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Abstract

We consider the task of communicating a generic bivariate function of two classical sources over a
Classical-Quantum Multiple Access Channel (CQ-MAC). The two sources are observed at the encoders of
the CQ-MAC, and the decoder aims at reconstructing a bivariate function from the received quantum state.
Inspired by the techniques developed for the analogous classical setting, and employing the technique
of simultaneous (joint) decoding developed for the classical-quantum setting, we propose and analyze a
coding scheme based on a fusion of algebraic structured and unstructured codes. This coding scheme
allows exploiting both the symmetric structure common amongst the sources and the asymmetries. We
derive a new set of sufficient conditions that strictly enlarges the largest known set of sources (capable
of communicating the bivariate function) for any given CQ-MAC. We provide these conditions in terms

of single-letter quantum information-theoretic quantities.

I. INTRODUCTION
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In this work, we revisit the problem of computing functions of information sources transmitted over
a classical-quantum multiple access channel (CQ-MAC). The problem can be described as follows. Let
(Pzr s € D(Hy) @ (z1,22) € Xy x X3) be a model for a given CQ-MAC. Consider a scenario where
two distributed parties observe two classical information streams S;; € S;: t > 1, with the pair (Sy,
Sat): t = 1 being independent and identically distributed (IID) according to the distribution Wg, g,. These
parties intend to send a bivariate function of S and S5 to a centralized receiver using the above CQ-MAC.
The receiver upon receiving the prepared quantum state aims to reconstruct the bivariate function f from

the quantum state. In this work, we aim to characterize the sufficient conditions, on the distribution of



sources Wg, g, that for a given CQ-MAC, the centralized decoder reconstructs the bivariate function,
with an arbitrary low probability of error.

The conventional approach to this involves making the receiver to completely reconstruct the pair of
classical sources, and then characterize the sufficient conditions. This would be a direct consequence of the
result derived in [1]. The authors in [2] address this CQ-MAC problem where the sources are computed
directly without the need for the explicit reconstruction of the individual sources. However, they restrict
their attention to uniform input distributions. The authors in [3] instead employed a different technique,
using asymptotically good random nested coset codes that directly reconstruct arbitrary function f of
sources of arbitrary distributions. Their work was built on the earlier ideas of [4]-[7], developed for
the classical setting, where the authors developed coding techniques allowing the receiver to directly
recover the sum of the sources without recovering either of the sources. These techniques are part of
a broader framework for the multi-terminal problems, characterized by codes, with asymptotically large
block-length and endowed with algebraic structure, achieving performance limits that the conventional
techniques based on unstructured random codes cannot [8].

However, even in the classical multi-terminal setting, the coding techniques relying on the algebraic
structure may show gains for only a certain class of problems and in certain rate regimes. Therefore, a
unified technique that captures the gain of both the traditional unstructured coding techniques and the
algebraic structured based techniques is needed to approach the performance limits for the multi-terminal
problems. Alhswede-Han [7] obtained the best known inner bound for the problem of classical lossless
distributed compression by combining the Slepian-Wolf [9] coding scheme with the algebraic structured
based scheme of Koérner-Marton [4].

Motivated by this, the main contribution of current work is in providing a unified approach for the
problem of computing a bivariate function of two sources over CQ-MAC, capitalizing on the gains of the
algebraic structured techniques developed in [3], while making the most of the standard approach based
on unstructured codes developed for this problem [1]. We propose an approach where each transmitter
intends to send two pieces of information about its corresponding source to the receiver. The first piece of
information from both the sources need to be reconstructed individually at the receiver. Then, conditioned
on this reconstruction, we let the receiver reconstruct the necessary function f of the second piece. At ith
transmitter, the two pieces are constructed on auxiliary variables U; and V;, and then fused to form the
channel input X;. We construct a 4—input CQ-MAC to model this transmission. This poses a challenge
concerning the number of messages being decoded. The decoder aims at decoding the triple (Uy, Us,
Vi@, V2), where @, represents addition with respect to a prime finite field F,. For this, the decoder needs

a CQ simultaneous decoding technique. Although the ideas of joint typicality using tilting, smoothing, and



augmentation introduced by Sen [10], [11] solved the problem of simultaneous decoding of individual
messages on CQ-MAC, it is based on unstructured coding techniques. We develop a unified coding
framework that combines unstructured and structured coding techniques while using the jointly typicality
approach of Sen that enable the decoder to reconstruct (Uy, Uz, Vi @, V2) simultaneously.

In light of this, the main contribution of the current work is in providing a new set of sufficient
conditions (see Theorems 1 and 2), while strictly subsuming the current known conditions, for the
reconstruction of an arbitrary function of sources over a generic CQ-MAC. We provide these conditions in
terms of single-letter quantum information quantities. Furthermore, we have identified examples where the
gains provided by this framework are demonstrated. This work opens up the opportunity to investigate
a generic approach encompassing both the conventional and algebraic structured techniques for other

multi-terminal problems in the classical-quantum regime [12]-[14].

II. PRELIMINARIES AND NOTATION

Notation: We supplement the notation in [15] with the following. For positive integer n, [n] = {1,---,n}.
We employ an underline notation to aggregate objects of similar type. For example, s denotes (s1, s2),
2" denotes (27, %), S denotes the Cartesian product Sy x S. Let c.c.(S),F,, and @ denote the convex
closure of the set S, the unique prime finite field of size ¢, and the addition operation of the prime field
[F,, i.e. @, respectively. For a Hilbert space H, P(H) and D(H) denote the collection of positive and
density operators acting on H, respectively.

