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Abstract—We consider the problem of designing a coding
scheme that allows both sparsity and privacy for distributed
matrix-vector multiplication. Perfect information-theoretic pri-
vacy requires encoding the input sparse matrices into matrices
distributed uniformly at random from the considered alphabet;
thus destroying the sparsity. Computing matrix-vector multipli-
cation for sparse matrices is known to be fast. Distributing the
computation over the non-sparse encoded matrices maintains
privacy, but introduces artificial computing delays. In this work,
we relax the privacy constraint and show that a certain level of
sparsity can be maintained in the encoded matrices. We consider
the chief/worker setting while assuming the presence of two
clusters of workers: one is completely untrusted in which all
workers collude to eavesdrop on the input matrix and in which
perfect privacy must be satisfied; in the partly trusted cluster,
only up to z workers may collude and to which revealing small
amount of information about the input matrix is allowed. We
design a scheme that trades sparsity for privacy while achieving
the desired constraints. We use cyclic task assignments of the
encoded matrices to tolerate partial and full stragglers.

I. INTRODUCTION

With the emergence of machine learning applications, the
necessity of performing intensive computations is increasing.
In several applications, performing the intensive computations
on a single processing node is computationally infeasible. Dis-
tributed computing arose as a ubiquitous solution. However,
distributing the computation comes at the expense of privacy
and latency challenges.

We focus on the chief/worker setting in which a main
computational node called chief wants to run intensive compu-
tations on its data. The chief divides the intensive computation
task into smaller tasks assigned to computation nodes called
workers. Waiting for all workers is prone to the presence of
stragglers, i.e., slow or unresponsive workers [1]. Coding-
theoretic techniques were proposed as a promising solution
to mitigate the effect of straggler, thus speeding up the
overall distributed computation [2]. In several applications, the
computation is run on sensitive and private data, e.g., medical
records and genomes. Leaking information about such data
may violate privacy policies and potentially harm the owner
of the data [3]. Therefore, when distributing the computational
tasks to untrusted workers, extra care must be taken to preserve
the privacy of the data.

Matrix-vector multiplication is a key computation of many
machine learning algorithms, such as principal component
analysis, support vector machines and other gradient-descent
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based algorithms [4], [5]. Codes mitigating stragglers in dis-
tributed matrix-vector multiplication, e.g., [2], [6]–[9] destroy
the underlying structure of the input matrices. Of particular
importance are applications involving the multiplication of
sparse matrices [10], i.e., matrices that have a relatively small
number of non-zero entries. Sparse matrices are efficiently
stored and allow fast and efficient computations [11], [12].
Destroying the sparsity of the input matrices may incur arti-
ficial delays at the computing nodes. Hence, coding-theoretic
techniques maintaining the sparsity of the underlying matrices
and mitigating the stragglers are investigated [13], [14].

We consider information-theoretic privacy, i.e., the
eavesdropper has unbounded computational power. When
information-theoretic privacy is required, most of the
works consider perfect information-theoretic privacy, i.e.,
no information about the input data is leaked to the
eavesdropper, e.g., [15]–[19]. In order to achieve perfect
privacy, the matrices sent as computational tasks to the
workers are padded (mixed) with random matrices generated
uniformly at random from a given alphabet. The random
matrices are required to be generated independently and
uniformly at random to achieve perfect privacy. However,
such matrices have a dense structure, i.e., the number of
non-zero elements is relatively high, which destroys the
sparsity of the computational tasks and increases the time
needed to finish the distributed computation, see for example
the analysis in [13].

In this work, we focus on designing a sparse and private
matrix-vector multiplication scheme. We relax the perfect
privacy constraint. The random matrices are then not required
to be generated uniformly at random from the desired alphabet.

Related work: Using codes for straggler mitigation in
distributed matrix-vector multiplication obtained a significant
interest from the scientific community, e.g., [6]–[8], [20]–[23].
The works in [15], [16], consider one-sided privacy, i.e., the
matrix-vector multiplication setting in which the input matrix
must remain private and the vector can be revealed to the
workers. On the other hand, the works in [17]–[19], [24]–[27]
consider double-sided privacy, i.e., the setting of matrix-matrix
multiplication in which both input matrices must be kept
private. The works of [13] and [14] are among the first that
consider a sparsity-preserving coded computing scenario. In
[13], the authors consider a matrix-matrix multiplication where
both input matrices are sparse. The matrices are encoded using
Fountain codes [28] with a custom-made degree distribution
to ensure sparsity. The authors of [14] consider, among other
scenarios, a distributed matrix-vector multiplication setting in
which the input data is partitioned into smaller matrices. Those
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matrices are then distributed to the processing units using a
fractional repetition code to mitigate stragglers. This technique
ensures sparsity of the assigned tasks and tolerates stragglers.
To increase the straggler tolerance, the authors propose an
additional layer of non-sparse coded matrices distributed to
the workers. The authors in [29] consider a sparsification

technique of the input data to leverage the sparsity properties
of the distributed tasks. They also adapt their scheme to ensure
perfect privacy against colluding workers. The work in [30]
considers the case where a dense input matrix is sparsified to
speed up the computation.

