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Abstract—A multilevel coded modulation scheme is studied
that uses solely binary polar codes and Honda-Yamamoto prob-
abilistic shaping. The scheme is shown to achieve the capacity of
discrete memoryless channels with input alphabets of cardinality
a power of two. The performance of finite-length implementations
is compared to polar-coded probabilistic amplitude shaping and
constant composition distribution matching.

Index Terms—coded modulation, polar codes, asymmetric
channels, probabilistic shaping

I. INTRODUCTION

Reliable and power-efficient communication usually re-
quires probabilistic shaping (PS) and/or geometric shaping
.There are several ways to implement PS, e.g., many-to-one
mappings [1, Sec. 6.2], trellis shaping [2], and others, see [3,
Sec. II], [4]. More recent schemes are probabilistic amplitude
shaping (PAS) [3], and Honda-Yamamoto (HY) PS [5] based
on polar codes [6], [7].

PAS received significant attention from the optical fiber
communications community and industry due to its perfor-
mance and flexibility [8], [9]. PAS requires a target distribution
PX that factors as PX = PA · PS so that PS is a uniform
binary distribution. Usually “A” and “S” refer to the amplitude
and sign of X , respectively, but more general choices are
permitted. We focus on PS(−1) = PS(1) = 1/2. An
important component of PAS is a distribution matching (DM)
device that maps uniformly distributed bits to real-alphabet
symbols with distribution PA, e.g., a constant composition
distribution matching (CCDM) device [10]. These symbols are
then protected with the parity bits of a systematic forward error
control (FEC) code. Each parity bit is uniformly distributed
and chooses one of two signs S so that X = A · S has
PX(x) = PX(−x). PAS in general does not allow for
asymmetric PX .

The HY scheme generates asymmetric PX by performing
joint DM and FEC. The scheme achieves the capacity of
general binary-input discrete memoryless channels (biDMCs)
[5] and has excellent performance for short block lengths. For
instance, see [11] that compares the performance of different
schemes for on-off keying (OOK) modulation over additive
white Gaussian noise (AWGN) channels. An earlier scheme
by Sutter et al. [12] also achieves the capacity of biDMCs.
This scheme concatenates two separate polar codes for FEC
and DM which reduces the error exponent by a factor of two
as compared to HY coding [5].

Polar codes can be extended to higher-order modulation by
using multilevel coding (MLC) [13]. In this paper, we study a
multilevel Honda-Yamamoto (MLHY) coding scheme which
is amenable to practical implementation. Our contributions
are two-fold. First, we prove that MLHY coding achieves
the capacity of general discrete memoryless channels (DMCs)
with M = 2m-ary channel inputs. Second, we compare the
DM performance and shaping gains of PAS and MLHY coding
for short block lengths. We evaluate the performance with
unipolar (X ≥ 0) and bipolar (X ∈ R) modulation over
AWGN channels. The proposed scheme performs on-par with
polar-coded PAS [14] and does not need a DM device.

We remark that several polar coding architectures, including
multilevel ones, were studied in [15]–[21] but these papers
do not consider capacity proofs. Using polar lattice codes,
a capacity proof for channels whose input alphabets have a
lattice structure is given in [22]. Our proof and the proof in
[22] are both based on the idea that each bitlevel polarizes,
but we note that MLHY coding is not restricted to lattice
inputs. This makes our proof simpler and more general. Note
that the scheme of [22] is effectively a special case of the
MLHY coding studied here for the case of amplitude-shift
keying (ASK) modulation, Gaussian PX and a set-partitioning
bit-mapping [23].

Instead of using MLHY coding, the capacity of DMCs
can also be achieved by combining HY coding with non-
binary kernels [5], [24], [25]. However, binary polar codes
are preferred in practice because non-binary polar codes and
decoders are complex to implement and design [26], [27].

Polar-coded modulation has also been studied in the context
of multiple-access channels [28, Sec. V] where each bitlevel
of a channel input symbol corresponds to one user. Based
on this approach, the authors of [28] describe a MLC scheme
that achieves the symmetric capacity of DMCs with M = 2m-
ary channel inputs using independent binary polar codes for
each bitlevel. For transmission over the AWGN channel, they
combine the scheme with a many-to-one mapping, which is
not desirable in practice.

