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Abstract—We consider the setting of publishing data without
leaking sensitive information. We do so in the framework of
Robust Local Differential Privacy (RLDP). This ensures privacy
for all distributions of the data in an uncertainty set. We
formulate the problem of finding the optimal data release protocol
as a robust optimization problem. By deriving closed-form
expressions for the duals of the constraints involved we obtain
a convex optimization problem. We compare the performance
of four possible optimization problems depending on whether or
not we require robustness in i) utility and ii) privacy.

I. INTRODUCTION

We consider a setting in which users have data (S,U)
with U ∈ R. A user wants to publish U , but does not want

to disclose information about their sensitive data S, which

may be correlated with U . Therefore, the users release an

obfuscated version Y of U , such that Y is as close to U
as possible, measured by mean squared distortion, without

leaking too much information about S. This scenario and

closely related ones have been studied in, for instance, [1]–

[10].

To measure the information leakage about S in Y we use

a form of Local Differential Privacy [11] that was introduced

in [12], which states that for each possible s1, s2 and y the

following should hold:

P(Y = y|S = s1) ≤ eεP(Y = y|S = s2). (1)

This condition is less strict than regular LDP, reflecting the

fact that only S, and not U itself, needs to be protected. Note

that (1) depends on the joint probability distribution PSU .

A privacy protocol is given by the conditional probability

distribution PY |SU , and given such a protocol, the distortion

is measured by E(U − Y )2, which also depends on PSU .

Thus both privacy and utility depend on the distribution

of the data. However, a user may not know this distribution

exactly and needs to estimate it. The odds ratio interpretation

of differential privacy [13] tells us that an attacker with a

better estimate may obtain more information about S than

the privacy protocol that is developed based on this estimate

would indicate. Furthermore, a good utility under the estimated

distribution may not imply a good utility under the actual

distribution.

In this paper, therefore, we demand stronger, robust pri-

vacy and utility guarantees. More concretely, we assume

that there exists a publicly available dataset from which the

users produce an estimate distribution P̂SU , and a set F of

probability distributions that do not differ significantly from
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Fig. 1: Overview. For clarity we write P ∗ = P ∗
SU and P̂ =

P̂SU . Since F is a confidence interval P ∗ may or may not be

an element of F .

P̂S,U (for a chosen significance level). Then robustness can be

incorporated in the following two ways:

1) We demand robust privacy by requiring (1) to hold for

all PSU ∈ F ;

2) We obtain robust utility by minimising

maxPSU∈F E(U − Y )2.

Robustness allows us to guarantee privacy and utility for all

probability distributions one can reasonably expect, without

sacrificing too much utility to account for unlikely distri-

butions. It is important to note that: i) robustness in utility

is w.r.t. our own uncertainty about PS,U and ii) robustness

in privacy is w.r.t. our uncertainty about current knowledge

by an attacker. The robustness of privacy and utility can

be incorporated independently, leaving us with four possible

optimization problems depending on for which of the two we

want robust guarantees.

In recent work [9], [10] we introduced the robust privacy

framework that we also use here. An important difference

is that in [9], [10] the utility measure is I(S,U ;Y ), leading

to an optimization problem is not convex. Therefore, similar

to [2], the resulting techniques for analysis in [9], [10] are

combinatorial in nature and heuristics are developed. In the

current work the utility measure is the mean-squared error,

leading to a non-robust optimization problem that is convex.

One of the main contributions of this paper is to provide

convex formulations of the corresponding robust optimization

problems. These formulations can be handled by standard con-

vex optimization solvers in order to obtain privacy protocols

that are provably optimal. Our numerical results demonstrate

that: i) without including robustness on the privacy constraints
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the effective privacy guarantees that are obtained are very

weak, ii) including robustness on privacy leads to a significant

penalty on utility, and iii) including a robustness constraint on

utility does not have a large impact if privacy robustness is

already imposed.

Our techniques are rooted in robust optimization [14], [15],

an important aspect of which is to use Fenchel duality on

constraints like (1) that need to hold for all distributions in F .

In [16] and [17] duals are derived for constraints involving

probabilities and uncertainty sets based on the χ2-test. A

major difference in the current work, and a contribution on the

technical side, is that (1) involves two conditional distributions

from F .

