privacy-leakage rate and [21] for no consideration of the
storage rate.

II. SYSTEM MODELS AND PROBLEM FORMULATIONS

A. System Models

We basically use standard notation in [19]. The data flow
of GS and CS models is depicted in Fig. 1. Arrows (g) and
(c) indicate the directions of the secret key of the former and
latter models. Assume that the biometric source X ∼ N (0, 1).
The channel to the decoder (X → Y ) and the channel to the
eavesdropper (X → Z) are modeled as

Y = ρ1X +Ny, Z = ρ2X +N2, (1)

where |ρ1|, |ρ2| < 1 are the correlation coefficients of each
channel, Ny ∼ N (0, 1 − ρ21) and N2 ∼ N (0, 1 − ρ22) are
Gaussian RVs, and independent of each other and of other
RVs. Let S = [1 : MS ] and J = [1 : MJ ] be the sets of
secret keys and helper data, respectively. Xn and (Y n, Zn)
denote the biometric identifier generated from source PX , the
outputs of Xn via the channel PY Z|X , respectively. In GS
model, observing Xn, the encoder e generates a helper data
J ∈ J and a secret key S ∈ S; (J, S) = e(Xn). J is shared
with the decoder via the noiseless public channel. Seeing Y n,
the decoder d estimates S from Y n and the helper data J ;
Ŝ = d(Zn, J). In CS model, S is chosen uniformly from S
and independent of other RVs. The encoder makes the helper
data by J = e(Xn, S). For the decoder, Ŝ = d(Y n, J).
The eavesdropper has (Zn, J) and wants to learn about the
biometric identifier Xn and the secret key S.

B. Problem Formulations

In this section, we provide the formal definitions of GS and
CS models. First, we define the achievability definition of GS
model.

Definition 1. A tuple of secret-key, storage, and privacy-
leakage rates (RS , RJ , RL) ∈ R3

+ is said to be achievable
for GS model if for any δ > 0 and large enough n there exist
pairs of encoders and decoders satisfying

Pr{Ŝ 6= S} ≤ δ, (error probability) (2)
H(S) ≥ n(RS − δ), (secret-key) (3)

logMJ ≤ n(RJ + δ), (storage) (4)
I(S; J, Zn) ≤ δ, (secrecy-leakage) (5)

I(Xn; J, Zn) ≤ n(RL + δ). (privacy-leakage) (6)

Also, RG is defined as the closure of the set of all achievable
rate tuples for GS model, called the capacity region.

The achievability definition of CS model is given below.

Fig. 1. System models

Definition 2. A tuple of (RS , RJ , RL) ∈ R3
+ is said to be

achievable for CS model if for any δ > 0 and large enough
n there exist pairs of encoders and decoders satisfying all the
requirements imposed in Definition 1. Let RC be the capacity
region of CS model.

III. STATEMENT OF MAIN RESULTS

Before stating our main theorem, we would like to briefly
mention the background why the general authentication (wire-
tap) channels can always be scaled down into the degraded
versions for Gaussian sources.

Using [6, Lemma 6], in the case where

ρ21 > ρ22, (7)

by setting X ′ = X, Y ′ = Y, Z ′ = ρ2
ρ1
Y ′ +Nz, where Nz ∼

N (0, 1 − ρ22/ρ
2
1) is Gaussian RV and independent of other

RVs, the marginal densities of (X ′, Y ′) and (X ′, Z ′) coincides
with (X,Y ) and (X,Z), respectively. Contrary to the above
condition, when

ρ21 ≤ ρ22, (8)

for the RVs X ′ = X, Z ′ = Z, Y ′ = ρ1
ρ2
Z ′, it also follows

that the marginal densities of (X ′, Y ′) and (X ′, Z ′) coincides
with (X,Y ) and (X,Z), respectively.

Since the constraints (2), (6), and (5) depend only on the
marginal densities of (X,Y ) and (X,Z), it suffices to derive
our main theorem based on the joint sources (X ′, Y ′, Z ′)
instead of (1). In the rest of discussions, we just use (X,Y, Z)
to represent (X ′, Y ′, Z ′) for convenience.