Contributions and organization: We are interested in pre-
serving both, privacy and sparsity, of the input matrix. Insisting
on perfect privacy does not allow the creation of sparse tasks.
We open the door to sparse and private coded computing
by relaxing the privacy requirement. We set the notation
and formally explain the system model in Section II. In
Section III we introduce the trade-off between sparsity and
privacy through a coding strategy and optimize this trade-off
for the setting at hand. We combine, in Section IV, our strategy
with a task distribution scheme to create a coded computing
scheme that tolerates stragglers and trades sparsity for privacy.

II. PRELIMINARIES

Notation: We denote matrices and vectors by uppercase
and lowercase bold letters, e.g., X and x, respectively. The
(i, j)-th entry of a matrix X is denoted by X{i,j}. Random
variables are denoted by uppercase typewriter letters, e.g., Y.
The random variables representing a matrix X and its (i, j)-th
entry X{i,j} are denoted respectively by X and X{i,j}. A finite
field of cardinality q is denoted by Fq and its multiplicative
group is denoted by F

∗
q , i.e., F∗

q = Fq \ {0}. Sets are denoted
by calligraphic letters, e.g., X . For a positive integer b, the
set {1, 2, . . . , b} is denoted by [b]. Given b random variables
Y1, . . . ,Yb and a set I ⊆ [b], the set {Yi}i∈I contains the

random variables indexed by I, i.e., {Yi}i∈I , {Yi|i ∈ I}.
The q-ary entropy of a random variable X ∈ Fq is denoted
by Hq(X) and Hq([p1, p2, . . . , pq]) interchangeably, where
[p1, p2, . . . , pq] is the probability mass function (PMF) of X
over Fq, i.e., Pr(X = i) = pi for all i ∈ Fq. The q-ary
mutual information between two random variables X and Y is
denoted by Iq(X;Y). The indicator function 1condition is one if
“condition” is true, and zero otherwise. We define the sparsity
of a matrix as follows.

Definition 1. (The sparsity level of a matrix X) A matrix

X whose entries are independently and identically distributed

(i.i.d.) has a sparsity level S(X) equal to the probability of its

(i, j)-th entry being equal to 0, i.e.,

S(X) = Pr{X{i,j} = 0}

System model: We consider the scenario where a chief node
owns a private large sparse matrix A and a public vector x.
The matrix A ∈ F

m×n
q has a sparsity level S(A) = s >

q−1. We assume that the entries of the matrix A are i.i.d
with Pr{A{i,j} = 0} = s and Pr{A{i,j} = a} = 1−s

q−1 where

a ∈ F
∗
q . The vector x ∈ F

n×k
q is assumed to be uniformly

distributed over Fq, i.e., S(x) = q−1. The chief is interested
in computing y = Ax. The chief distributes the computation
to external nodes (referred to as workers) that are hired from
two different non-communicating clusters. The workers of the
clusters have the following properties:

1) Untrusted cluster: This cluster consists of N1 workers,
wu

i , for i = 1, . . . , N1, that are fully untrusted. No leak-
age of information about A to those workers is tolerated,
i.e., perfect information-theoretic privacy is required here.
The only guarantee that the chief has from this cluster is
that the workers are honest but curious.

2) Partly trusted cluster: This cluster consists of N2 work-
ers, wt

i , for i = 1, . . . , N2. The workers of this cluster
are honest but curious. However, a known limit of the
workers (up to z) collude to eavesdrop on the data of the
chief. In addition, leaking a small amount of information
about the matrix A to those workers is tolerated.

3) Stragglers: The workers may be assigned several compu-
tational tasks. Full stragglers are unresponsive workers.
In contrast, partial stragglers return part of their compu-
tational tasks to the chief.

Our privacy measure is information-theoretic privacy. Given
the random variables A and B, we say that observing a
realization B of B leaks ε , Iq(A;B) information about A. If
the leakage ε is zero, we say that perfect privacy is attained.

