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Abstract

Revealing underlying relations between nodes in a network is one of the
most important tasks in network analysis. Using tools and techniques from
a variety of disciplines, many community recovery methods have been devel-
oped for different scenarios. Despite the recent interest on community recov-
ery in multilayer networks, theoretical results on the accuracy of the estimates
are few and far between. Given a multilayer, e.g. temporal, network and a
multilayer stochastic block model, we derive bounds for sufficient separation
between intra- and inter-block connectivity parameters to achieve posterior
exact and almost exact community recovery. These conditions are compa-
rable to a well known threshold for community detection by a single-layer
stochastic block model. A simulation study shows that the derived bounds
translate to classification accuracy that improves as the number of observed
layers increases.

Keywords: multilayer network, dynamic network, stochastic block model,
community detection, planted bisection model, information-theoretic thresh-
old, Bayesian consistency, tensor-valued data
MSC2020: 05C80, 60B10, 62F15, 62H30, 90B15, 94C15

1 Introduction

Data sets in many application domains, such as physics, sociology, computer science,
economics, epidemiology and neuroscience, consist of pairwise interactions. An im-
portant unsupervised learning problem is to infer latent community memberships
from observed pair interactions, when nodes in the same community are, in some
sense, more similar to each other than to the other nodes. This task is commonly
known as community recovery, community detection, or clustering.

Community recovery is typically approached by fitting a generative model, such
as a stochastic block model (SBM) [1], on the observed network data. The stochastic
block model is a probability distribution on the space of adjacency matrices, where
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the link probability between two nodes is solely determined by the assignment of the
nodes into communities, also referred to as blocks. Thus, once the community as-
signment and the matrix of link probabilities is known, it is easy to sample networks
from the model or evaluate the likelihood of given data.

For any given network, the performance of a community detection algorithm
can be evaluated by inspecting metrics such as the classification accuracy. This
leads to procedures that seem to work well in practice while no claims about their
asymptotic properties are made. This is in particular the case with Bayesian meth-
ods [2, 3] that have gained popularity due to their flexibility and easy adaptability
into various modelling contexts and data types. However, without exercising proper
care or judgment, assigning a prior probability distribution on a large parameter
space typical for community recovery problems risks failure. Quantifying how well
a particular prior combined with a large data set succeeds in outputting a posterior
distribution well concentrated near the corrected parameter value, is referred to as
Bayesian consistency. In the context of single-layer networks, recent studies include
[4, 5, 6, 7, 8].

The stochastic block model has been expanded to model vector-valued or equiv-
alently multilayer, e.g. temporal, interactions between nodes. SBM variants with
overlapping communities include those of [9, 10, 11, 12]. Dynamic community recov-
ery combines aspects of time series, where the time increases, and machine learning,
where the number of observations increases. These problems are typically charac-
terized by multilayer data, e.g. a three-way adjacency tensor indexed by nodes and
a time parameter. Despite recent interest, the number of theoretical results in this
direction has so far been rather limited [13, 14, 15, 16, 17, 18]. In particular, there
exists little research on Bayesian consistency for multilayer network models.

This paper contributes to the field by deriving bounds for sufficient separation
between intra- and inter-block connectivity parameters for consistent Bayesian com-
munity recovery in multilayer networks. The theoretical results are demonstrated
on simulated networks of small to moderate size. The simulation study shows that
the classification accuracy improves as more network layers are observed.

1.1 Notation

We denote by [n] the set {1, 2, . . . , n}. The notation Pf is an abbreviation of
∫

fdP .
When Π denotes a prior distribution, PΠ is the expected posterior probability when
data are sampled from P . For probability measures F,G with densities f, g relative
to measure µ, define ρα(f || g) =

∫

fαg1−αdµ, α ∈ (0, 1). Denote by Dα(f || g) =
(α − 1)−1 log ρα(f || g) the Rényi divergence of order α between f and g (see, e.g.,
[19]). We consider intra- and inter-block interaction distributions f = ⊗T

t=1Berpt
and g = ⊗T

t=1Berqt , respectively, where Berp(x) = (1−p)1−xpx denotes the Bernoulli

distribution with mean p. Finally, IT := D1/2(f, g) =
∑T

t=1 I(pt, qt), where we define
I(pt, qt) = D1/2(Berpt ,Berqt).