Theorem 1. Under the condition of (7), i.e., the Markov chain
X − Y − Z holds, we have that

RG = ∪PU|X{(RS ,RJ , RL) ∈ R3
+ : RS ≤ I(Y ;U |Z),

RJ ≥ I(X;U |Y ),

RL ≥ I(X;U |Y ) + I(X;Z)}, (9)

RC = ∪PU|X{(RS ,RJ , RL) ∈ R3
+ : RS ≤ I(Y ;U |Z),

RJ ≥ I(X;U |Z),

RL ≥ I(X;U |Y ) + I(X;Z)}. (10)



For the case of (8), i.e., the Markov chain X −Z − Y holds,
the capacity regions are characterized in the same form as

RG = RC = {(RS , RJ , RL) : RS = 0, RJ ≥ 0,

RL ≥ I(X;Z)}. (11)

A proof of Theorem 1 is given in Appendix A. Note that
the above regions are uncomputable since the cardinality of
auxiliary RV U is unbounded. In the following, we show that
the parametric forms of Theorem 1 are determined by a single
parameter.

Corollary 1. Under the case of (7), the capacity regions of
GS and CS models can be computed as

RG = ∪α∈(0,1]
{

(RS , RJ , RL) ∈ R3
+ :

RS ≤
1

2
log

(
αρ22 + 1− ρ22
αρ21 + 1− ρ21

)
,

RJ ≥
1

2
log

(
αρ21 + 1− ρ21

α

)
,

RL ≥
1

2
log

(
αρ21 + 1− ρ21
α(1− ρ22)

)}
, (12)

RC = ∪α∈(0,1]
{

(RS , RJ , RL) ∈ R3
+ :

RS ≤
1

2
log

(
αρ22 + 1− ρ22
αρ21 + 1− ρ21

)
,

RJ ≥
1

2
log

(
αρ22 + 1− ρ22

α

)
,

RL ≥
1

2
log

(
αρ21 + 1− ρ21
α(1− ρ22)

)}
. (13)

In light of (8), we have that

RG = RC = {(RS , RJ , RL) : RS = 0, RJ ≥ 0,

RL ≥
1

2
log

(
1

1− ρ22

)
}. (14)

The full proof of Corollary 1 is available in Appendix B.
In Theorem 1, one can see that only auxiliary RV U

satisfying the Markov chain U − X − (Y, Z) is present in
both regions. A similar conclusion was drawn in [6] for the
secret-key agreement problem, but in the SKA systems, it is
not trivial whether the constraint on privacy-leakage rate can
be written by one auxiliary RV or not. In this paper, we have
revealed that it is possible to do so. In addition, when the
condition (8) is satisfied, the capacity regions of GS and CS
models are given in the same form. The optimal values of
the secret-key and storage rates are both zero, but that of
the privacy-leakage rate can still be positive depending on
the joint marginal densities of (X,Z). This is an interesting
nature of the SKA systems, which was not seen in the secret-
key agreement problems. Even when the encoding procedure
is not needed (i.e., U is a constant), the uncontrollable infor-
mation leaked to the eavesdropper via the channel PZ|X is at

minimum rate I(Z;X), corresponding to the capacity of this
channel.

As special cases, when Z is independent of other RVs
(ρ2 = 0) and the storage rate is large enough (RJ → ∞),
one can easily see that Corollary 1 is reduced to [21, Theorem
1] and [21, Theorem 2] for GS and CS models, respectively.
Furthermore, for the case where RJ ≥ 0 and RL →∞, let us
set RJ = 1

2 log
αρ21+1−ρ21

α , implying α = (1−ρ21)/(e2RJ−ρ21).
Substituting the value of α into the right hand side of RS , with
some careful manipulation, it becomes

1

2
log

Var[Y |X,Z]e−2RJ + Var[Y |Z](1− e−2RJ )

Var[Y |X,Z]
, (15)

where Var[·] denotes the variance of an RV, and Var[Y |Z] =
ρ21−ρ

2
2

ρ21
, Var[Y |X,Z] =

(1−ρ21)(ρ
2
1−ρ

2
2)

ρ21(1−ρ22)
. Equation (15) is exactly

the upper bound on the secret-key rate for limited public
communication rate (RJ ≥ 0) derived in [6, Theorem 4].