III. TRADING PRIVACY FOR SPARSITY

We provide a coding strategy that encodes a sparse matrix
A, with s , S(A) > q−1, into two matrices B1 and B2

such that: i) B1 and B2 have a desired sparsity level s1 and
s2, q−1 < s1, s2 ≤ s; ii) B1 and B2 leak a limited amount
of information ε about A, i.e., Iq(A;B1) + Iq(A;B2) ≤ ε;
and iii) A can be decoded from B1 and B2. Our strategy
provides a trade-off between the sparsity levels of the encoded
tasks s1, s2 and the overall leakage ε. We base our scheme
on Shannon’s one-time pad [31], where the chief generates a
random matrix R that is as big as A. The encoded matrices are
B1 = R and B2 = A+R, where the addition is entry-wise.
We restrict our attention to the setting where Iq(A;B2) = 0,
and generalize our results in a future work.

Dependent sparse one-time pad: If R is generated uniformly
at random from Fq, then perfect privacy is achieved, but no
sparsity in R and A+R is maintained. To overcome the issue
of obtaining dense matrices, we allow the random matrix R to
be generated dependently from the input private matrix A. The
main idea is to design a probability distribution to generate R

such that good sparsity levels and low leakage are guaranteed.
Since the entries Ai,j of A are assumed to be independent, we
treat the entries of R independently. We define two conditional
PMFs for the generation of R{i,j} given as follows.

Pr{R{i,j} = r|A{i,j} = 0} =







pz0, r = 0
1− pz0

q − 1
, r 6= 0,

(1)

Pr{R{i,j} = r|A{i,j} = a} =







pnz0, r = −a
1− pnz0

q − 1
, r 6= −a.

(2)



where r ∈ Fq , a ∈ F
∗
q , −a is the additive inverse of a in

F
∗
q and pz0 and pnz0 are non-negative numbers smaller than

1. This strategy allows the padded matrix A + R to inherit
some zero entries from A unless pz0 = 0, see (1). Moreover,
the padded matrix will have some zero entries in the positions
where the matrix A has non-zero entries for the case where
pnz0 6= 0, see (2). The results are formally stated next.

Lemma 1. Given an input matrix A with a sparsity level

S(A) = s and a random matrix R generated as shown

in (1) and (2), the sparsity level of the padded matrix and the

random matrix are given by S (A+R) = (pz0−pnz0)s+pnz0
and S(R) = pz0s + (1 − pnz0)

(1−s)
q−1 . The leakage about the

input matrix is quantified by Iq(A+ R;A) = mnL1(pz0, pnz0)
and Iq(R;A) = mnL2(pz0, pnz0), where L1(pz0, pnz0) and

L2(pz0, pnz0) are given in (6) and (7), respectively.

Remark 1. Analyzing the dependency of the total leakage

mn(L1(pz0, pnz0) + L2(pz0, pnz0)) and the total sparsity

S(R)+S(A+R) on pz0 and pnz0 allows us to understand the

nature of the tradeoff between sparsity and privacy. Prelimi-

nary observations show that both those quantities are increas-

ing in pz0 and pnz0 for certain regimes. In this work we study

the trade-off for the case where pz0 = pnz0 = p (Lemma 2)

since it fits the model requirements, cf., Observation 1. We

leave the general analysis for future investigation.

Proof of Lemma 1. We first compute S(A + R). Note that
the entries of the padded matrix A+R are independently and
identically distributed (i.i.d). That holds because the entries
of A are assumed to be i.i.d. and the entry Ri,j of R only
depends on Ai,j . This allows us to write the following

S (A+R) = Pr{A{i,j} + R{i,j} = 0}

=

q−1
∑

ℓ=0

Pr{A{i,j} = ℓ,R{i,j} = −ℓ}

=

q−1
∑

ℓ=0

Pr{R{i,j} = −ℓ|A{i,j} = ℓ}Pr{A{i,j} = ℓ}

= (pz0 − pnz0)s+ pnz0.