1.2 Multilayer stochastic block model

Consider a multilayer SBM with N nodes, T layers, K = 2 blocks, intra-block link
probabilities p1, . . . , pT , and inter-block link probabilities q1, . . . , qT . Denote the set
of block structures by Z = {z : [N ] → [K]}. Let Q(t) be a K × K matrix such
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that Q
(t)
z(i)z(j) = pt for z(i) = z(j) and Q

(t)
z(i)z(j) = qt otherwise. Denote the space of

observations by

X =
{

X : [N ]× [N ]× [T ] → {0, 1} : X
(t)
ij = X

(t)
ji , X

(t)
ii = 0 for all i, j, t

}

.

Given a node labelling z, the observation is distributed according to the probability
measure Pz on X defined by

Pz(X) =
∏

1≤i<j≤N

(

Fz(i)z(j)(Xij)

)

=
∏

1≤i<j≤N

∏

1≤t≤T

(

Ber
Q

(t)
z(i)z(j)

(X
(t)
ij )

)

(1)

where F is be the matrix of intra- and inter-block interaction distributions f =
⊗T

t=1Ber(pt) and g = ⊗T
t=1Ber(qt) such that Fz(i)z(j) = f for z(i) = z(j) and Fz(i)z(j) =

g otherwise.

1.3 Bayesian inference

Given a prior probability distribution Π on Z and an observation X ∈ X, denote
the corresponding posterior distribution by

ΠX(w) =
Π(w)Pw(X)

∑

w′ Π(w′)Pw′(X)
, w ∈ Z .

We consider ΠX as a Bayesian distributional estimate of an unknown block structure,
from which point estimates can be derived for example by taking a mode. The
accuracy of such estimates can be analysed using a frequentist viewpoint where
we assume that the observed data tensor X is sampled from a model Pz with true
block structure z, and we compute the expected mass that the posterior distribution
assigns near the true value according to

Errz(r) = PzΠX{w : dACE(w, z) > r}. (2)

Here dACE(w, z) = min{Ham(w, z),Ham(w, z̃)} denotes the absolute classification
error computed using the Hamming distance Ham(w, z) =

∑N
i=1(1− δw(i)z(i)), when

z̃ is the modification of z obtained by swapping the labels 1 and 2.

1.4 Large-scale recovery

Large-scale data regimes can be modelled using a sequence of models in which the
model parameters (N, T, pt, qt) as well as the spaces X,Z , the true block structure
z, and the distributions Π and ΠX all depend on a scale parameter ν = 1, 2, . . .
which is omitted from the notation for clarity. In a large-scale regime, we say that
the posterior distribution exactly recovers z if the error defined in (2) satisfies

Errz(0) = o(1).

Note that dACE(w, z) = 0 if and only if w ∈ {z, z̃}. Posterior exact recovery hence
means that most of the posterior mass is concentrated exactly at the set {z, z̃}
corresponding to the true unlabelled block structure. Similarly, we say that the
posterior almost exactly recovers z if

Errz(ǫN) = o(1)

for every scale-independent constant ǫ > 0. Almost exact recovery means that with
high probability, most of the posterior mass is concentrated on the set of block
structures w for which the relative classification error N−1dACE(w, z) is at most ǫ.
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2 Information-theoretic thresholds

To gain understanding on how the increase in the number of network snapshots
(or layers) affects the difficulty of a community recovery problem, we derive suffi-
cient conditions for consistent community recovery, which we compare to existing
literature.

2.1 Main results

Recovering an unknown block structure is possible only if the link probabilities pt
and qt differ sufficiently from each other. For learning from single-layer observations
[20, 21], a sharp information quantity for characterising recoverability is the Rényi
divergence of order 1/2 between Bernoulli distributions Berpt and Berqt given by

I(pt, qt) = (1− pt)
1/2(1− qt)

1/2 + p
1/2
t q

1/2
t .