IV. CONCLUSION

In this paper, we characterized the capacity regions of GS
and CS models for Gaussian sources, and showed that only one
auxiliary RV was required for expressing the regions. Also, it
was demonstrated that the strong secrecy for secrecy-leakage
of SKA systems is achievable by information-spectrum meth-
ods [20]. For future work, we plan to clarify the optimal trade-
off for GS and CS models for vector Gaussian sources.
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APPENDIX A
PROOF OF THEOREM 1

Due to the space limitations, we only prove GS model under
the condition (7), which is the most difficult case for deriving
Theorem 1. The proof for CS model is omitted since it can
be done similarly to GS model with merely adding an extra
procedure; one-time pad operation.

A. Converse Part

In [15], the capacity region of GS model for general discrete
sources, denoted by R′G, is given by

Theorem 2. (Kittichokechai and Caire [15, Theorem 2])

R′G =
⋃

PV |U ,PU|X

{(RS , RJ , RL) ∈ R3
+ :

RS ≤ I(Y ;U |V )− I(Z;U |V ),

RJ ≥ I(X;U |Y ),

RL ≥ I(X;U, Y )− I(X;Y |V ) + I(X;Z|V )}, (16)

where auxiliary RVs U, V satisfy the Markov chain V − U −
X − (Y,Z), and |V| ≤ |X | + 3 and |U| ≤ (|X | + 3)(|X | +
2).

It can be easily verified that the above result also holds
for Gaussian sources. One can see that the bounds of RJ



for both Equations (9) and (16) remain unchanged, so they
can be shown in the same way. We need to check that other
constraints, i.e., for RS , RL, hold. Consider the case of (7).
For the degraded wiretap channels, e.g., V −U −X−Y −Z,
it holds that I(Y ;V |Z) = I(Y ;V )− I(Z;V ) ≥ 0. Then, we
can transform the bound on the secret-key rate as

RS ≤ I(Y ;U |V )− I(Z;U |V )

(a)
= I(Y ;U)− I(Y ;V )− (I(Z;U)− I(Z;V ))

= I(Y ;U)− I(Z;U)− (I(Y ;V )− I(Z;V ))

(b)
= I(Y ;U |Z)− I(Y ;V |Z)

≤ I(Y ;U |Z), (17)

where (a) follows by the Markov chains V −U −Y and V −
U −Z, and (b) is due to U − Y −Z and V − Y −Z. For the
privacy-leakage rate,

RL ≥ I(X;U, Y )− I(X;Y |V ) + I(X;Z|V )

(c)
= I(X;U |Y ) + I(Y ;V ) + I(X;Z)− I(Z;V )

= I(X;U |Y ) + I(X;Z) + I(Y ;V |Z)

≥ I(X;U |Y ) + I(X;Z), (18)

where (c) is due to the Markov chains V −X − Y and V −
X − Z. This wraps up the converse proof.

B. Achievability

Our proof technique is similar to the protocol used in
[6]. Since the analyses on the error probability, secret-key
and storage rates, and strong secrecy for secrecy-leakage
are similar to the arguments discussed in [6], they will be
mentioned briefly. However, we will describe the analysis on
the bound of privacy-leakage rate, which was not taken into
account in the literature, in detail.