This paper is organized as follows. Section II gives an
overview of polar coding concepts. Section III shows that
the MLHY scheme achieves capacity and develops error
exponents. Finally, Section IV treats polar codes for short
block lengths and provides numerical results.
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II. PRELIMINARIES

A. Notation

Random variables are written with upper case letters such
as X . Their alphabet, distribution, and realizations are written
as X , PX , and x, respectively. Vectors are denoted by bold
symbols such as x. XC and |X | are the complement and
cardinality of X , respectively. A set difference is denoted as
X \ Y = X ∩ YC . An index set from 1 to N is denoted as
JNK , {1, . . . , N}. A set S may select entries of a vector,
creating a substring xS with length |S|, e.g., xJNK. An event
E has probability P(E).

We denote by H(X), H(X|Y ), and I(X;Y ) the entropy
of X , the entropy of X conditioned on Y and the mu-
tual information (MI) of X and Y , respectively. The condi-
tional Bhattacharyya parameter [29] is defined as Z(X|Y ) =
2E
[√

PX|Y (0|Y )PX|Y (1|Y )
]

and satisfies [29] [22, Lem. 6]

Z(X|Y )2 ≤ H(X|Y ) ≤ Z(X|Y ) (1)
Z(X|Y, S) ≤ Z(X|Y ) (2)

where X,Y, S ∼ PX,Y,S .

B. Polarization and Polar Coding

Polar codes [6], [7] are linear block codes of length N = 2n

for n ∈ N. They are defined via the polar transform that maps
a vector u ∈ FN

2 to a codeword x ∈ FN
2

x = uGN with GN = BN

[
1 0
1 1

]⊗n
(3)

where BN is the bit-reversal matrix as in [7], and where F⊗n

is the n-fold Kronecker product of F . The polar transform
satisfies G−1N = GN . For encoding, we will consider the
codeword x to have independent and identically distributed
(i.i.d.) entries. The codeword x is transmitted over N uses
of a biDMC W : X → Y resulting in a vector of channel
observations y ∈ YN . Consider the sets

LU |Y = {i ∈ JNK : Z(Ui|UJi−1K,Y ) < δN}, (4)
HU |Y = {i ∈ JNK : Z(Ui|UJi−1K,Y ) > 1− δN} (5)

with δN , 2−N
β

for any β < 1
2 . It is known [5, Eqs. (38),

(39)] that these index sets polarize, i.e., we have

lim
N→∞

1

N

∣∣LU |Y
∣∣ = 1−H(X|Y ) (6)

lim
N→∞

1

N

∣∣HU |Y
∣∣ = H(X|Y ). (7)

The encoder places the data bits on the reliable bit positions
of u, i.e., those with Z(Ui|UJi−1K,Y ) ≈ 0. The remaining
positions in u are frozen, i.e., set to fixed values. The receiver
uses successive cancellation (SC) decoding of the non-frozen
bits via ûi = arg maxu PUi|UJi−1K,Y (u|ûJi−1K,y).

Honda and Yamamoto [5] consider two more sets:

LU = {i ∈ JNK : Z(Ui|UJi−1K) < δN} (8)
HU = {i ∈ JNK : Z(Ui|UJi−1K) > 1− δN}. (9)

Note that (7) and (9) yield |HU |/N
N→∞→ H(X). With (2),

we have LU ⊆ LU |Y and thus LU ∩HU |Y = ∅. For the “data”
set I = HU ∩ LU |Y , we thus have [5, Thm. 1]

lim
N→∞

1

N
|I| = I(X;Y ). (10)

To achieve capacity, Honda and Yamamoto chose the I bits as
data bits and the remaining bits in u randomly with probability
PUi|UJi−1K

(·|uJi−1K). To calculate these probabilities, the same
SC structure as for decoding is employed. The random bits
must be known to the receiver. We describe the method in
more detail in Section III-A.

C. Conditional Polarization

We next consider conditional polarization which helps to
prove our main results.