Consider a (generic) 2-user CQ-MAC N3, which is specified through (i) finite sets X; 15 e [2], (i)
Hilbert space #y, and (iii) a collection (p;, », € D(Hy) : (z1,22) € X1 x A3) of density operators.
This CQ-MAC is employed to transmit a pair of sources such that the centralized receiver is capable of
reconstructing a bivariate function of the classical information streams observed by the senders. Let Sy,
8o be finite sets, and let (S1,.52) € S; x Sy, distributed with PMF Wg, g,, model the pair of information
sources observed at the encoders. Specifically, sender j observes the sequence S;; € S; : t > 1. The
sequence (S1¢, S2¢) : t = 1 is assumed to be IID with single-letter PMF Wg, g,. The receiver aims to
recover the sequence f(Sy;,Sor) : t = 1 losslessly, where f : S x So — R is a specified bivariate

function, and R is some finite set.

Definition 1. A CQ-MAC code ¢y = (n,e1, ez, A) of block-length n for recovering f consists of two
encoding maps e; : S" — AT : j € [2], and a POVM A = {\;» € P(Hy) : r" € R"}. The average error

probability of the cy is

Eep) =1— > W, (st,5) Tr(Amplye)
snif(sm)=rm



where ,o?gn = @ 1Pz (s7)wi(sn)> Where e]-(sg-‘) = (:cjl(s?),xjg(s?), e ,xjn(s?)) for j € [2].

Definition 2. A function f of the sources Wg, g, is said to be reconstructable over a CQ-MAC N if for
e > 0, 3 a sequence c;") = (n, e§”), egn), A) such that lim,, 4 E(c;n),./\/'g) = 0. Restricting f to a sum,
we say the sum of sources Wg, 5, over field I, is reconstructable over a CQ-MAC if &1 = S» = F,; and

the function f(S71,52) = S1 @ Sy is reconstructable over the CQ-MAC.
We review the performance limit achievable using unstructured code ensembles in the following.

Proposition 1. A function f of the sources Wg, g, is reconstructible over a CQ-MAC N if

H(Sl,SQ) < max I(X1X2;2>U, (1)

Px,Pxo
where the mutual information is defined for the following classical-quantum state
o2 px, (@1)px, (22) pae, @ w1 X1 | @ [wa )|
XT1T2
Proof. The technique involves using the Slepian-Wolf [9] source coding to compress the source to H (51,

Ss) bits, and followed by the Winter’s channel coding over the CQ-MAC N> [1]. O

The objective of our work is to characterize improved sufficient conditions under which a generic
bivariate function of the sources is reconstructible over a CQ-MAC N> by developing a framework that
combines unstructured coding (as described in Proposition 1) and structured coding (as proposed in [3])

techniques for this problem.

III. MAIN RESULTS

As an intermediate step toward providing the main result, we present an intermediary result that will

be useful in obtaining the main result, and can also be of independent interest.

A. 4-to-3 decoding over CQ-MAC

In this subsection, we consider the problem of 4-to-3 decoding over a 4-user CQ-MAC, where the
receiver aims to compute functions of messages of user 1 and 2, and the individual message of users
3 and 4. Consider a (generic) 4-user CQ-MAC N, which is specified through (i) finite (input) sets
Vj:j € [2] and U;: j € [2], (ii) a (output) Hilbert space 7z, and (iii) a collection of density operators

(Porvsurus € D(Hz) : (v1,v2,u1,u2) € Vi X Vo X Uy X Up).

Definition 3. A code ¢ = (n,Fq,ev,: j€[2],eu,: j€[2],\) of block-length n, for 4-to-3 decoding
over CQ-MAC N consists of four encoding maps ey, : F, — Viije[2] ey, : [¢%] — up - jel2],



and a POVM X = {16 1, m,) € P(Hz) : (m®,m3,my) € Ffl x [¢"] x [¢"2]}, where m® & m; @ ma,

l, 11 and l9 are positive integers, and ¢ is a prime number.

Definition 4. Given a CQ-MAC N, and a prime ¢, a rate triple (R, Ry, R2) > 0 is said to be achievable

for 4-to-3 decoding over the CQ-MAC if given any sequence of triples (I(n),[1(n),l2(n)), such that
I(n) li(n)

limsup,,_,4 =~ logqg < R,limsup,,_,4

= logg < R;:i € [2], and any sequence pg\z oy, Of

PMFs on F!, x F!, x [¢"*] x [¢"2], there exists a code ¢ = (n,Fy, ey, : j € [2], ey, : j € [2], A) for 4-t0-3
decoding over CQ-MAC N of block-length n such that

lim sup g(c("),./\@) = limsup1 — ZpM(m) Tr()\{m@’m&mdp%”) =0,

n—o0 n—a0

where p%” a Pt (my )z (ma)u? (ma)us (ma) = i=1Puvs, (ma)vs: (ms)uss (ma)us: (my) (@ssuming n-independent
uses of Nj). The convex hull of the union of the set of all achievable rate triples (R, Ry, R2) is the

capacity region of the 4-to-3 decoding over CQ-MAC N, and prime number q.