Fix the test channel PU |X and let γ be small enough
positive. Set RS = I(Y ;U |Z)− 6γ, RJ = I(X;U |Y ) + 4γ,
and RL = I(X;U |Y ) + I(X;Z) + 3γ, and the sizes of the
set of helpers |J | = exp{nRJ}, and the set of secret keys
|S| = exp{nRS}. Define the sets

Tn =
{

(un, xn) :
1

n
log

PUn|Xn(un|xn)

PUn(un)
≤ I(X;U) + γ

}
,

An =
{

(un, yn) :
1

n
log

PY n|Un(yn|un)

PY n(yn)
≥ I(Y ;U)− γ

}
,

Bn =
{

(un, xn, zn) :

1

n
log

PXn|Un,Zn(xn|un, zn)

PXn|Zn(xn|zn)
≥ I(X;U |Z)− γ

}
.

Next we specify the codebook, and the enrollment and
authentication procedures.

Generation of Codebook Cn: Generate exp{n(I(X;U)+2γ)}
i.i.d. sequences of ũni , i ∈ [1 : exp{n(I(X;U) + 2γ)}], from
PU and denote the set of these sequences as Qn. Let gn : R→
Qn ⊂ R be the quantization function of the biometric source
sequence xn into ũn. The quantization rule of the function

gn is that it looks for a ũni such that (ũni , x
n) ∈ Tn. In case

there are multiple such ũn, the encoder picks one at random.
More specially, Qn = {gn(xn)|xn ∈ Rn} and the size |Qn| =
exp{n(I(X;U) + 2γ)}. Prepare MJ = enRJ bins. Randomly
assign each ũn ∈ Qn to one of the bins according to a function
φn : Qn → J . Let j = φn(ũn), j ∈ J , denote the index
of the bin to which ũn belongs. A function fn : Qn → S is
selected uniformly from Fn so that it satisfies that PFn({fn ∈
Fn : fn(ũn) = fn(ûn)}) ≤ 1

|S| , where PFn is a uniform
distribution on Fn, for any distinct sequences ũn ∈ Qn and
ûn ∈ Qn.

In the encoding and decoding processes, we fix the set Qn
and the random functions φn and fn.

Encoding: Observing xn, the encoder utilizes the function gn
to quantize this sequence to ũn. Then, it computes the bin’s
index j = φn(ũn) and generates a secret key s = fn(ũn)
by a function fn : Qn → S, subsequently specified in
Lemmas 3 and 4. The index j is shared with the decoder
for authentication. If there is no such ũn, set (j, s) = (1, 1).

Decoding: Seeing yn and j, the decoder looks for a unique
ûn such as j = φn(ûn) and (yn, ûn) ∈ An. If such a ûn is
found, then the decoder sets ψn(yn, j) = ûn by a function
ψn : J × Rn → Qn, and distills the secret key ŝ = fn(ûn).
Otherwise, the decoder outputs ŝ = 1 and error is declared.

The random codebook Cn consists of the set Qn =
{Ũni : i ∈ [1 : exp{n(I(X;U) + 2γ)}]} and the functions
(gn, φn, ψn, fn), and it is revealed to all parties. In the
achievability proof, we evaluate the averaged performance of
the system, i.e., conditions (2)–(6), over all possible Cn.

Before proceeding to the detailed analysis, we introduce
some important lemmas that will be used in the sequel.

Lemma 1. (Iwata and Muramatsu [22, Lemma 11]) It holds
that

ECn [Pr{(gn(Xn), Y n) /∈ An or (gn(Xn), Xn, Zn) /∈ Bn}]
≤ 2
√
δn + Pr{(Un, Xn) ∈ Tn}+ exp{−enγ}, (19)

where

δn = Pr{(Un, Y n) ∈ An or (Un, Xn, Zn) ∈ Bn}, (20)

and where ECn [·] denotes the expectation over the random
codebook Cn.

As mentioned in [6], it can be shown that Pr{(Un, Xn) /∈
Tn} and δn go to zero exponentially by the Chernoff bound.