To compute S(R), we use the total law of probability to write

S (R) = Pr{R{i,j} = 0}

=

q−1
∑

ℓ=0

Pr{R{i,j} = 0|A{i,j} = ℓ}Pr{A{i,j} = ℓ}

= pz0s+ (1− pnz0)
(1− s)

q − 1
. (3)

We now quantify the leakage of our coding scheme. To
that end we quantify the leakage Iq (A+ R;A) and Iq (R;A),
respectively. Since the entries of A+R and R are i.i.d., then

Iq (A+ R;A) = mnIq
(

A{i,j} + R{i,j};A{i,j}

)

, mnL1(pz0, pnz0),

Iq (R;A) = mnIq
(

R{i,j};A{i,j}

)

, mnL2(pz0, pnz0),

for any i ∈ [m] and j ∈ [n]. Let L1(pz0, pnz0) denote the
element-wise leakage from the padded matrix A +R, given
by

L1(pz0, pnz0)

= Hq

(

A{i,j} + R{i,j}

)

− Hq

(

A{i,j} + R{i,j}|A{i,j}

)

= Hq

(

A{i,j} + R{i,j}

)

− Hq

(

R{i,j}|A{i,j}

)

(4)

= Hq

(

A{i,j} + R{i,j}

)

−

q−1
∑

ℓ=0

Hq

(

R{i,j}|A{i,j} = ℓ
)

Pr{A{i,j} = ℓ} (5)

= Hq

([

S(A+R),
1− S(A+R)

q − 1
, . . .

])

− sHq

([

pz0,
1− pz0

q − 1
, . . .

])

− (1− s)Hq

([

pnz0,
1− pnz0

q − 1
, . . .

])

, (6)

where (4) and (5) hold due to the properties of conditional
entropy and (6) is obtained by writing the entropies in terms
of the PMFs of their respective random variables. Following
similar steps, the element-wise leakage from the padding

matrix R is given by

L2(pz0, pnz0) = Hq

([

S(R),
1− S(R)

q − 1
, . . .

])

− sHq

([

pz0,
1− pz0

q − 1
, . . .

])

− (1 − s)Hq

([

pnz0,
1− pnz0

q − 1
, . . .

])

. (7)

The derivation of (6) leads us to the following crucial
observation on which we rely to build our coding scheme.

Observation 1. For the special case of pz0 = pnz0 =
p, the matrix A + R leaks no information about A, i.e.,

Iq(A+ R;A) = mnL1(p) = 0.

The sparsity level of the padded matrix, S(A + R) = p

in this case, is pleasantly controllable with p and does not
impose any trade-off with privacy. There is however a trade-
off between the sparsity level of R and its leakage about A
as shown in Lemma 2.

Lemma 2. For the case when pz0 = pnz0 = p, if the padding

matrix R is generated as in (1) and (2), then the increase of

p yields a higher sparsity level of R, but it also increases its

leakage about A.

Proof. In this case, from (3), the sparsity level of the padding
matrix is given by

S (R) = p
(sq − 1)

q − 1
+

(1 − s)

q − 1
.

Hence, for a fixed sparsity level of A, s > q−1, and a
fixed field size q, the sparsity level of R, S(R), is a linear
monotonously increasing function of p.

We now show that the leakage Lp(p) = Iq
(

R{i,j};A{i,j}

)

from the padding matrix is an increasing function of p when
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Fig. 1: A depiction of our coded computing scheme. The two non-communicating clusters, namely the untrusted and partly
trusted one are illustrated on the left and right hand side, respectively. The workers of the untrusted cluster wu

1 , w
u
2 , . . . , w

u
N1

get each α′ tasks (created as in Section IV-A) that leak nothing about the input matrix. On the other hand, each worker of
the partly trusted cluster wt

1, w
t
2, . . . , w

t
N2

gets α tasks that leak some information about the input matrix. Every worker has
to multiply the designated matrices with the public vector x and then sent each computation back to the chief.

p > q−1. From [32, Theorem 2.7.4], the leakage is a convex
function of p since the PMF of A{i,j} is fixed and the
conditional PMF of R{i,j}|A{i,j} can be written as a convex
mixture of two conditional distributions as follows.

Pr(R{i,j} = r|A{i,j} = a) = p1r=−a + (1 − p)
1

1− q
1r 6=−a.

From perfect privacy, we know that the leakage is zero when
p = q−1. Since the mutual information is positive, then p =
q−1 is the global minimum of Iq

(

R{i,j};A{i,j}

)

. Therefore, for

p > q−1 the leakage function is a monotonously increasing
function. Thus, the increase of p increases the sparsity level
of R but also increases its leakage about A.

As a result of Observation 1 and Lemma 2, when using
this scheme for p = pz0 = pnz0, the best choice p∗ is
the maximum value of p for which Iq (R;A) ≤ ε, since
Iq (A+ R;A) = 0.