Lemma 1. Let X ∈ F2 and S be the input to a biDMC
W : X → Y with side information S with joint distribution
(X,Y, S) ∼ PY |X,SPX|SPS . Let (X,S,Y ) be N i.i.d.
realizations of (X,S, Y ) and let U = XGN . Then all the
index sets

LU |S = {i ∈ JNK : Z(Ui|UJi−1K,S) < δN} (11)
HU |S = {i ∈ JNK : Z(Ui|UJi−1K,S) > 1− δN} (12)
LU |S,Y = {i ∈ JNK : Z(Ui|UJi−1K,S,Y ) < δN} (13)
HU |S,Y = {i ∈ JNK : Z(Ui|UJi−1K,S,Y ) > 1− δN} (14)

polarize with δN , 2−N
β

for any β < 1
2 , yielding

lim
N→∞

1

N
|LU |S ∪HU |S,Y | = 1− I(X;Y |S) (15)

lim
N→∞

1

N
|HU |S ∩ LU |S,Y | = I(X;Y |S). (16)

Proof. Using [5, Eqs. (38), (39)], the sets (11) to (14) polarize
analogously to (6), (7), i.e.,

1− lim
N→∞

|LU |S |
N

= lim
N→∞

|HU |S |
N

=H(X|S) (17)

1− lim
N→∞

|LU |S,Y |
N

= lim
N→∞

|HU |S,Y |
N

=H(X|S, Y ). (18)

We next show (15). Basic set theory gives

|LU |S∪HU |S,Y | = |LU |S |+|HU |S,Y |−|LU |S∩HU |S,Y |. (19)

By (2), we have LU |S ⊆ LU |S,Y and thus LU |S∩HU |S,Y = ∅.
Inserting the first term of (17) and the second term of (18) into
(19) gives (15). To prove (16), observe that

lim
N→∞

|HU |S ∩ LU |S,Y |
N

= 1− lim
N→∞

|(HU |S ∩ LU |S,Y )C |
N

(20)

= 1− lim
N→∞

|HC
U |S ∪ L

C
U |S,Y |

N
(21)

= 1− lim
N→∞

|LU |S ∪HU |S,Y |
N

(22)

where the last equality follows from (17) and (18). Combining
(15) and (22) yields (16).
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Fig. 1. Multilevel polar-coded modulation with M = 2m = 8 and N = 4.

III. MULTILEVEL POLAR CODES FOR DMCS

Consider the multilevel code construction in [13] depicted
in Fig. 1. For a channel with input alphabet X of cardinality
M = |X | = 2m, each symbol x is labelled with m bits, i.e.,
x = f(xB,1xB,2· · ·xB,m) where f(·) is invertible. A codeword
has a length of N symbols or mN bits. Each bitlevel xB,`,
` ∈ JmK, is encoded with a separate polar transform as u` =
xB,`GN . Using Lem. 1, we can prove the polarization of such
a multilevel polar code.

Theorem 1. Let W : X → Y be a DMC with joint distribution
X,Y ∼ PY |XPX and |X | = 2m. Let XB,`, ` ∈ JmK, be the `-
th bit of the binary representation XB of symbol X = f(XB),
and let U ` = XB,`GN . Then, the sets

L′U = {(`, i) : Z(U `
i |V `

i ) < δN} (23)

H′U = {(`, i) : Z(U `
i |V `

i ) > 1− δN} (24)

L′U |Y = {(`, i) : Z(U `
i |V `

i ,Y ) < δN} (25)

H′U |Y = {(`, i) : Z(U `
i |V `

i ,Y ) > 1− δN} (26)

with ` ∈ JmK, i ∈ JNK, and V `
i = (U `

Ji−1K,X
B,J`−1K)

polarize, i.e., we have

lim
N→∞

1

N
|L′U ∪H′U |Y | = 1− I(X;Y ) (27)

lim
N→∞

1

N
|I| = I(X;Y ) (28)

where I = H′U ∩ L′U |Y .