Definition 5. Given a CQ-MAC N, and a prime ¢, let (N, q) be defined as collection of PMF
{pvu: pvu = pv,pv,aPU,PU, 18 @ PMF on ¥V x U}. For pyy € P (N, q), let Z(pyu) be the set of rate
triple (R, R, Ro) such that the following inequalities holds:

R<I(V; Z|U1,U2)5 — Imax(V1, V2, V)o,
By < I(Uy; Z|V, U)o,
Ry < I(Ug; Z|V, Un)o,

R+ Ry < I(V,U1; Z|Us)o — Imax(Vi, V2, V)o,

R+ Ry < I(V,Uz; Z|U1)s — Imax(V1, V2, V),

Ry + Ro < I(Uh,Us; Z|V )4

R+ Ry + Re < I(V,U1,U2; Z) — Imax(V1, V2, V)o,
where Inax(V1, Vo, V) = max{I(V1; V), I[(Vo;V)s}, V = V43 @ V5 and the mutual information

quantities are taken with respect to the classical-quantum state:

o2 Y pyu (@ W)@y VX0l ® [v1Xv1ly, ® [v2Xvaly, ® |urXuily, ® [uz)Xusly, ® pyu-

v,u,v

Let
ANwq) 2ce. ) Zvu).



Theorem 1. [f the rate triple (R, Ry, Ry) € # (N4, q), then (R, Ry, R2) is achievable for 4-to-3 decoding
over a CQ-MAC N and prime q.

Proof. The proof is provided in Section IV. O

B. Decoding arbitrary function f over CQ-MAC N3
Here we provide our main result characterizing the sufficient conditions on the sources, for any

reconstruction of the bivariate function f at the decoder of the given CQ-MAC MN>. Before we proceed,

we provide the following definition for embedding a function into a finite field.

Definition 6. A function f : § — R of sources Wg, g, is said to be embeddable in a finite field I, if
there exists (i) a pair of functions h; : S; — F, for j € [2], and (ii) a function g : F; — R, such that

W, s, (f(S51,92) = g(h1(S1) @ he(S2))) = 1.

Remark 1. Note that for any given function f, the set of prime ¢ for which f is embeddable with respect
to F, is always non-empty. To see this, take ¢ > |S;||Sz|, and let h; be any one-to-one mapping from
|S1] to {0,1,...,|S1| — 1}, and let he be any one-to-one from |Sa| to {0, |S1],2|S1], ..., [S1](|S2] — 1)}
Then, hi(-) @ ha(-) is a one-to-one map from |S;| x |Sz| to Fy (see [8, Def. 3.7]). For example, the
nonlinear logical OR (V) function of binary sources with S; = Sy = {0, 1} can be embedded in F3, by
noting that S1 v Sy = g(h1(S1) @3 ha(S2)), where ¢ is given by g: 0+— 0, 1 — 1, and 2 — 1, and h;s

are identity maps.

Definition 7. Given the source (S1,S2, Wg,s,, f), consider a prime ¢ such that f is embeddable (ac-
cording to Definition 6) in F,. Let P be the set of PMFs pgw,w,|s,s, defined on Q x W; x Wy such
that (a) @ and (S1,.52) are independent, (b) W7 — S1Q — S2Q) — Wy forms a Markov chain, and (c)

Q, Wi, W, are finite sets. For PQW,W,|S, S, € P, let us define,

R (DQW, W, (8,5, 1) 2 {(R, Ri, Ro): R > H(S|WAiW2Q), Ry = I(S1; W1|QWa), Ry > 1(S2; Wa|QWh),
Ry + Ry = 1($185 WiW2|Q) },

where S = h1(S1) @ ha(S2). Define

’@S(W51527f’ q) é C.C. U %S(p7 Q)
peP

Definition 8. Given a CQ-MAC N>, and prime ¢, let &2 be the set of PMFs Px,juv; and px,ju,v, with
the input alphabets (U41,V;) and (Us,Vs), and output alphabets X and X5, respectively. Define,

Hc(Dx,|Uvi» P U0 @) = #(N4, ),



where the corresponding 4-user CQ-MAC N is characterized as:

pou = Y Px, 0 (21 [u101) D 0, v, (T2 0202) P -

T1To

Define,
Fe(N2,q) 2 ce U L@C(pxjwjvj 1j€(2],9).
{ij|Uj \Zh j€[2]}633
Theorem 2. If #s(Ws,s,,f,q) © %:(Na,q) for some prime q, then the bivariate function f of the

sources Wg, g, is reconstructible over the CQ-MAC Na.

Proof. The proof is provided in Section V. O

C. Examples

We provide the following example to compare the sufficient conditions obtained in [3, Theorem 2]

and Theorem 2.

Example 1. Let X} = X, = S8 = S2 = X = {0,1}, Hz = C2, and py, 2, = (1 — n)o + 1oz, where

z 2 21 @y 29 and 0, 01 € D(Hz) defined as

0.9545  0.0455¢ A [ 0.0455  0.0455¢ )
N g1 = .
—0.0455¢ 0.0455 —0.0455¢  0.9545

>

a0

Let p(n) £ (1—n)oo+noy. Furthermore, to induce asymmetry in the rate region, we constrain one of the
inputs with a cost constraint: E(X7) < ¢. We choose ¢ = 0.1 for the illustration. Let S; and S2 be two

highly asymmetric correlated sources (as considered in [7, Example 4]) with the following distribution:
W, 5,(0,0) = 0.003920, Wg, 5,(0,1) = 0.976080, Wg, g,(1,0) = 0.019920, Wg, s,(1,1) = 0.000080,

and P(S; = 0) = 0.98, P(Sy = 0) = 0.023840. Let f(S1,52) = S1 @2 So2. Consider the sufficient

conditions given by the unstructured coding scheme as provided in Proposition 1.