IV. CODED COMPUTING WITH SPARSITY AND PRIVACY

GUARANTEES

In this section we combine our coding strategy with the
cyclically shifted task assignment from [14] and [33] to obtain
our coded computing scheme that is resilient to stragglers. The
reason for choosing this assignment scheme is that it perfectly
preserves the sparsity of the input tasks, R and A+R.

A. Task creation and distribution

The chief observes the input matrix A ∈ F
m×n
q and

creates a matrix R ∈ F
m×n
q as described in (1) and (2)

for the case pz0 = pnz0 = p. Then, the chief splits
the padded matrix A + R row-wise into N1 sub-matrices
[

(A+R)T1 , (A+R)T2 , . . . , (A+R)TN1

]T

, where (A+R)i ∈

F

m
N1

×n

q for i ∈ [N1]. Similarly, the chief splits R into N2

submatrices R =
[

R
T

1 ,R
T

2 , . . . ,R
T

N2

]T

, where Rk ∈ F

m
N2

×n

q

for k ∈ [N2]. Then, the chief creates N1 tasks Tu
i,1 = (A+R)i

each assigned to worker wu
i for i ∈ [N1]. The collection of

those tasks is referred to as the first layer of tasks. A similar
first layer of tasks T

t
k,1 = Rk for k ∈ [N2] is created and

assigned to workers of the partly trusted cluster, cf., Fig. 1.
The chief creates the tasks of the other layers as

T
u
(i mod N1)+1,j = T

u
i,j−1, i ∈ [N1], j ∈ [α′] \ {1},

T
t
(k mod N2)+1,b = T

t
k,b−1, k ∈ [N2], b ∈ [α] \ {1}.

The chief publishes x to all the workers and assigns to worker

wu
i , i ∈ [N1], the tasks {Tu

i,j}
α′

j=1 and to worker wt
k , k ∈ [N2],

the tasks {Tu
k,b}

α
b=1. Each worker multiplies its assigned tasks

by x and sends the results back to the chief.

B. Analysis of the scheme

Theorem 1. Using the task creation strategy explained above,

the workers of the untrusted cluster learn nothing about

the input matrix A, i.e., Iq({T
u
i,j}i∈[N1],j∈[α′];A) = 0. The

leakage to the colluding workers of the partly trusted cluster

about the input matrix A is quantified by

Iq({T
t
i,j}i∈Z,j∈[α];A) = min

{

αz

N2
, 1

}

·m · n · L2(p). (8)

As a result, the maximum sparsity allowed for the assigned

tasks is given by

S(A+R) = p⋆, and S(R) = p∗
sq − 1

q − 1
+

1− s

q − 1
,

where p∗ = minIq({Tt
i,j

}i∈Z,j∈[α] ;A)≤ε p. The chief can ob-

tain the desired computation after receiving any Ku ,
−α′2+α′(2N1−1)

2 + 1 and any Kt ,
−α2+α(2N2−1)

2 + 1
responses from the workers of the untrusted and partly trusted

clusters, respectively. Thus allowing a tolerance of partial

stragglers. In case of full stragglers, the chief can tolerate

up to α− 1 and α′− 1 stragglers from the respective clusters.

Proof. Privacy: We start by proving that
Iq({T

u
i,j}i∈[N1],j∈[α′];A) = 0. Recall that for the first

layer of tasks, Tu
i,1 = (A + R)i, i ∈ [N1]. Those tasks are

independent from each other, cf., the proof of Lemma 1. This
holds because by construction, the entries of the padding
matrix R are generated independently from each other.
Generating entry R{i,j} depends only on A{i,j} which is



also assumed to be independent from the other entries of A.
Hence,

Iq(T
u
1,1, . . . ,T

u
N1,1;A) =

N1
∑

i=1

Iq(T
u
i,1;A) = 0.

The last equality holds from Observation 1. The tasks allo-
cated in the other layers {Tu

i,j}i∈[N1],2≤j≤α′ do not add any
information to the workers about A since they are copies of
T

u
i,1, i.e., using the chain rule of mutual information

Iq({T
u
i,j}i∈[N1],j∈[α′];A) = Iq({T

u
i,1}i∈[N1];A)

+ Iq({T
u
i,j}i∈[N1],2≤j≤α′ ;A|{Tu

i,1}i∈[N1])

= 0.