The structure of this paper is as follows. In Section II we

present the details of our model. We provide background on

robust optimization in Section III and present our analytical

results in Section IV. Insights obtained by numerical experi-

ments are given Section V. Finally, in Section VI we provide

a discussion and outlook on future work. PRoofs are presented

in the appendix.

II. MODEL

An overview of our model, the details of which are given in

this section, is given in Figure 1. There is a publicly accessible

dataset
−−−→
(s, u) of size n, in which each entry (si, ui) is drawn

independently from a probability distribution P ∗
SU on a set

S×U , where S and U ⊂ R are finite alphabets. New data items

(S,U) are also drawn from P ∗
SU . The user’s aim is to create a

release protocol PY |SU such that Y ∈ U is as close as possible

to U , while not leaking too much information about S. More

precisely, the goal is to minimize the distortion, measured as

E[d(U, Y )], where d is any distance function on U .

The distribution P ∗
SU is not known exactly. The uncertainty

set F ⊂ PS×U , where PS×U denotes the probability simplex

over S × U , captures the user’s uncertainty about P ∗
SU . It is

constructed from the dataset
−−−→
(s, u). More specifically, we let

FB be the (1− α)-confidence set for PSU in a χ2-test, i.e.,

FB =











PSU ∈ PS×U

∣

∣

∣

∣

∣

∣

∣

∑

s∈S,
u∈U

(P̂s,u − Ps,u)
2

Ps,u
≤ B











, (2)

where

B =
F−1
|S×U|−1(1− α)

n
, (3)

P̂SU is the empirical probability distribution of (S,U) and Fd

is the CDF of the χ2-distribution with d degrees of freedom.

For the remainder of this paper we fix B and write F := FB.

The user creates PY |SU in such a way that a Local Dif-

ferential Privacy-like privacy standard is guaranteed when

PSU ∈ F . We will denote this as robust local differential

privacy (RLDP) [10]; it is defined as follows.

Definition 1. Let ε ≥ 0 and F ⊂ PS×U . We say that PY |SU

satisfies (ε,F)-RLDP if for all s1, s2 ∈ S, all y ∈ Y , and all

PSU ∈ F we have

P(Y = y|S = s1) ≤ eεP(Y = y|S = s2). (4)

This is less strict than regular LDP [11], which requires

that not just S but also U be protected. Unlike regular LDP

it depends on PSU , which is why we demand robustness. In

terms of coefficients we can write (4) as

∀y, s1, s2∀PSU ∈ F : Ly,s1,s2(PSU , PY |SU ) ≤ 0, (5)

Ly,s1,s2(PSU , PY |SU )

=
∑

u∈U
(Pu|s1Py|s1,u − eεPu|s2Py|s2,u). (6)

We distinguish four possible optimization problems depend-

ing on whether or not we require robustness in i) utility and

ii) privacy. This gives:

NUNP: minimize E(S,U)∼P̂SU
[d(U, Y )] (7)

subject to

Ly,s1,s2(P̂SU , PY |SU ) ≤ 0, ∀y, s1, s2,

NURP: minimize E(S,U)∼P̂SU
[d(U, Y )] (8)

subject to

Ly,s1,s2(PSU , PY |SU ) ≤ 0,

∀PSU ∈ F , ∀y, s1, s2,

RUNP: minimize D (9)

subject to

E(S,U)∼PSU
[d(U, Y )] ≤ D, ∀PSU ∈ F ,

Ly,s1,s2(P̂SU , PY |SU ) ≤ 0, ∀y, s1, s2,

RURP: minimize D (10)

subject to

E(S,U)∼PSU
[d(U, Y )] ≤ D, ∀PSU ∈ F ,

Ly,s1,s2(PSU , PY |SU ) ≤ 0, ∀PSU ∈ F , ∀y, s1, s2.
In all these problems the optimization variable is PY |SU . Note

that NUNP corresponds to the ‘naive’ approach of assuming

P ∗
SU = P̂SU and doing nonrobust optimization.

We note that one can make different choices for the utility

[9], privacy [3], [12], and uncertainty set [17]. As we will see

below, robust optimization is a general framework that works

for many choices, but one needs problem-specific analytic

results (Theorems 2 & 4 and Lemmas 1 & 2 below) in order to

reformulate (7)–(10) as convex optimization problems, which

can be fed to a solver.