H(S1,S2) < max x({px,x, (21, 72), Pe, 2. )5 3)

Px;yx,
with X7 and X being independent. Figure 1 (left) depicts the behaviour of the right hand side of the
above inequality for different values of 7. We observe that the inequality fails for n > 0.23, and hence
the function f cannot be reconstructed using the technique based on unstructured codes (more formally,
as described in Proposition 1) for all n € (0.23,0.5). As for employing algebraic structured codes, in

particular nested coset codes, as proposed in [3], we observe the following. Using [3, Theorem 2] and



the fact that H(S; @ S2) = 0.0376223, we obtain the sufficient conditions for the function f to be

reconstructible using only structured codes as

0.0376223 < max min{H(X1), H(X2)} — H(X) + x({px(2), ps}), @)

Px,PX,
where X 2 X; @ Xo and Px a Pz z, fOr any (x1,x2) such that © = xq @ xo. Figure 1 (right) depicts
the behaviour of the right hand side of the above inequality for different values of 7. In particular, the
inequality fails for 7 > 0.11, and as a result the function f cannot be reconstructed using the approach
of [3, Theorem 2] for all n € (0.11,0.5). Now, we consider the sufficient conditions obtained from
Theorem 2. Figure 2 shows the regions Zs(Wg, s,, f,2) and Z.(N3,2) for different values of 7, which
demonstrates a clear overlap between %5 and %, for n = 0.20 and n = 0.25, which implies that the
function remains reconstructible for these 7 values.

Unstructured Structured
0.3

0.8

0.25 -

0.2

o
)

0.15 -

/

(0.23,0.179)

max X{pX1X27 PXle}

0.1
(0.11, 0.037)

| . / H(S; ®2 Sa)

A H(S1,82)

0.179

x [min(H(X1), H(X2)) — H(X) + x{px. px}]

0 0.15 0.23 0.35 045 0.5 0 0.11 0.2 0.3 0.4 0.5

Fig. 1. (Left) The variation of the right hand side of (3), and its intersection with H (S1, S2). This implies that the inequality in
(3) is not satisfied for all > 0.23, and hence the function f cannot be reconstructed using the approach based on unstructured
coding (as described in Proposition 1). (Right) The variation of the right hand side of (4), and its intersection with H (S1 @ .S2).

This implies that the inequality in (4) is not satisfied for all » > 0.11, and hence the function f cannot be reconstructed using

the structured coding technique proposed in [3].

IV. PROOF OF THEOREM 1

Let pyy € Z(Na, q) be a PMF on V; x Vo x Uy x Uz where Vi = Vo = IF,. We begin by describing
the coding scheme in terms of a specific class of codes. In order to choose codewords of a desired

empirical distribution py,, we employ Nested Coset Code (NCC), as described below.
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Fig. 2. A depiction of the intersection of Zs (in red) and Z. (in blue) for n = 0.20 and 1 = 0.25, using the framework based

on both unstructured and structured coding, as described in Theorem 2.

Definition 9. An (n, k,l, 95, 90 /150", e) NCC built over a finite field V = [, comprises of (i) generator
matrices g; € VF*™, g, /1 € VX7 (i) a bias vector b”, and (iii) an encoding map e : V' — VF. We let

v"(a,m) = agr ®q mygo,r Bg b" : (a,m) € VE x V!, for a = e(m), and denoted as ay,.

Now, we intend to use the above mapping v™(a, m) from V! — V", as a part of the encoder in relation
to Definition 1. Both the encoders ey, : j € [2] employ cosets of the same linear code. We then consider
a 4-to-3 decoding over a ‘perturbed’ variant of CQ-MAC, which we denote as A/j. Note that in the
current problem, the decoder wishes to decode three messages simultaneously and hence we use the
framework of CQ joint typicality developed using the ideas of tilting, smoothing and augmentation [11].
This allows us to perform intersection of non-commuting POVM elements to construct a set of POVMs
for NV}. Finally, towards bounding the average error probability for N, we use an argument, similar to
[11, Equation 5], which shows that the outputs of the channel N and Nj are indistinguishable in trace
norm. Thus, the POVMs constructed for N’ 4 can be used for N4 with an additional boundable error term.

We now define a 4-to-3 decoding over ‘perturbed” CQ-MAC N that consists of the following: (i)
Finite (augmented input) sets (V; x Wy, ), (U; x Wy, ): j € [2]. (ii) An (extended output) Hilbert space

Hy =Hz P(Hz @Wy,) P (Hz @ Wy,) D(Hz @ Wy,) P(Hz @ Wa,),

where Hz = (Hz®C?), and Wy, denotes both a finite alphabet as well as a Hilbert space with dimension
given by |Wy,|. The states in this Hilbert space are used as quantum registers to store classical values.

Similarly Wy, is defined. (iii) A collection of density operators

{pfuﬂ € D(%,Z) : (QvﬂawV7wU) EZ x ZA X wV X wU}?



where w = (wy,, wy,, wy,, Wy,), wy = (wy,,wy,), and Wy, = Wy, x Wy,. Similarly w;; and Wy,
are defined. Note that the states in the Hilbert spaces Wy, and Wy, are used as quantum registers to
store classical values. Define pf,,, 2 73%(@), where fuy £ ppu ® [0%0|C°, and 7;,}9 is a tilting map

[11, Section 4] from H to ’H’Z defined as:

TVU(ay) & @7z ev) @1z wn) @7z we) @7 12 we.))
wr Vi+ar |

and 7 will be chosen appropriately in the sequel.
Encoding: Consider two NCCs (n, k,1, 91, 90 /1, 0%, e;) having the same parameters except with different

bias vectors b;s and encoding maps ejs. For each j € [2] and m; € Iqu, let

{am, : v?(amj,mj) e T3 (pyv,)} if O(m;) > 1

(>

Aj(m;)
{0%} otherwise,

where 6(m;) = Zae]}?g ]l{U;L(a,mj)eTgL (o)} Form; € Ffl: J € [2], a pre-determined element a,,,, € A;(m;)
is chosen and let v} (am,,m;) 2 am; 91 ® migoy;r @ b for (am,,m;) € IE";” for j € [2]. Moreover,
for each j € [2] and m;;2 € [¢%], construct a codeword ul}(mj+2) € U, Similarly, for each j € [2],
mj € Ff] and mj;o € [qé-], construct the codewords wy, (m;) € Wy, and wy; (m;42) € W . For later
convenience, we define an additional identical map wy,(m) = wy, (m) for all m € Ffl. On receiving the

message m € FL x F x [¢"] x [¢2], the quantum state p, " a

/
P (@, sma)wi, (ma)vg (amg sma)wy, (ma) (ug wp, ) (mas) (ug wi, ) (ma)
is (distributively) prepared. Towards specifying a decoding POVM’s, we define the following associated

density operators.

pe > PY")pE (U)o (5)
A n n|, n\,n(, n
pon = Py (@ [v")pg (W) poran,

pur & > Pl (W) pyran s 1 # i, € [2],

>

Poru?

where pl, (0" [0") £ pi (0")/PF (™) L fupgup —ur)-
Decoding: The decoder is designed to decode the sum of the messages m® along with the individual

messages mg3 and my transmitted over the ‘perturbed’ 4-to-3 CQ-MAC N;. To decode ms3 and my,

10



we use the codebook used by the encoder, but to decode m®, we use the NCC (n, k, 1, g1, 9o /1,0",e),
with all the parameters same as the NCCs used in the encoding, except that b = b} @ b}, and e to be
specified later. Define v"(a,m) a agr + mgosr + b". representing a generic codeword and a generic
coset, respectively.

POVM construction We start by defining the sub-POVMs for channel A/, subsequently we will construct
the sub-POVMs for the ‘perturbed” CQ-MAC N using the process of tilting [11]. Let 7, be the typical
projector for the state p. Furthermore, for j € [2] and for all jointly typical vectors (v™, u™) € 7:5(n) (pvuv),
let Tyn, Tyn, Tynan, Tyr and m,n,» be the conditional typical projector [15, Def. 15.2.4] with respect to
the states pyn, pur, ponur, Pur and pynyn, respectively. Now, we define the following sub-POVMs in the
Hilbert space HE":

Vv A U; A
nyn = TpTyn Tynyn TynTp, nyn = TpTyn Tyryn Ty Tp,

VU;j A 198 A
[Mynyn = Tpmyn wr Tynyn Tynur Tp, ILynyn = TpTyn Tynyn Tyn Tp,

VU
H,Unun a TpTyrynTpt @ 7# J,0,] € 2]. (6)

The following is a well-known result regarding typical projectors and typical vectors (v, u™) € Tg(gl) (pvu).

Proposition 2. For all € > 0, and 0 € (0, 1) sufficiently small and n sufficiently large, and 7, j € [2] with
1 # j the following inequality holds for the sub-POVMs defined in (6).

Tr (1% poran) = 1 — ¢, for all ® € {V, Uj, VU;, U, VU},
Tr (Hv@np) < 2~V UnUzi2)o =€)

D pp (") Tr (I por) < 27 "HOEZIVIo=0),
ZPV TI‘ ( v u”ﬂu") < 2*%([(V;Z|U17U2)g,€)’

1t ) Tr (T pyng ) < 2770200,

i

Z p )TI' <anunpu ) < 2—71([(‘/7U¢§Z|Uj)o—6).

VU
After constructing the sub-POVMs, we now construct the projectors. It is worth to observe that by

. . . =U; =U
the Gelfand-Naimark theorem [16], there exists orthogonal projectors HUVWUW,HUHM,HU nyn s Ly and

f[vvn% in HY" that gives the same measurements statistics on the states (c® ]0><0\C2”) e D(HY")
that sub-POVMs defined in (6) give on the states o € D(HE™). To summarize upto this point we have
constructed the projectors in 7-_[%)" for the channel N, using the sub-POVMs defined in (6), and we are

now equipped to construct the sub-POVMs for Nj. Let us define QX@L as the orthogonal complement
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of the support of IIY, Analogously, we define Qg@n,ﬁvnun, QUUnun and Qvnun Then we define the

funun
; : : 1 @n \% ATV \i noT; ;
corresponding tilted subspace in H’, =" as: Qynynynwn = T (Qv un) » for all wi, € Wy . Likewise,
VU, u A .
define QvJunw wr > yrynwn wp and Qvnunw wy - Also, let us define a new subspace {lynynwywy . Which

is analogous to the ‘union’ of ‘complement’ of orthogonal projectors corresponding to the sub-POVMs
defined in (6).
VU
Qvnﬂnw$w3 - QU nym™ @Qv"u"w LWy @ Qv nyurwEwy @ Qv umwHwy @Qv”u"w bwg - (7)
€[2]

Consider a collection of orthogonal projectors I » in HY, ®n projecting onto Qv nyrwpar, and the

VU W, W

orthogonal projector I projecting onto 7—[?". Subsequently, define the sub-POVMs in H’Z®” for channel

1 as follows:
’YU u w wU - <I H;;"u"w w ) H/ (I H;“u"w ’LU")?
The decoder now uses the sub-POVMS ~ynynwrwr as defined above, to construct a square root measure-
ment [15], [16] to decode the messages, we define following operators,

Aaym)mayms = (Z 2 a,m) m37m4)71/2 Y(a,m),ma,ma (Z 2 W(a,m),ms,m)im, (8)

a m m37m4 fl,’ﬁ’l/ ﬁlg,’ﬁ’bz;

where Y (q,m),ms,m, 1S an abbreviation for vy (a,m)ur (ms)uz (m)wp (m) ,)» and we let the per-

wg, (ms)wgy, (m
turbation wy used by the decoder is identical to that of either user 1 or user 2, and without loss of
generality wy = wy;, as mentioned earlier (in the discussion on encoding).