Proof. We begin by showing (28). For each bitlevel ` ∈ JmK,
consider the sets

H′U` = {(`, i) : Z(U `
i |V `

i ) > 1− δN} (29)

L′U`|Y = {(`, i) : Z(U `
i |V `

i ,Y ) < δN}. (30)

By Lem. 1, we have

lim
N→∞

1

N
|H′U` ∩ L

′
U`|Y | = I(XB,`;Y |XB,J`−1K). (31)

Note that H′U` ∩H
′
Uk = L′U`|Y ∩L

′
Uk|Y = H′U` ∩L

′
Uk|Y = ∅

by definition for ` 6= k and

H′U =
⋃

`∈JmK

H′U` , L′U |Y =
⋃

`∈JmK

L′U`|Y . (32)

Additionally, since f(·) is invertible we have

lim
N→∞

1

N
|I| = lim

N→∞

1

N

∑
`∈JmK

|H′U` ∩ L
′
U`|Y | (33)

=
∑

`∈JmK

I(XB,`;Y |XB,J`−1K) (34)

= I(X;Y ) (35)

which proves (28). The proof of (27) follows analogously to
the proof of (16).

A. Encoding and Decoding

The encoding is similar to [5]. Define the message set
M ⊆ I as the set of bit positions (`, i) populated by data
bits. The remaining bits u`i , (`, i) ∈ MC , are chosen suc-
cessively and randomly with probability PU`i |V `

i
(·|v`

i ), where
v`
i again includes the bits decided before (`, i). To compute
PU`i |V `

i
(·|v`

i ), we factor PX(xi) as

PX(xi) =
∏

`∈JmK

PXB,`|XB,J`−1K(xB,`
i |x

B,J`−1K
i ). (36)

For each bitlevel `, multistage decoding (MSD) computes
PXB,`|XB,J`−1K(·|xB,J`−1K

i ), i ∈ JNK [30], and provides these
values to a SC decoder that computes PU`i |V `

i
(·|v`

i ) and
decides on u`i .

The decoder uses the same MSD structure with SC de-
coding. The bits û`i , (`, i) ∈ M, are estimated as û`i =
arg maxu PU`i |V `

i ,Y
(u|v`

i ,y) assuming perfect knowledge of
the previous bits v`

i . The non-message bits are decided
from PU`i |V `

i
(·|v`

i ) requiring randomness that is shared by
the transmitter and receiver. The decoding error probability
P({Û 6= U}) is averaged over this randomness.

Theorem 2. Let W : X → Y and define I as in Thm. 1.
Let M ⊆ I, and consider encoding and decoding as de-
scribed above. Then the average decoding error probability
is P({Û 6= U}) = O(2−N

β′

) for any 0 < β′ < β < 1/2 by
choosing the polarization sets with δN = 2−N

β

.

Proof. Consider

P({Û 6= U}) = 1−
∏

`∈JmK

(
1− P

(
E`
∣∣∣CJ`−1K

))
(37)

where E` = {Û ` 6= U `} and CJ`−1K = {Û J`−1K = U J`−1K}.
Let the equivalent channel for the `-th bitlevel be the channel
that has bit ` as input and bits J`− 1K as side-information
available at transmitter and receiver. By [31, Thm. 4.3.9], [5,
Thm. 3], the HY code over this equivalent channel for bitlevel
` has an average decoding error probability P

(
E`
∣∣CJ`−1K

)
=

O(2−N
β′

) with β′ < β < 1/2 and uniformly chosen
messages.



Thus, for each bitlevel ` there is a positive constant c` and a
block length N` so that P

(
E`
∣∣CJ`−1K

)
≤ c`2−N

β′

for all N >
N`. By choosing c = max`∈JmK c` and N∗ = max`∈JmKN`,
we can bound the error probability for any ` ∈ JmK by

P
(
E`
∣∣∣CJ`−1K

)
≤ c2−N

β′

(38)

for all N > N∗. The average decoding error probability under
MSD can thus be bounded as

P({Û 6= U}) = 1−
∏

`∈JmK

(
1− P

(
E`
∣∣∣CJ`−1K

))
(39)

≤ 1−
(

1− c 2−N
β′
)m

(40)

≤ mc 2−N
β′

(41)

where the final step follows by Bernoulli’s inequality.

We remark that one can extend Thms. 1 and 2 to discrete-
input, continuous-output channels along the lines of [32,
Part IV, Appendix 7].