We now prove (8). By construction, the set of tasks sent to any
z workers of the partly trusted clusters {Tt

i,j}i∈Z,j∈[α],Z ⊆
[N2], |Z| = z can include at most min{αz,N2} unique
leaking tasks Ri, i ∈ [N2]. The set of tasks allocated in the
first layer {Tt

i,1}i∈[N2] consists of unique elements (due to the
cyclic shifted assignment), hence we can write

Iq({T
t
i,j}i∈Z,j∈[α];A) = Iq(T

t
1,1,T

t
2,1, . . . ,T

t
min {αz,N2},1

;A)

=

min {αz,N2}
∑

i=1

Iq(T
t
i,1;A) (9)

= min

{

αz

N2
, 1

}

mnL2(p), (10)

where (9) holds since the tasks Tt
i,1 are independent from each

other and (10) holds since the entries of the padding matrices
R{i,j} are independent from each other. The leakage L2(p) is
quantified in (7) for the case pz0 = pnz0.

Sparsity: Given a desired privacy level ε, the only constraint
this scheme has is Iq({T

t
i,j}i∈Z,j∈[α];A) ≤ ε. Since the

sparsity levels of both R and A+R are increasing in p, then
the scheme gives the best sparsity guarantee by maximizing
p∗ subject to the desired privacy constraint.

To better show the trade-off between sparsity and privacy,
we define the relative leakage ε̄ = ε

Hq(A)
= ε

mnHq(A{i,j})
.

Hence, we have

L2(p) ≤
ε̄Hq(A{i,j})

min{ αz
N2

, 1}
. (11)

We plot in Fig. 2 the allowed sparsity p∗ as a function of z

and the privacy constraint. Observe that p∗ decreases with z

and the desired privacy and so does the obtained sparsity.
Straggler tolerance: The workers are assumed to run the

computations sequentially. Each worker starts by computing
the task of layer 1 and proceeds to the next layer after
completing this task. We use the same proof technique as
in [14]. Without loss of generality we will analyse the min-
imum number of responses needed from the partly trusted
cluster. The worst case scenario is when only one task Rkx

for k ∈ [N2] is not retrieved from any of the workers. The
task Rkx is only assigned to α workers. Assume that all
N2 − α workers that cannot compute Rkx finished their
computations. The remaining α workers have Rk at layers
1, 2, . . . , α, respectively. Therefore, the remaining α workers
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Fig. 2: Trade-off sparsity versus privacy. We take N2 = 100,
α = 1, s = S(A) = 0.93 and consider the finite field F256.
The value of p∗ is the maximum value of p for which (11)
holds. The value of ε̄ reflects the privacy requirement (see the
proof of Theorem 1). The value ε̄ = 0 corresponds to perfect
privacy and requires p∗ = q−1 for all z ∈ [N2], whereas ε̄ = 1
allows our scheme to leak as much as a non-private scheme,
hence allowing the choice p∗ = 1 for all z ∈ [N2]. Recall
that S(A +R) = p∗ and for this choice of s and q we have
S(R) ≈ 0.93p∗. Hence, for 0 < ǭ < 1, the increase of z

and/or the decrease of ε̄ reduces the achievable sparsity level
of R and A+R.

can compute tasks different than Rkx by performing at most
∑α

u=1(u− 1) redundant computations. Note that after having
any (N2 − α)α +

∑α

u=1(u − 1) + 1 computations the chief
obtains Rkx and therefore concludes the computation of Rx.
By simplyfing the equation we say that the chief needs to

receive any Kt ,
−α2+α(2N2−1)

2 + 1 responses from the
workers of the partly trusted cluster to obtain Rx. Similarly,

any Ku ,
−α′2+α′(2N1−1)

2 + 1 responses from the workers
of the untrusted cluster are enough to reconstruct (A+R)x.
Afterwards, the chief can obtain y = Ax = (A+R)x−Rx.
The statement about full stragglers holds by construction.

V. CONCLUSION AND FUTURE DIRECTIONS

We investigated private distributed matrix-vector multipli-
cation schemes for sparse matrices that assign sparse compu-
tations to the workers at the expense of guaranteeing weak
information-theoretic privacy. We focused on the chief/worker
setting with two non-communicating clusters of workers,
where perfect privacy is required in one cluster and weak
privacy in the other is satisfactory. For this setting we introduce
a coding strategy that trades privacy for sparsity. By coupling
the introduced coding strategy with fractional repetition codes
we construct a sparse and private coded computing scheme
that tolerates stragglers.

We are currently investigating the general chief/worker
setting with one cluster of workers. The total leakage can be
further decreased at a small loss in the average sparsity of
the tasks. We suggest to choose pz0 6= pnz0 and study the
resulting trade-off.
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