Distribution of Random Code: The distribution of the random code is completely specified through

the distribution P(-) of G1,Gor, B}, Am, ., Wy (m;), Ul (mjt2), Wi (mje2): j € [2]. We let

Gr = 91,Goyr = goyr, Bf = b}, Am; = am,,
P Ul (mj2) = uj(mji2), _ 1—[ ]l{amjeAj(mj)} Py, (u (u} (mj+2)) ©)
W (m;) = wn - <y O(mg) Wy, [[W, | q"“"”"”” '
v (myj) = wy (my), Wi (mji2) = wy (mje2) | je] 1YV

jel2) . meF, xFx [¢"] x [¢]

Error Analysis: We derive an upper bound on &(c(™ | N 1), by averaging over the above ensemble. Our
key insight for the error analysis will be similar to the those adopted in proof of [3, Theorem 2] and
[11, Section 4]. Using the encoding and decoding rule stated above, the average probability of error of

the code is given as,

= ZpM(m)Tr { <I — Z >\(a,m®),m3,m4> p;n®n}

ZpM I )‘(a@ m®), mg,m4) p ®n}

12



where a® 2 am, ® am, and pl, is as defined in the Encoding section (Sec. IV). Now consider the event,

‘/ln(Aml’ml)7 ‘/’271(Am2’ m2)7
Ut (m3), U (ma), V" (A®,m®)

>

& e T4 (pvuv)

where V(A®, m®) & Vi (A, ,m1) ® Vi (Am,, m2). Then,

Ep {£(c™, N} = Bp {€(c™, N Loe + £ N1} < Ep (L} +Ep {E( N1s )
T, h ps g

To bound the error 77, we provide the following proposition.

Proposition 3. For all € € (0,1), and for all sufficiently large n and sufficiently small 0, we have

Ep {Ls} <, if £logq > logq — min{H V1), H(V2)} + 6.

Proof. Refer to [6, Appendix B] for the proof. O

To bound the error probability corresponding to 75, we apply the Hayashi-Nagaoka inequality and

obtain
T < EP[Q Too +4 {TQV + Z Toy, + Z Tovy, + Toy + TQ\/Q} ],
Jjel2] Jjel2]
i
where,

Too = 1= 3 par(m) Tr (T 40 me) g o) L

m
T2U1é2 Z pM(m)TT(F(A@,m@)7m3,m4P/m®n)]1&

m maz#ms

Tov 2373 D paa(m) Te(T(am) my . o) e,

m a m#m®

Tovu, 2 ZZ Z pu(m) Tr(r(&,m),mg,mwlm@n)]léav

m a m#EmM®
ma#ms

T2Qé2 Z pM(m)TT(F(A®,m@)7m3,m4P/m®n)]lcf,

m Mmsz#ms
M4 FMy

Tzvgézz 2 Pas (1) Tr (T (G ) sing s P ) Lt
m a m#Em®
@3#7”3
M4 FMy

I' (48 ,m®) sa 1, 18 @ randomized version of (4@ 119) s, i, - Similary we can define 7oy, and Toyy,. Below,
we provide the following propositions that summarize all the rate constraints obtained from bounding

these error terms.
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Proposition 4. For any € € (0, 1), and for all sufficiently small §, 7 > 0 and sufficiently large n, we have

Ep[Too] <€
Proof. The proof is provided in Appendix A-A. O

Proposition 5. For any € € (0, 1), and for all sufficiently small §, 7 > 0 and sufficiently large n, we have

Ep[To1] < € if the following inequalities hold:

ok + I
Y logq < 2logq + (U Z|V,Uy)y — H(Vi, Va) — e,

% + 1y +1

ST 2 logg < 2logq + I(Uy, Ui Z|V )y — H(V1, Va) — ¢,
3%+ 1

logq < 3logq+ I(V; Z|U1,Us)s — Hyy v, — €,

3k+1+1
LT logg < Blogq + I(V,Uj; Z|Ui)y — Hyva — €,

3k+1+1 +1
ST T 20 g < 3logg + I(V, Uy, Uz; Z), — Hy, v, — ¢

where i,j € [2],i # j,Hv,v, = H(V1,V2) + H(V), and the mutual information quantities are taken

with respect to the classical-quantum state o same as in Definition 5.

Proof. The proof is provided in Appendix A-B. 0

Now, we need to bound average error probability for Ny. For any € € (0, 1), if we let 7 = €'/4, and use

wn — Pyrun H < 47 (similar to the provided in [11, Equation 5]) and the

trace inequality Tr{Ap} Tr{AJ} +3|lp—oll,, where 0 < A, p, 0 < I, then for all sufficiently large n,
we have £(c(™, Ny) < £(c™, N}) + 2¢'/%. In other words, the average decoding error for CQ-MAC N,
is bounded from above by the average decoding error for CQ-MAC N with an additional error of 2¢1/4

for the same rate constraints and decoding strategy used for Nj. This concludes the proof of Theorem 1.