Sparse networks are often modelled by assuming that pt = atρ and qt = btρ for
scale-independent constants at 6= bt and overall link density ρ = o(1), for example
ρ = N−1 (constant average degree) or ρ = logN

N
(logarithmic average degree). In

such case Taylor expansions show that

I(pt, qt) =
(√

at −
√

bt

)2

ρ+O(ρ2).

The following theorems characterise posterior recovery from multilayer network
data in terms of

IT =
T
∑

t=1

I(pt, qt). (3)

Theorem 1. If IT ≫ N−1, then the posterior distribution corresponding to the

uniform prior on the set of all block structures almost exactly recovers any particular

block structure z.

For pt = p and qt = q, Theorem 1 shows that I(p, q) ≫ (NT )−1 suffices for almost
exact recovery. Especially, we see that almost exact recovery may be achievable for a
bounded number of nodes if the number of layers T is large. Reference [16] arrives to
a similar conclusion in the context of latent space models. When we view T as time,
we see that the product NT indicates that, from an information-theoretic point of
view, observing one new node in the network is equally informative to observing one
new time slot.

The following theorem characterises exact recovery of posterior distributions cor-
responding to noninformative priors.

Theorem 2. If IT ≥ (2 + δ) logN
N

for some scale-independent constant δ > 0, then
the posterior distribution corresponding to the uniform prior on the set of all block

structures exactly recovers any particular block structure z.

We believe that the sufficient condition in Theorem 2 is sharp because for T = 1,
it is known [21] that exact recovery (in a frequentist sense) is impossible when
IT ≤ (2 − δ) logN

N
. A related result by [17] shows that observing multiple network

layers allows for consistent community detection (by a least squares estimator) from
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a sparser network. Specialised to T = 1, Theorem 2 also improves the result of
[6] who showed that I1 ≥ (4 + δ) logN

N
is sufficient for posterior exact recovery in

single-layer networks. In a frequentist setting, [18] presents consistency thresholds
for multilayer SBMs, which are comparable to those of Theorems 1 and 2.

3 Simulation study

We perform a simulation study to examine the effect of the number of observed
network layers on the classification accuracy of a community recovery algorithm.
In particular, we study the performance of an extension of the Gibbs sampler by
[22] that takes as an input a tensor of independent and identically distributed ad-
jacency matrices. The source code for replicating these experiments is available at
github.com/kalaluusua.

3.1 Posterior sampler

The dynamic SBM introduced in this section adopts the conjugate priors by [22],

Qab
iid∼ U[0, 1], 1 ≤ a ≤ b ≤ K,

z(i)
iid∼ MNK(1; θ), i ∈ [N ]

θ ∼ Dir(K;α).

(4)

where Qab is the link probability between the blocks a and b, MNk(n; p1, . . . , pk) is
the k-variate multinomial distribution with n trials, and Dir(k;α1, . . . , αk) is the k-
dimensional Dirichlet distribution. The associated network follows the distribution
(1), where Q(t) = Q for all t.

To take advantage of the increased number of observed layers, we adjust the
likelihood function accordingly, which by the independence of X(t) yields Π(X |
z, Q) =

∏T
t=1 L(z,X(t)), where

L(z,X(t)) =
∏

1≤a≤b≤K

Q
Oab(z,X

(t))
ab (1−Qab)

nab(z)−Oab(z,X
(t)) (5)

where Oab is the number of links between communities a and b, and nab is the
maximum number of links that can be formed between communities a and b.

We propose a dynamic posterior sampler that is an extension of the Gibbs
sampler introduced in [22]. The sampler approximates the posterior densities of
(θ,Q), z(1), . . . , z(N), where (θ,Q) is treated as a single random vector with the
prior density Π(θ,Q). Given the likelihood function (5), the conditional distribu-
tion of z(i) becomes

Π(z(i) = a | X,P, θ, z−i) = Cθa

T
∏

t=1

L(i)(z−i, X),

where z−i := (z(j))j 6=i and

L(i)(z−i, X) =

K
∏

b=1

Q
O

(i)
b

(z−i,X
(t))

ab (1−Qab)
n
(i)
b

(z−i)−O
(i)
b

(z−i,X
(t)),

5
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such that C is a constant independent of a, O
(i)
b is the number of i-v links such that

the node v ∈ G is assigned to community b, and n
(i)
b is the number of nodes v 6= i

in community b. The posterior distribution Π(θ,Q | z,X) is given by independent
Dirichlet distributions with parameters

(na + αa)a∈[K] for θ,
(

T
∑

t=1

Oab(X
(t)) + 1, Tnab −

T
∑

t=1

Oab(X
(t)) + 1

)

for Qab,

where 1 ≤ a ≤ b ≤ K. The posterior mode of Qab becomes 1/T
∑

tOab(X
(t))/nab,

the average proportion of ab-links over all layers. This is an extension of the block
constant least squares estimator used extensively in literature [23, 24, 4].