IV. SHORT BLOCKLENGTH CODES

A pragmatic approach is to choose the non-data bits with
a deterministic rule [33], [34] where the bits with large
H(U `

i |V `
i ,Y ) are fixed to 0 and the bits with small H(U `

i |V `
i )

are decided as arg maxu PUi|V `
i

(u|v̂`
i ) (“DM bits”). The re-

maining bits are data bits. The decoder estimates the non-
frozen bits via arg maxu PUi|V `

i ,Y
(u|v̂`

i ,y). The DM bits
with H(U `

i |V `
i ) ≈ 0 also have H(U `

i |V `
i ,Y ) ≈ 0 and are

thus reliably estimated. We call the resulting scheme MLHY
coding. The entropies used for code construction can be
computed with, e.g., Monte Carlo (MC) integration or density
evolution with Gaussian approximation [15]. Similar to [13],
we jointly compute the bitchannel entropies over all bitlevels.

A. Distribution Matching

Consider first a code that performs only DM, i.e., there are
no frozen bits. To evaluate the performance, we consider the
rate loss [3, Sec. V-B], [11], [20]

∆R = H(P̂X)−R = H(P̂X)− |U|
N

(42)

where P̂X is the empirical distribution of X , and U indexes
the bitchannels with uniformly-distributed data bits. Typically,
U consists of the bitchannels with H(U `

i |V `
i ) ≈ 1.

Fig. 2 shows the rate loss for CCDM [10] and for MLHY
DM with successive cancellation list (SCL) encoding [35] with
list size L = 32 instead of randomized encoding. The target
distributions are the maximum entropy distributions for the
rates in bits per channel use (bpcu):
• R = 1.625 bpcu for M = 4;
• R = 2.375 bpcu for M = 8;
• R = 3.250 bpcu for M = 16.

The MLHY code is constructed by using the RN bitchannels
with the largest H(U `

i |V `
i ) for data. The quantized distribution

and the rate for CCDM are determined by [36, Algorithm 2]
and [3, Eq. (37)], respectively.
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Fig. 2. Rate loss for MLHY with L = 32 and CCDM with different M .

Observe that CCDM is better than MLHY DM for large
block lengths [37], [11]. This is expected since the polar code
has a rigid structure. However, MLHY DM has a smaller rate
loss than CCDM for practically-relevant block lengths up to
N = 1024. We observe that the rate loss of CCDM increases
with M for short and moderate block lengths whereas the rate
loss of MLHY degrades only slightly. MLHY DM thus has
superior performance for short block lengths and offers the
flexibility to design joint DM and FEC schemes.

B. End-to-end Frame Error Rates

We compare MLHY coding with the polar-coded probabilis-
tic amplitude shaping (PC-PAS) scheme proposed in [14]. PC-
PAS uses the PAS architecture [3] with a systematic multilevel
polar code as FEC and CCDM [10] for DM.

Consider bipolar ASK and unipolar pulse-amplitude modu-
lation (PAM). The input alphabets of cardinality M = 8 and
M = 4, respectively, are

XASK = {±7,±5,±3,±1}, XPAM = {0, 1, 2, 3}.

For both cases, we choose PX(x) ∝ exp(−ν|x|2) so that ν
minimizes the frame error rate (FER).

The transmitter and receiver use SCL decoding with list size
L = 32 and an optional outer cyclic redundancy check (CRC)
code. The code is designed for a specific rate R and block
length N . There are three relevant design parameters. The
first is the design signal-to-noise ratio (dSNR) that determines
the noise variance for computing H(U `

i |V `
i ,Y ). Second, we

introduce a design parameter κ for code optimization and
choose the rate-optimal PX at κ · dSNR as our target dis-
tribution based on which we also compute H(U `

i |V `
i ). This

parameter can improve the finite length performance because
the optimal channel input distribution might deviate from the
asymptotically optimal one. Finally, we optimize over the
number NDM of DM positions. The code is constructed by
choosing the NDM positions with lowest H(U `

i |V `
i ) for DM

and the N(1−R)−NDM positions with highest H(U `
i |V `

i ,Y )
for FEC. The remaining positions are used for data. We use
set-partitioning labelling [38] for the channel input symbols.