III. ROBUST OPTIMIZATION

Problems (8)–(10) are robust optimization problems [14],

[15]. In this section we provide some background on robust

optimization.

Let f : R
m × R

n → R̄ be defined on the extended

real line R̄ = R ∪ {−∞,∞} and for a given x ∈ R
n



define dom(f(· , x)) = {a| f(a, x) > −∞}. Consider an

optimization problem with constraint

f(a, x) ≤ 0, ∀a ∈ A, (11)

where x ∈ R
n is the optimization variable, a ∈ R

m is an

uncertain parameter and A is the uncertainty set for which we

need the constraint to hold. The robustness constraints in (8)–

(10) are of the form (11) with PSU and PY |SU in the roles of

a and x, respectively.

The main tool that is used in this paper is based on Fenchel

duality. In order to present this, let

f∗(v, x) = inf
a∈Rm

vT a− f(a, x) (12)

and

δ∗(v | A) = sup
a∈A

vTa, (13)

which are known as the partial concave conjugate of f and the

support set of A, respectively. Also, let ri(·) denote the relative

interior of a set. We will extensively use the following result.

Theorem 1 ( [15]). Let x ∈ R
n. If f(a, x) is closed concave

in a and ri(A) ∩ ri(dom(f(· , x))) 6= ∅, then x satisfies (11)

if and only if

∃v ∈ R
m s.t. δ∗(v | A) ≤ f∗(v, x). (14)

Since δ∗(v | A) and f∗(v, x) are convex and concave func-

tions, respectively, Theorem 1 provides a means to efficiently

solve robust optimization problems once these functions are

found in closed form. Another result we use is that Theorem 1

can be applied independently to each uncertain constraint [14],

and so we can handle robust utility and robust privacy sepa-

rately.

IV. CLOSED-FORM EXPRESSIONS FOR ROBUSTNESS

While Theorem 1 is a powerful tool to deal with the

universal quantifiers in the robust constraints, the downside is

that one has to find closed forms of the functions δ∗(•|A) and

f∗(•, x). In this section, we show how to do this for the robust

utility and privacy constraints of (7)–(10). As will become

apparent from the discussion below, the solutions we find are

specific to our choice of privacy, utility, and uncertainty set.

A. Robust utility

The robust utility constraint in RUNP and RURP is of the

form

E(S,U)∼PSU
[d(U, Y )] ≤ D, ∀PSU ∈ F . (15)

We can write this as

ED(PSU , PY |SU ) ≤ 0, ∀PSU ∈ F , (16)

ED(PSU , PY |SU ) = E[d(U, Y )]−D (17)

=
∑

y,s,u

Ps,uPy|s,ud(u, y)−D. (18)

Using Theorem 1 we can write this as

∃v ∈ R
|S×U| : δ∗(v|F) ≤ ED∗(v, PY |SU ). (19)

Thus we need to find expressions for δ∗(v|F) and

ED∗(v, PY |SU ). Since ED is linear in PSU , one easily derives

the following [14]:

Lemma 1. Let ED(PSU , PY |SU ) = E[d(U, Y )] − D, with

uncertain parameter PSU and optimization variable PY |SU .

Then

ED∗(v, PY |SU )

=

{

D, if ∀s, u : vs,u =
∑

y Py|s,ud(y, u),

−∞, otherwise.
(20)

The expression for δ∗(v|F) is a little bit more work, but can

be found using established results in convex analysis [15]. A

related result is found in [17, Thm. 5].

Theorem 2.

δ∗(v|F) = min
w≥v,c≥0

{

− 2
√
c
∑

s,u

P̂s,u

√

ws,u − vs,u

+max
s,u

ws,u + c(B + 1)

}

. (21)

Combining these results, we can write the robust utility

constraint (15) as

δ∗





(

∑

y

Py|s,ud(y, u)

)

s∈S,u∈U

∣

∣

∣

∣

∣

∣

F



 ≤ D, (22)

where δ∗(•|F) is as in Theorem 2.