V. PROOF OF THEOREM 2

We use the approach of source channel separation with two modules. Consider a source given by
(Ws, s,, f). For the source part, the theorem requires showing the above source can be compressed to
rates (R, Ry, Rz) that belongs to Zs5(Wg, s,, f,q). Ahlswede-Han [7] source coding scheme achieves
this. This forms the source coding module. This module produces messages M;1, M, at encoder j € [2],
at rates R;, R, respectively. As for the channel part, its task is to recover (M1, Moy, M12@ May) reliably,
and to provide it to the source decoder. For this, we employ the result from Theorem 1, which shows
that if the triple (R, R1, R2) belongs to Z.(N2, q), then for any arbitrary distribution of pays,, 11,, Mo, Mass

such a recovery is guaranteed. This completes the proof of the theorem 2.
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APPENDIX A

PROOF OF PROPOSITIONS
A. Proof of Proposition 4
For m, a,,, and a,,,, define the following events:
V= A{Vi(am;,mj) =vf = je2]}, U ={Uj(mj2) =uf : je[2]},
W2 {W"m) =w"}, A={A, =a; : je[2]}.
Additionally, for m® and a®, define the following events:

D2 (V0@ m®) = o), W & (W (m®) = wit).

<27+ 4; Y, pu(m) [Tr {(I_ ﬁ/)'@"ﬂ"}

~

T {1l gy e | | POVLVLAP @) POV,),

~

Dorsa) N pﬂ(m)n{vn:w@vg}ﬁ{ngwwﬁw}P(V,v,A)P(u)P(W,W),

3

vl

(’U"Q“)GT((; )
(d) 18 P Y
<2 +4-— pu(m) [ Y (1= T {0y porun }) | POVV, AP (WU),
T % (Qngn’,un)eTg(;) Pew
(e) 28-18
< 2T + B} 621
T

where % & {V,U;,VU;, U, VU}, and 62(0) \, 0 as & \, 0, and (a) follows from the argument
Hp’y@@n — Pynyn Hl < 47 (similar to the [11, Equation 5]) and the trace inequality Tr{Ap} < Tr{Ac}+
2llp — ol|;, where 0 < A, p,0 < I, (b) follows from Non-Commutative union bound [17], (c) follows
from the fact that II’ is a projection operator ’H’Z®” projecting onto HE", and pyny~ € D(HE"). Thus,
Te{(I —1II' )purun } = 0, (d) follows from [11, Corollary 1], and (e) follows from Proposition 2. Letting
T = 5;/4, we obtain Ep[Tho] < 504+/62 + 265/4.

This concludes the proof of the Proposition 4.
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B. Proof of Proposition 5
For m, a,,, and a,,,, define the following events:
V= A{Vi(am;,mj) =vj + je2]}, U={U}(mj2) =u] @ je[2]}
W= {W"m)=w"}, A= {Am]. =a; : je[2]}.

1) Analysis of Toyy: We begin by analyzing error event 75y Define the following additional events

for m, mg, M4 and a:

Ep[TgVU]:E[Z oy pM(m)Tr{r@n@%mgp’M }nvn Ty 1wl ILAILg],
mg"g"g"f)" a m¢m@
@ w" Wy W Mz #m3
MaFMy

~ ~

<; 2 Z Z PM(m)Tr{F@n@"wgggp;wny}P(V,V)P(U)P(Z:I)P(W,W),

oran ms#ms
W T Ma7FMy
(®) 3 Yy pM;:”)P(ZJ)P(W)Tr{Fm vopay, Y. PUPOVIW) ;uw}
m  Hnamn o # @ q () -
moma" 4 m#Em (u™w™)eTyy
¢ Loy Maz#ms w™
MaFMy B
© Z Z Z Z pM?Enm)P(Z:{)P(W)Tr{ljﬁnmwmg PU)
m anan A £ @ q a B (n)
mooma” a4 M (u™w™)eTys
= Wy W m3#ms
Mg FMy
I _vu 1 vy s
X [ﬂ{fn?&ml}z |W|4n7:1’" (pv un) + ]l{m ml}z ]l{wv =wy W|3n7’w";7'(pﬂnﬂ")]}’

IDIDIDY pfggfjj”p(mpwm{rww Y pw)

o a4 m7ém@ (u”,v”)eTg(?)
WLWY, ms#ms -
vWy A

M47FMy

1+72 ~
LTI (o) + N )|}

DIDHIPIDIES I L

X

1
[ﬂ{m#”l} (1 a2 TN (p”"“")> * hm:mﬁ(

X ZP(U) []l{miml} Z pV\V( |U )l{v”*v"@v }pv nyn+

o (un pm)eTy;
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+ ]l{m:ml},rﬁ}/(;ﬁ ( Z pV|V( ’U )]l{v"—v”@v2 }pv"u")]} +

omi(un o )Ty

(:); Z Z Z pA;gT)P(L?)P(W)2"(H(‘/1’V2)+51){Tr{rwa"ubgwg

16\/§T|7'lz|n]
wir I

o"U" G nEm®
Wy ha#Ems
M4FMy
m (v 16727 H z|"
X pV(U )P(u) |:]]_{m#_>m1}pvnun + ]]_{m ml}T (pv"u”)]} + |1/’\}|n|:|7
< NPOA [ 161/2 n
NN N P i i) Tr{HX%"P}Jr\M?‘iZ’},
m ogrgn G mEm® 4 i i Wi
ey matms
M4 FMy
(22 PIDNDI pMT(%)P(LA’)P(W)?n(H(%’VQ”‘SI) z—n(I(VUle;Z)—61)+W]7
m 5gn G mEm® 1 | Wi
a wn@g m3¢m3
My7#Mmy