3.2 Simulation design

We study the community detection performance of the dynamic SBM on synthet-
ically generated networks of K = 2 communities of size N = 100. We choose the
following cases for link probabilities:

Case 1: p = 0.3 and q = 0.2;

Case 2: p = 0.15 and q = 0.1,

where p and q are the intra- and inter-block link probabilities, respectively. In
both cases we observe 10 synthetically generated networks with T ∈ {1, 3, 5, 7}
independent and identically distributed network layers. To control the sources of
variation, the 10 synthetically generated networks share a community structure z0
where the nodes are deterministically and uniformly assigned into K communities.
Finally, the networks are generated from (1) with Q0 = [ p q

q p ].
To construct a single point estimate of community assignment from the Markov

chain generated by the Gibbs sampler, we employ a method presented in [25]. The
method uses information from all the community assignments and selects a certain
average assignment. In practice, we average over the last 100 members of the se-
quence of 1100 states, and allow for an initial burn-in period of 1000 initial iterations
before stationary is reached.

To evaluate the accuracy of our estimate given the underlying community struc-
ture, we use the Hubert-Arabie adjusted Rand index [26, 27], which is a measure
of similarity between two community assignments. The index is one when the as-
signments are identical and zero when they are independent. Since the definition
disregards the relative community sizes, it tends to represent the level of agreement
among large communities. However, in our experiment the average community sizes
are close to being equal, and use of the index is justified.

3.3 Simulation results

Table 1 depicts the averages and the standard deviations of the classification error
dACE/N and the adjusted Rand index of our estimate, given the number of observed
network layers T and the link probabilities p, q. For each pair (T,Case i), the 10
simulated networks have N = 100 nodes with K = 2 communities, and connectivity
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parameters that vary between Case 1 and Case 2. The priors are described in (4).
The number of communities is known and α = (200, 200). From now on will refer to
the average adjusted Rand index by accuracy. The table also depicts the standard
deviation of each associated vector of estimates. Case 2 is more difficult than Case 1
since it invokes sparser networks where inter-block link probability is very close to
the intra-block link probability. The Rényi divergence I values corresponding to
cases 1 and 2 are 0.010 and 0.006, respectively. We expect that the community
detection performance improves as T increases and is overall worse in Case 2. This
is precisely what Table 1 shows.

Table 1: Average classification error (CE) and average adjusted Rand index (AR)
of the community assignment estimate with the corresponding standard deviation
in parenthesis.

Case 1 Case 2

T CE AR CE AR

1 0.34(0.13) 0.16(0.20) 0.45(0.03) 0.01(0.01)
3 0.03(0.01) 0.90(0.05) 0.30(0.15) 0.23(0.23)
5 0.01(0.01) 0.98(0.03) 0.09(0.09) 0.70(0.23)
7 0.00(0.01) 0.99(0.03) 0.04(0.02) 0.85(0.08)

When we inspect each case individually, we observe that the classification error
decreases and the adjusted Rand index increases as T increases. When T = 1, the
sampler misclassifies on average third of the observations in Case 1 (with an accuracy
of 0.16) and nearly half of the observations (with an accuracy of 0.01) in Case 2.
Recall that due to symmetry the domain of the classification error is [0, 1/2] and a
Rand index of 0.01 implies that the assignments are effectively independent. The
relatively large standard deviations in Case 1 imply that, despite the bad overall
performance, given a favourable initial values the sampler may correctly classify a
large proportion of the nodes. Relatively small standard deviations in Case 2 imply
that this is unlikely when the problem is more difficult. In Case 1 the accuracy
improves rapidly as the number of observed layers increases; when T = 3, the
sampler is very likely to classify all but few nodes correctly, while T values of 5 and
7 lead to near perfect accuracy. In Case 2 the increase in accuracy is more muted
but nevertheless apparent; when T = 3, the accuracy of the sampler resembles that
in Case 1 with T = 1, and when T = 7, it resembles that in Case 1 with T = 3.