Lemma 2. (Iwata and Muramatsu [22, Proof of Theorem 1])
The error probability averaged over the random assemble is
bounded by

ECn [Pr{gn(Xn) 6= ψn(φn(gn(Xn)), Y n)}]
≤ e−γn + ECn [Pr{(gn(Xn), Y n) /∈ An}]. (21)



Here, we define a security measure

µn =

∫
zn
PZn(zn)‖PSJ|Zn=zn,Cn − PS̃PJ|Zn=zn,Cn‖dz

n,

(22)

where ‖PA − PB‖ and PS̃ denote the variational distance
between probability distributions PA and PB , and the uniform
distribution on the set S, respectively.

Lemma 3. (Watanabe and Oohama [6, Lemma 12]) An upper
bound of the measure µn averaged over the random codebook
is given by

ECn [µn] ≤ e−
nγ
2 + ECn [Pr{(gn(Xn), Xn, Zn) ∈ Bn}].

(23)

Note that the right-hand side of Equation (23) decays
exponentially since so does the second term (cf. (19)).

Lemma 4. (Naito et al. [23, Lemma 3]) We have that

H(S|J, Zn, Cn)

≥ (1− ECn [µn]) logMS + ECn [µn] logECn [µn]. (24)

Using Lemma 2, the ensemble average of the error prob-
ability of encoding and decoding can be made exponentially
vanishing for large enough n. For the analysis of the secret-
key rate, this can be proved via Lemma 4. The bound on the
storage rate is straightforward from the rate setting.
Analysis of Secrecy-Leakage: We can expand the left-hand side
of (5) as

I(S; J, Zn|Cn) = H(S|Cn)−H(S|J, Zn, Cn)

≤ logMS −H(S|J, Zn, Cn)

(a)

≤ ECn [µn](logMS − logECn [µn])

≤ γ (25)

for sufficiently large n, where (a) follows from Lemma 4 and
the last inequality is due to Lemma 3.
Analysis of Privacy-Leakage: For (6), we have that

I(Xn; J, Zn|Cn)

= I(Xn; J |Cn) + I(Xn;Zn|J, Cn)

(b)
= H(J |Cn) + h(Zn|J, Cn)− h(Zn|J,Xn, Cn)

(c)
= H(J |Cn) + h(Zn|J, Cn)− h(Zn|Xn)

(d)

≤ H(J |Cn) + h(Zn)− h(Zn|Xn)

≤ n(I(X;U |Y ) + 4γ) + nI(X;Z)

= n(RL + γ). (26)

where (b) holds as J is a function of Xn, (c) holds because for
a given codebook Cn, J−Xn−Zn forms a Markov chain and
the codebook Cn is independent of (Xn, Zn), and (d) follows
because conditioning does not increase entropy.

Finally, applying the selection lemma [18, Lemma 2.2],
there exists at least one good codebook that satisfies all the
conditions in Definition 1.

APPENDIX B
PROOF OF COROLLARY 1

In the same manner of Appendix A, we give only the proof
of RG (cf. (12)) in the case of (7). For the achievability part,
fix 0 < α ≤ 1. Let U ∼ N (0, 1 − α) and Θ ∼ N (0, α).
Assume that X = U + Θ. Then, we have that Y = ρ1U +
ρ1Θ+Ny , Z = ρ2U+ρ2Θ+ ρ2

ρ1
Ny+Nz. From these relations,

it is not so difficult to see that

I(X;U) =
1

2
log(

1

α
), I(Y ;U) =

1

2
log(

1

αρ21 + 1− ρ21
),

I(Z;U) =
1

2
log(

1

αρ22 + 1− ρ22
). (27)

Note that due to the Markov chains U −X − Y −Z, we can
write that

I(Y ;U |Z) = I(Y ;U)− I(Z;U),

I(X;U |Y ) = I(X;U)− I(Y ;U). (28)

Substituting all equations in (27) into the right-hand side of
(9), one can see that any rate tuple contained in the right-hand
side of (12) is achievable.