B. Robust privacy

Fix y, s1, s2. The robust privacy constraint in NURP and

RURP is of the form

Ly,s1,s2(PSU , PY |SU ) ≤ 0, ∀PSU ∈ F . (23)

One would like to apply Theorem 1; however, Ly,s1.s2 is

not convex in PSU . Therefore we rewrite it as follows. Let

FU|s1,s2 be the projection of F onto PU × PU by the map

P 7→ (PU|s1 , PU|s2 ). We can write (23) as

∀(PU|s1 , PU|s2) ∈ FU|s1,s2 :

L̃y,s1,s2(PU|s1 , PU|s2 , PY |SU ) ≤ 0, (24)

where

L̃y,s1,s2(PU|s1 , PU|s2 , PY |SU )

=
∑

u∈U
(Pu|s1Py|s1,u − eεPu|s2Py|s2,u). (25)

Again we use Theorem 1 to write this as

∃v1, v2 ∈ R
|U| : δ∗(v1, v2|FU|s1,s2) ≤ L̃y,s1,s2∗(v1, v2, PY |SU ).

(26)

Thus we need to find expressions for these functions. As

L̃y,s1,s2(PU|s1 , PU|s2 , PY |SU ) is linear in its first two argu-

ments, we find the following:



Lemma 2. One has

L̃y,s1,s2∗(v1, v2, PY |SU )

=











0, if ∀u : v1,u = Py|s1,u,

and v2,u = −eǫPy|s2,u,

−∞, otherwise.

(27)

The expression for δ∗(v1, v2|FU|s1,s2) takes considerably

more effort, in part because we first have to find a closed

expression for FU|s1,s2 . This is given in the following result:

Theorem 3.

FU|s1,s2 =

{

(

RU|s1 , RU|s2
)

∈ P2
U

∣

∣

∣

∣

∣

2
∑

i=1

√

√

√

√

∑

u

P̂ 2
si,u

Ru|si
≤

√
B + 1− 1 +

2
∑

i=1

P̂si

}

. (28)

Similar to, but more in a more complicated way than,

Theorem 2, one can prove:

Theorem 4. The support function of FU|s1,s2 is given by

δ∗(v1, v2|FU|s1,s2) = min
c≥0,w1≥v1,w2≥v2

{

− (2−2/3 + 21/3)c2/3
2
∑

i=1

(

∑

u

P̂si,u

√

wi(u)− vi(u)

)2/3

+
2
∑

i=1

max
u

wi(u) + c

(√
B + 1− 1 +

2
∑

i=1

P̂si

)

}

. (29)

Thus we can write (23) as

δ∗
(

(Py|s1,u)u∈U , (Py|s2,u)u∈U
∣

∣FU|s1,s2
)

≤ 0, (30)

where δ∗(•|FU|s1,s2) is as in Theorem 4. Replacing (15) by

(22), and (23) by (30) allows us to provide convex formula-

tions of (7)–(10). In the next section we provide some insights

that are obtained through numerical experiments.

V. NUMERICAL EXPERIMENTS

The performance measures that we consider are

D∗ = E(S,U)∼P∗

SU
[d(U, Y )] (31)

and

ε∗ = log max
y,s1,s2

Py|s1
Py|s2

, (32)

interpreting 0/0 as 1 and with ε∗ = ∞ if there exist y, s1
and s2 for which Py|s2 = 0 and Py|s1 > 0. These measures

give the performance of the PY |SU that is obtained from

optimization under the actual distribution P ∗
SU .

In all experiments we use S = {0, 1, 2}, U = {0, 1, 2, 3, 4},

d(x, y) = (x − y)2, α = 0.05 and ε = 0.5. We draw P ∗
SU

according to the Jeffreys prior on PS×U , i.e., the symmetric

Dirichlet distribution with parameter 1
2 [18].

In our first experiment we draw K = 30 instances of P ∗
SU .

For each instance, we draw n samples (s, u) from which we

estimate P̂SU . For each of the K = 30 instances we report

ε∗ and D∗ in a scatter plot. We do so for each combination

of nonrobust/robust utility and privacy (nomenclature in (7)–

(10)). In Figures 2a and 2b the results are depicted for n =
5|S||U| = 75 and for n = 103|S||U| = 15, 000, respectively.

Instances that have ǫ∗ = ∞ are omitted from the figures.

We observe that without robustness in privacy, i.e., NUNP

and RUNP, almost all instances have significantly lower pri-

vacy performance than what they are designed for, i.e., ε∗ ≫ ε.