The scheme from [14] must be modified to transmit PAM
symbols with polar-coded PAS. First, PAS requires symmetric
distributions, as described in the introduction. The one-sided
sampled Gaussian distribution that we use for PAM does
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not fulfill this requirement. Instead, we approximate a one-
sided sampled Gaussian distribution P̃X for M -PAM by
assigning M/2 different probability masses to pairs of points
as described in [39], [40], i.e., P̃X(2i) = P̃X(2i + 1) ∀i =
0, 1, . . . ,M/2 − 1. The input distribution is thus suboptimal.
Second, polar-coded PAS uses a set-partitioning labelling. For
ASK modulation as in [14], the last bitlevel carries the sign of
the constellation. For PAM modulation, the first bitlevel refers
to the bit that maps the transmitted signal to either the one or
the other point of a pair. This facilitates systematic encoding
and we can omit the labelling transformation described in [14].

Fig. 3 shows the FER for an 8-ASK constellation and
N = 64. We also show the random coding union bound
(RCUB) [41] computed for the distribution realized by the
MLHY encoder, and the FER for uniform multilevel polar
coding (MLPC) [13]. The codes and bounds are designed
for R = 1.75 bpcu. The bold black lines at 10.16 dB and
10.84 dB show the constellation-constrained capacities for
shaped and uniform transmission, respectively.

The error curve slopes for MLHY coding and uniform
MLPC are similar, resulting in an almost constant shaping
gain in the waterfall region. Both MLHY coding and PC-PAS
perform close to the theoretical shaping gain of 0.68 dB and
to the RCUB. The MLHY scheme thus performs on par with
PC-PAS, even without a dedicated code optimization beyond
a random search over the design paramters.

We describe potential improvements. Because CCDM code-
words are all of the same type, PC-PAS permits an additional
list pruning step [14] so that the length of the outer CRC
code can be reduced. The performance of MLHY coding may
be improved by further adjusting the design parameters, opti-
mizing the bitchannel selection process, optimizing the CRC
polynomial and length, and checking candidate codewords
against DM constraints at the decoder.

Fig. 4 depicts the FERs for a 4-PAM constellation with
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Fig. 4. Performance of MLHY coding compared to PC-PAS, uniform MLPC,
and the RCUB, with an 4-PAM constellation, N = 64, L = 32, at a
R = 1.25 bpcu, shaped dSNR = 18.1 dB, κ = −0.9 dB, NDM = 24,
and uniform dSNR = 19.25 dB. The MLHY and MLPC codes do not use
an outer CRC. For PC-PAS we depict curves with and without outer CRC.
Further, for PC-PAS, dSNR = 14.5 dB and κ = −3.9 dB.

N = 64 and R = 1.25 bpcu. We show shaped MLHY coding
and PC-PAS, uniform MLPC, and the RCUB for PAM over
the AWGN channel. The additional shaping gain of using the
rate-optimal, asymmetric PX over a symmetric distribution
P̃X is approximately 0.34 dB. Without CRC, the MLHY
curve exhibits the predicted shaping gain and outperforms
PC-PAS without CRC. It further lies on top of the RCUB.
With list pruning by CRC and type checking, PC-PAS gains
approximately 0.2 dB. First results using an additional outer
CRC code in the MLHY scheme did not provide a noticeable
coding gain. We therefore did not include the CRC curves in
this case. We expect to recover the full shaping gain by further
optimizing the polar and CRC codes.

Recall that MLHY coding uses the same binary polar
multistage decoder at the transmitter and the receiver. The
implementation complexity is thus reduced as compared to
PAS. Furthermore, the use of CCDM as an outer code causes
the end-to-end bit error rate (BER) of PAS to typically be
much higher than for MLHY coding for the same FER.

V. CONCLUSION

We showed that multilevel polar coded modulation with
binary polar codes and Honda-Yamamoto probabilistic shaping
can achieve the capacity of DMCs with input alphabets of
cardinality a power of two. The performance is on-par with
state-of-the-art PC-PAS for short and moderate block lengths.
Future research may further optimize the code for these block
lengths, and investigate how the constraints induced by the
deterministic DM process can be used to aid decoding.
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