4 Final remarks

There are many important questions left unanswered, including the question of
whether the sufficient conditions presented in Section 2 are also necessary. More-
over, our analysis is limited to stochastic block models with two communities. Gen-
eralizing the results for K > 2 communities, with K possibly unknown, is left for
future work. Another interesting research direction would be to further examine
community detection in networks that vary over time.
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5 Proofs

5.1 Mirkin distance

The Mirkin distance between z, w : [N ] → [K] is defined by

dMir(z, w) = 2(M01 +M10), (6)

where Mab is the number of unordered pairs {i, j} such that δz(i)z(j) = a and
δw(i)w(j) = b. The Mirkin distance is one of the common pair-counting based clus-
ter validity indices [28, 29], and it is related to the Rand index by dMir(z, w) =
N(N − 1)(1− dRand(z, w)).

Lemma 1. For K = 2, the Mirkin distance M = dMir(z, w), the Hamming distance

H = Ham(z, w), and the absolute classification error A = dACE(z, w) are related by

M = 2(N −H)H = 2(N − A)A. (7)

Proof. Denote the blocks under focus by Ck = {i : z(i) = k} and C ′
ℓ = {i : w(i) = ℓ}.

Also denote Nkℓ = |Ck ∩ C ′
ℓ|. For K = 2, we find that

M01 = N11N21 +N12N22,

M10 = N11N12 +N21N22.

By summing these, we find that

1

2
dMir(z, w) = M01 +M10 = (N11 +N22)(N12 +N21).

The first equality in (7) follows by noting that H = N12 + N21 and N11 + N22 =
N −H . The second equality in (7) follows by noting that for K = 2, the group of
permutations only contains the identity map and the transposition τ12 which swaps
1 and 2. In this case we find that Ham(z, τ ◦ w) = N − Ham(z, w). Therefore, the
term N(N −H) in (7) remains invariant if we replace w by τ ◦ w.

5.2 Upper bound on posterior mass

The following is a generalised version of [6, Proposition 3.1:(ii)] for multilayer SBMs.

Lemma 2. For any z ∈ Z and any S ⊂ Z not containing z, the expected posterior

mass relative to a prior distribution Π on Z is bounded by

PzΠX(S) ≤
∑

w∈S

(

Π(w)

Π(z)

)1/2

e−
1
4
IT dMir(z,w), (8)

where IT is defined by (3) and dMir(z, w) by (6).

Proof. By [30, Proposition D.1], it follows that for any z and w, the likelihood ratio

test φzw(X) = 1(Pw(X)
Pz(X)

> Π(z)
Π(w)

) satisfies

Π(z)Pzφzw +Π(w)Pw(1− φzw) ≤
Π(z)α

Π(w)α−1
ρα(Pz || Pw)

8



for all 0 < α < 1. By dividing both sides by Π(z), it follows that

Pzφzw +
Π(w)

Π(z)
Pw(1− φzw) ≤

(

Π(w)

Π(z)

)1−α

ρα(Pz || Pw) (9)

Let us define φz(X) = maxw∈S φzw(X). By [31, Lemma 2.2], we have

PzΠX(S) ≤ Pzφz +
∑

w∈S

Π(w)

Π(z)
Pw(1− φz).

Then Pzφz ≤
∑

w∈S Pzφzw and 1 − φz ≤ 1 − φzw for all w ∈ S, so it follows by (9)
that

PzΠX(S) ≤
∑

w∈S

Pzφzw +
∑

w∈S

Π(w)

Π(z)
Pw(1− φzw)

=
∑

w∈S

(

Pzφzw +
Π(w)

Π(z)
Pw(1− φzw)

)

≤
∑

w∈S

(

Π(w)

Π(z)

)1−α

ρα(Pz || Pw).