(i) {n [ (W) log g—3log q+H(V)+H(V1,V2)+351—I(V,U1,U2;Z)U] }

X 5

where (a) follows by bounding 1 4 < 1, (b) follows by using P(V, V) = in and rearranging the terms,
(¢) follows by using the fact that wy used by the decoder is identical to wy, and expanding P(W|W)

(for v # m®, g # ms, M4 # my) as follows:

I

DIPWI) = Y P(W™(m) = w"[W () = i, Wi (g, 1ha) = ),

D 1/t D #E My

D ﬂ{w%:w;}l/‘wygn L= my,

(d) follows from the observations [11, Section 4]:

. _
Z |W|4n ;T E”Q") 1 + 47292"2” + NT(PQ"M)a

1+ 72

VU Vi /[~ Vi ~
Z {wV _wV} |W|37L7; 7T(pv un) = 1 _|_ 47_2 %Q;T(pﬂnﬁn) + N'[I)(};T(pynﬂn)’

(n)

(e) follows from the typicality property that for v" € Tgs’ (pv,v,) and sufficiently large n, we have

S pv< )pV|V< V" |o") < 2 n(H(V1,V2)+01) and the following observations found in [11, Section 4]:
Mo < V2NV, () INYE (Borar oo < 4V27/V/ W],

(dii) Hrv"u wvaHI 2[Hz|"™,

i) | N7 (pomun

(f) follows by using the definition pyny» = 3, pT‘L/W( "™ L r—or@un ) Porun @ |0%0|C*", (g) follows
from [11, Equation 8], and the fact that Tr{ﬁ;i%np} Tr{HU" -.p}, (h) follows from Proposition 2, and
finally (i) follows by choosing [W| < 2! (V:U1.U2:2)-
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2) Analysis of Toy: We now analyze the error event T5;; using similar techniques as used for analyzing

Tyyy. Define the following events for m®, g, 74 and a®:

VE(V(a®m®) ="}, U= U] (inja2) = @ : je 2]},

W A (WE(m®) = wi, W (s, ) = i},

&=

~

5
5,

Il

&=
@EM
M

Z par (M) Tr {T iy wnwgpvnunwn}]lp]lv]lu]la]lwlw]lf\]lg],
v™.a" v U Mma#Ems
wih W™, MaFEMa

<2 Z Z W ()T {T iy iy Py} POV VIPUPLPOV, W),
EDNDIED) pMQ(L”)P(L?W(w)n{rvnmm Y PUPVA e |
Foitnem )Ty

9N Y S P T ey, Y, PO

@ Ulsz;;%n Zéﬁzm?’ I un(u wn)eTsy)

1 .
[ﬂ{m@;&ml} Z |W|4n w” pv"u") + ]l{m@ =m;} Z {wv =wl} A3 |W|3n ﬁ’?f(py"g")] }7

2 pM2n )P(W)Tf{Tvn@"wmz Y, P

VPV A" MzFEmM3 H7L:(yn,7£n)eT8(;")
wva Ma#my

NE
=[]
M

_ ~ 1+72 ~ -
X []]-{m@;ﬁrrh} (pﬂnﬂn + N‘r(py"y")) + Il-{m@=77h} (m uY"}l;T(IOQ"’E") + Nl\U/é;T(pQ”E"’)>] }7
(€) pu(m
<> DD por Q)P V)2 H (VY2 +01) Zp [Tr{f‘vnu W 27’
m 4" thg#Ems
g w7l 'Vl m4¢m4

[ {m@;éml}pv\v( ‘U )ﬂ{v"—v{b®v§}ﬁyny"

+ Voo Ty (D P (@0" )]l{vn—vf@vn}f)v"un)]} +
v (un o )eTy

Z Z pMQn )P(W)2n(H(V1J/z)+51) Zp?/(vn) [Tl‘{runa"w;}ﬁ;g

" Mma#Ems on
wWEWY MaFma

x |:]1{m®;ém1} Z’P(u)ﬁvnﬂn + ﬂ{m®:m1}7-ﬁ\11(}1;7'<2P(u)ﬁv"g")]} +

; Z Z pM )QH(H(VhVZ )+01) Zp [ZP { v }+]6\/§|T)/|\j-l|nznl7

wVwU m3 #ms
MaF# My

16\/§T|Hz‘n]
wir |

1=
mBM

16ﬁT|HZ|"]
wir |

NS
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A , IV 164/27|H 7|
H(Vi,Va)+6 I(U\U3;Z|V) =8,
i POV i@z 4 T |
w g Ma#Ems
Ma#may
(2 ofn[ (#5152 log g—2log ¢+H (V1,Ve) +36,—1(Us,U2;Z|V)s |}

The above sequence of steps is analogous to the above steps used for deriving an upper bound on Ty ¢
and follow from the same set of arguments.

Similarly, for ¢, j € [2] and @ # j, we get:

Ep[Tove ] < 2{n[(3k+i+lj)logq7310gq+H(V1,Vg)+H(V)+361fI(V,Uj;Z\Ui)U]}
Ep[Toy] < o{n[(®5H) log g—3log g+H (Vi,Va)+ H(V)+38:—1(V;Z|U1,Uz2). | }

Ep[Tov,] < ot (55

n

) 10g a—210g g+ H (V2,V2)+36: -1 (U3 2|V, Us)o |}
This completes the proof of the Proposition 5.
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