For the converse part, it is a bit more involved. Here, we
prove this part by making use of conditional entropy power
inequality (EPI) [25, Lemma II]. Note that each constraint in
the right-hand side of (9) can be transformed as

RS ≤ I(Y ;U |Z) = h(Y |Z)− h(Y |U,Z)

=
1

2
log 2πe(1− ρ22/ρ21)− h(Y |U,Z), (29)

RJ ≥ I(X;U |Y )
(a)
= I(X;U |Z)− I(Y ;U |Z)

= h(X|Z)− h(X|U,Z)− h(Y |Z) + h(Y |U,Z)

=
1

2
log

1− ρ22
1− ρ22/ρ21

− h(X|U,Z) + h(Y |U,Z), (30)

RL = h(X|Z)− h(X|U,Z)− h(Y |Z) + h(Y |U,Z)

+ I(X;Z)

(b)

≥ 1

2
log

1

1− ρ22/ρ21
− h(X|U,Z) + h(Y |U,Z), (31)

where (a) is due to the Markov chain Z−Y −X−U , and (b)
follows from the property that h(X) = h(Y ) for Gaussian RVs
with unit variances, and thus h(X|Z)−h(Y |Z) + I(Z;X) =
I(Z;Y ) = 1

2 log 1
1−ρ22/ρ21

.
So as to bound the region RG, we need to find a lower

bound on h(Y |U,Z) for fixed h(X|U,Z).
The following fine setting plays an important role to bound

the conditional entropy h(Y |U,Z). Now let us set

h(X|U,Z) =
1

2
log 2πe

(
α(1− ρ22)

αρ22 + 1− ρ22

)
(32)



for 0 < α ≤ 1. This setting comes from the fact that
h(X|U,Z) ≤ h(X|Z) = 1

2 log 2πe(1 − ρ22). Here, α = 0 is
excluded since the right hand-side of (32) will go to infinity,
but this value is impossible to achieve by Gaussian RVs with
finite variances, which are always assumed in the analysis of
Gaussian sources.

In the direction from X to Y , using the conditional EPI
[25, Lemma II], we have that

e2h(Y |U,Z) ≥ e2h(ρ1X|U,Z) + e2h(Ny|U,Z)

= ρ21e
2h(X|U,Z) + e2h(Ny)

(c)
= 2πe

(
αρ21(1− ρ22)

αρ22 + 1− ρ22

)
+ 2πe(1− ρ21)

= 2πe

(
αρ21(1− ρ22) + (1− ρ21)(αρ22 + 1− ρ22)

αρ22 + 1− ρ22

)
, (33)

where (c) follows from (32). Now let us focus only on the
numerator of (33) (inside the biggest parenthesis). We continue
scrutinizing it as

αρ21(1− ρ22) + (1− ρ21)(αρ22 + 1− ρ22)

= αρ21 − 2αρ21ρ
2
2 + αρ22 + 1− ρ22 − ρ21 + ρ21ρ

2
2

= (αρ21 + 1− ρ21)(1− ρ22
ρ21

) +
ρ22
ρ21

(αρ21 + 1− ρ21)

+ ρ22(−2αρ21 − 1 + α+ ρ21)

= (αρ21 + 1− ρ21)(1− ρ22
ρ21

) +
ρ22
ρ21

(1− ρ21)(2αρ21 + 1− ρ21)

(d)

≥ (αρ21 + 1− ρ21)(1− ρ22
ρ21

), (34)

where (d) follows because α ∈ (0, 1] and ρ21, ρ
2
1 < 1. Plugging

(34) into (33), we obtain that

e2h(Y |U,Z) ≥ 2πe

(
(αρ21 + 1− ρ21)(1− ρ22/ρ21)

αρ22 + 1− ρ22

)
. (35)

Therefore,

h(Y |U,Z) ≥ 1

2
log 2πe

(
(αρ21 + 1− ρ21)(1− ρ22/ρ21)

αρ22 + 1− ρ22

)
.

(36)

Finally, substituting (32) and (36) into (29)–(31), the con-
verse proof of the region RG is completed.
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