(10)

Recall that by (1), Pz =
∏

1≤i<j≤N Fz(i)z(j). Because Rényi divergence is linear
with respect to products, it follows that Dα(Pz || Pw) =

∑

1≤i<j≤N Dα(Fz(i)z(j) ||
Fw(i)w(j)). By definition of F , it now follows that

Dα(Pz || Pw) = M01Dα(g || f) +M10Dα(f || g).
By setting α = 1

2
and recalling definition (6), we find that

D1/2(Pz || Pw) =
1

2
dMir(z, w)IT . (11)

Inequality (8) follows by combining (10) and (11).

5.3 Preliminary estimates

Denote Bz,r = {w : dACE(z, w) ≤ r} and Sz,k = {w : dACE(z, w) = k}. By combining
Lemma 2 and Lemma 1, and assuming that Π is uniform1, it follows that error
quantity defined by (2) is bounded by

Errz(r) = PzΠX(B
c
z,r)

≤
∑

w∈Bc
z,r

(

Π(w)

Π(z)

)1/2

e−
1
4
dMir(z,w)IT

=
∑

w∈Bc
z,r

e−
1
2
IT (N−dACE(z,w))dACE(z,w)

=
∑

r<k≤N/2

|Sz,k| e−
1
2
IT (N−k)k.

By noting that |Sz,k| ≤ 2
(

N
k

)

, it follows that

Errz(r) ≤ 2
∑

r<k≤N/2

(

N

k

)

e−
1
2
IT (N−k)k. (12)

1It suffices to assume that Π restricted to S is uniform, and we might relax this assumption
rather easily.
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5.4 Proof of Theorem 1

Recall that2 |Sz,k| ≤ 2
(

N
k

)

≤ 2( eN
k
)k ≤ 2( eN

r
)k for all r < k ≤ N/2. Together with

the bound (N − k) ≥ N/2, we find that by applying (12) that

Errz(r) ≤ 2
∑

r<k≤N/2

(

eN

r

)k

e−
1
4
NIT k ≤ 2

∞
∑

k=1

bkr ,

where br = eN
r
e−

1
4
NIT . For r = ǫN for ǫ > 0 being a scale-independent constant,

we see that br → 0 due to IT ≫ N−1. In light of the above inequality, it follows
that Errz(ǫN) → 0 for every scale-independent constant ǫ > 0. Hence Theorem 1 is
valid.

5.5 Proof of Theorem 2

To prove Theorem 2, we will conduct a more careful analysis by splitting the sum
in (12) at ℓ = N2/3.

For 1 ≤ k ≤ ℓ, we apply the inequalities N−k ≥ N−ℓ and
(

N
k

)

≤ Nk

k!
to conclude

that
(

N
k

)

e−
1
2
(N−k)kIT ≤ ak

ℓ

k!
, where aℓ = Ne−

1
2
(N−ℓ)IT . For ℓ < k ≤ N/2, we apply

the same bounds as in the proof of Theorem 1, to conclude that
(

N
k

)

e−
1
2
(N−k)kI ≤ bkℓ

where bℓ = ( eN
ℓ
)e−

1
4
NIT . It follows by applying (12) with r = 0 that

Errz(0) ≤ 2
∑

1≤k≤ℓ

akℓ
k!

+ 2
∑

ℓ<k≤N/2

bkℓ

≤ 2
∑

k≥1

akℓ
k!

+ 2
∑

k≥1

bkℓ .

Especially, when bℓ < 1, we see that

Errz(0) ≤ 2(eaℓ − 1) +
2bℓ

1− bℓ
. (13)

Due to our choice ℓ = N2/3, we find that

− log aℓ =
1

2
(1−N−1/3)NIT − logN,

− log bℓ =
1

4
NIT − 1

3
logN − 1.

The assumption that NIT ≥ (2+δ) logN for some scale-independent constant δ > 0
now implies that − log aℓ → ∞ and − log bℓ → ∞, and therefore aℓ, bℓ → 0. Then
(13) shows that Errz(0) → 0 and confirms Theorem 2.

2Because k
k

k!
≤
∑

∞

s=0

k
s

s!
= ek, we see that

(

N

k

)

≤ N
k

k!
≤ ( eN

k
)k.
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