Also, by introducing robustness in privacy as a hard constraint,

we significantly suffer in terms of utility. Note though that

even with robust privacy we do not always get ε∗ ≤ ε; this

is because P ∗ ∈ F only with probability 1 − α. In Figure

2a NURP has more than the expected number of outliers,

which can be explained from the fact that the χ2 test only

asymptotically gives a confidence interval as n → ∞. Another

interesting observation (which will be confirmed by the next

experiments) is that once we have imposed robust privacy,

imposing robust utility does not make much difference, i.e.,

NURP and RURP are very similar. This shows that the utility

cost of demanding robust privacy is considerably greater than

the utility benefit of demanding robust utility. Note, that by

comparing to Figure 2b, some of the large ε∗ values for

NURP in Figure 2a seem to be small sample artifacts. A final

observation is that in both figures there are outliers, especially

in ε∗.

Our second experiment illustrates the influence of n. We

give the mean D∗ and ε∗ over K = 103 instances as a function

of n in Figures 2c and 2d, respectively. In addition to the mean

we report the standard deviation. Thick lines depict the mean

over K = 103 samples, the width of the bands correspond to

±1 standard deviation. Both are computed by first removing

outliers based on the 1.5IQR rule.

We observe that for small n, due to the large uncertainty

on PSU , RURP is very conservative with ε∗ ≪ ǫ. The figures

also confirm that imposing robustness in utility has relatively

little impact.

Our implementations are in CVX [19] and are solved using

Mosek [20].

VI. DISCUSSION

We have given convex formulations of optimization prob-

lems for finding robust data release protocols PY |SU . In

addition we also studied the non-robust form. Numerical

experiments revealed that the non-robust forms achieve privacy

levels that are much worse than anticipated. In particular, the

naive approach of assuming P ∗
SU = P̂SU leads to undesirable

privacy leakage.

Our convex formulations and corresponding implementa-

tions have a number of variables and constraints that grows

exponentially in |S| and |U|. It would be of great interest to

develop bounding methods that have reduced complexity, but

that still provide strong guarantees.

The current model imposes that the output alphabet of

PY |SU is equal to the input alphabet U . It would be of interest

to leverage this assumption.
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Fig. 2: Experimental results on K instances for optimization under Nonrobust/Robust Utility and Nonrobust/Robust Privacy.

(α = 0.05, ε = 0.5, |S| = 3, |U| = 5)
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APPENDIX A

PROOF OF THEOREM 3

Proof: Denote the RHS of (28) by FU|s1,s2 . Let
(

RU|s1 , RU|s2
)

∈ FU|s1,s2 and define PSU ∈ R
S × R

U as

Ps,u =











κ1

κ1+κ2+κ3
Ru|s1 , if s = s1,

κ2

κ1+κ2+κ3
Ru|s2 , if s = s2,

1
κ1+κ2+κ3

P̂s,u, if s 6= s1, s2,

(33)

with

κ1 = P̂s1

√

√

√

√

∑

u

P̂ 2
u|s1

Ru|s1
, κ2 = P̂s2

√

√

√

√

∑

u

P̂ 2
u|s2

Ru|s2
, (34)

and κ3 = 1− P̂s1 − P̂s2 . Then

∑

s,u

Ps,u = 1
κ1+κ2+κ3

(

(35)

κ1

∑

u

Ru|s1 + κ2

∑

u

Ru|s2 +
∑

s/∈{s1,s2},u
P̂s,u

)

= 1
κ1+κ2+κ3

(κ1 + κ2 + κ3) = 1, (36)

so PSU ∈ PS×U . Furthermore,

∑

s,u

P 2
s,u

Ps,u
= (κ1 + κ2 + κ3)

(

(37)

∑

u

P̂ 2
s,u

κ1Ru|s1
+

P̂ 2
s,u

κ2Ru|s2
+

∑

s/∈{s1,s2},u
P̂s,u

)

= (κ1 + κ2 + κ3)
2. (38)

Since (RU|s1 , RU|s2 ∈ FU|s1,s2 , one has κ1 + κ2 + κ3 ≤√
B + 1. It follows that

∑

s,u

(Ps,u − P̂s,u)
2

Ps,u
=
∑

s,u

(Ps,u − 2P̂s,u) +
∑

s,u

P 2
s,u

Ps,u
(39)

= (κ1 + κ2 + κ3)
2 − 1 (40)

≤ B, (41)

which shows that PSU ∈ F . It is clear that PSU projects to
(

RU|s1 , RU|s2
)

. This shows that FU|s1,s2 ⊂ FU|s1,s2 .

Next, let PSU ∈ F . From (2) it follows that

P̂ 2
s1

Ps1

∑

u

P̂ 2
u|s1

Pu|s1
+

P̂ 2
s2

Ps2

∑

u

P̂ 2
u|s2

Pu|s2
+

(

1− P̂s1 − P̂s2

)2

1− Ps1 − Ps2

≤ B + 1. (42)

Application of the Cauchy-Schwartz inequality on the vectors





P̂s1
√

Ps1

√

√

√

√

∑

u

P̂ 2
u|s1

Pu|s1
,

P̂s2
√

Ps2

√

√

√

√

∑

u

P̂ 2
u|s2

Pu|s2
,

1− P̂s1 − P̂s2
√

1− Ps1 − Ps2





and
(

√

Ps1 ,
√

Ps2 ,
√

1− Ps1 − Ps2

)

,

gives



P̂s1

√

√

√

√

∑

u

P̂ 2
u|s1

Pu|s1
+ P̂s2

√

√

√

√

∑

u

P̂ 2
u|s2

Pu|s2
+ 1− P̂s1 − P̂s2





2

≤ P̂ 2
s1

Ps1

∑

u

P̂ 2
u|s1

Pu|s1
+

P̂ 2
s2

Ps2

∑

u

P̂ 2
u|s2

Pu|s2
(43)

+

(

1− P̂s1 − P̂s2

)2

1− Ps1 − Ps2

,

which together with (42) yields

P̂s1

√

√

√

√

∑

u

P̂ 2
u|s1

Pu|s1
+ P̂s2

√

√

√

√

∑

u

P̂ 2
u|s2

Pu|s2

+1− P̂s1 − P̂s2 ≤
√
B + 1, (44)

which shows that FU|s1,s2 ⊂ FU|s1,s2 . This completes the

proof.

APPENDIX B

CONCAVE CONJUGATES

In this section we prove Lemmas 1 and 2. Since both ED

and L̃y,s1,s2 are linear in the uncertain variable, they both

follow directly from the following result:

Lemma 3. Let f be a convex function, and let x be such that

f(a, x) is linear in v; write f(v, x) = bTx a+ cx. Then

f∗(v, x) =

{

−cx, if v = bx,

−∞, otherwise.
(45)

Proof: By definition

f∗(v, x) = inf
a
(v − bx)

T a− cx. (46)

If v − bx 6= 0, then the inner product can become arbitrarily

negative, and so f∗(v, x) = −∞. If v = bx, however, then the

RHS is equal to −cx no matter the choice of a.

‘
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APPENDIX C

SUPPORT FUNCTIONS

In this appendix we prove Theorems 2 and 4. We first state

a number of standard results of convex analysis, which can

be found, for instance, in [15]. For a closed convex function

f : Rn → R ∪ {±∞} and v ∈ R
n we write

f∗(v) = sup
x∈Rn

vTx− f(x). (47)

Lemma 4 ( [15]). For C ∈ R one has (f+C)∗(v) = f∗(v)−
C.

Lemma 5 ( [15]). Let h1, . . . , hk : R
n → R ∪±∞ be closed

convex functions, and let

A =







(x1, . . . , xk) ∈ R
2n

∣

∣

∣

∣

∣

∣

∑

j

hj(xj) ≤ 0







. (48)

Then

δ∗(v1, . . . , vk|A) = min
c≥0







c
∑

j

h∗
j

( vj
c

)







. (49)

Lemma 6 ( [15]). One has δ∗(v1, v2|A × B) = δ∗(v1|A) +
δ∗(v2|B).
Lemma 7 ( [15]). Let A,B be closed sets such that ri(A) ∩
ri(B) 6= ∅. Then

δ∗(v|A ∩ B) = min
t,w

{δ∗(t|A) + δ∗(w|B)|t+ w = v} . (50)

Proof of Theorem 2: We can write

δ∗(v|F) = δ∗(v|PS×U ∩ B), (51)

B = {R ∈ R
|S×U||g(R)−B − 1 ≤ 0}, (52)

g(R) =
∑

s,u

gs,u(Rs,u), (53)

gs,u(Rs,u) =
P̂ 2
s,u

Rs,u
. (54)

Then by Lemma 7

δ∗(v|F) = min
t,v

{δ∗(t|B) + δ∗(w|PS×U ) | t+ w = v}. (55)

For the second term on the RHS have

δ∗(w|PS×U ) = max
PSU∈PS×U

∑

s,u

Ps,uws,u = max
s,u

ws,u. (56)

Furthermore it follows from Lemmas 4 and 5 that

δ∗(t|B) = min
c≥0

{

c
∑

s,u

g∗s,u

(

ts,u
c

)

+ c(B + 1)

}

, (57)

so it remains to determine

g∗s,u(z) = sup
x

xz − P̂ 2
s,u

x
. (58)

for z ∈ R. We find this by taking the derivative w.r.t. x, and

we have to solve

z +
P̂ 2
s,u

x2
= 0 (59)

hence x =
P̂ 2

s,u√
−z

(if z > 0, then the maximum does not exist

and g∗s,u(z) = ∞). Substituting this we find

g∗s,u(z) = −2
√
−zP̂s,u. (60)

Combining this with (55) and (56), and substituting t = w−v,

now proves the Theorem.

Proof of Theorem 3: We have

δ∗(v1, v2|FU|s1,s2) = δ∗(v1, v2|(PU × PU) ∩ A), (61)

where

A =
{

(R1, R2) ∈ R
|U| × R

|U|
∣

∣

∣h(R1, R2) ≤ 0
}

, (62)

h(R1, R2) = h1(R1) + h2(R2)− C, (63)

h1(R1) =

√

√

√

√

∑

u

P̂ 2
s1,u

Ru|s1
, (64)

h1(R2) =

√

√

√

√

∑

u

P̂ 2
s2,u

Ru|s2
, (65)

C =
√
B + 1− 1 + P̂s1 + P̂s2 . (66)

By Lemma 7 one has

δ∗(v1, v2|FU|s1,s2) (67)

= min
t1,t2,w1,w2

{δ∗(t1, t2|A) + δ∗(w1, w2|PU × PU )} .

By Lemma 6 we have

δ∗(w1, w2|PU × PU) = δ∗(w1|PU ) + δ∗(w2|PU). (68)

As in (56)

δ∗(w|PU ) = max
P∈PU

PTw (69)

= max
u

wu. (70)

Now let us consider δ∗(t1, t2|A). Applying Lemmas 4 and

5, we get

δ∗(t1, t2|A) = min
c≥0

{

h∗
1

(

t1
c

)

+ h∗
2

(

t2
c

)

+ cC
}

, (71)

so it remains to find expressions for the h∗
i . This is done in

Lemma 8 below; combining this with equations (67)–(71) now

proves the Theorem.

Lemma 8. Let h : Rk → R, h(x) =
√

∑k
i=1

κ2
i

xi
, with κi > 0.

Let λ =
∑k

i=1 κi
√−vi. Then

h∗(v) =

{

−(2−2/3 + 21/3)λ2/3, if maxi vi ≤ 0,

∞, otherwise.
(72)

Proof: By definition

h∗(v) = sup
x∈Rk





k
∑

i=1

vixi −

√

√

√

√

k
∑

i=1

κ2
i

xi



 . (73)



Note, that if any of the vi are positive, then h∗(v) is un-

bounded. Furthermore, for those i ∈ {1, . . . , k} for which

vi = 0, we get xi → ∞ and 0 = κi
√−vi contribution to

h∗(v). Therefore, only need to consider maxi vi < 0 in the

remainder. The partial derivative w.r.t. xi of the expression

that is optimized is

vi +
1

2

√

∑k
j=1

κ2
j

xj

κ2
i

x2
i

. (74)

This means that all partial derivatives are zero if x is of the

form

xi = c
κi√−vi

, (75)

for some constant c > 0. This gives

h∗(v) = sup
c>0

(

−cλ−
√

λ

c

)

, (76)

where λ =
∑k

i=1 κi
√−vi. This supremum is attained at

c = 2−2/3λ−1/3. (77)

Substituting this into (76) completes the proof.
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