arXiv:2108.02416v3 [cs.LG] 24 Jan 2022

ASPIS: ROBUST DETECTION FOR DISTRIBUTED LEARNING

Konstantinos Konstantinidis' Aditya Ramamoorthy '

ABSTRACT
State-of-the-art machine learning models are routinely trained on large-scale distributed clusters. Crucially,
such systems can be compromised when some of the computing devices exhibit abnormal (Byzantine) behavior
and return arbitrary results to the parameter server (PS). This behavior may be attributed to a plethora of
reasons, including system failures and orchestrated attacks. Existing work suggests robust aggregation and/or
computational redundancy to alleviate the effect of distorted gradients. However, most of these schemes are
ineffective when an adversary knows the task assignment and can choose the attacked workers judiciously to
induce maximal damage. Our proposed method Aspis assigns gradient computations to worker nodes using
a subset-based assignment which allows for multiple consistency checks on the behavior of a worker node.
Examination of the calculated gradients and post-processing (clique-finding in an appropriately constructed graph)
by the central node allows for efficient detection and subsequent exclusion of adversaries from the training process.
We prove the Byzantine resilience and detection guarantees of Aspis under weak and strong attacks and extensively
evaluate the system on various large-scale training scenarios. The principal metric for our experiments is the test
accuracy, for which we demonstrate a significant improvement of about 30% compared to many state-of-the-art
approaches on the CIFAR-10 dataset. The corresponding reduction of the fraction of corrupted gradients ranges

from 16% to 99%.

1 INTRODUCTION

The increased sizes of datasets and associated model com-
plexities have established distributed training setups as the
de facto method for training models at scale. A typical
setup consists of one central machine (parameter server or
PS) and multiple worker machines. The PS coordinates the
protocol by communicating parameters and maintaining the
global copy of the model. The workers compute gradients of
the loss function with respect to the optimization parameters
and transmit them to the PS. The PS then updates the model.
This is an iterative process and is repeated until convergence.
Several frameworks including MXNet (Chen et al., 2015),
CNTK (Seide & Agarwal, 2016) and PyTorch (Paszke et al.,
2019) support this architecture.

Despite the speedup benefits of such distributed settings,
they are prone to so-called Byzantine failures, i.e., when a
set of workers return malicious or erroneous computations.
Faulty workers may modify their portion of the data and/or
models arbitrarily. This can happen on purpose due to adver-
sarial attacks or inadvertently due to hardware or software
failures, such as bit-flipping in the memory or communica-

"Department of Electrical and Computer Engineering, Towa
State University, Ames, IA 50011 USA. Correspondence to:
Konstantinos Konstantinidis <kostas@iastate.edu>, Aditya Ra-
mamoorthy <adityar @iastate.edu>.

tion media. For example, (Kim et al., 2014) showed that
bit-flips in commodity DRAM can happen merely through
frequent data access of the same address. Reference (Rakin
et al., 2019) exposes the vulnerability of neural networks
to such failures and identifies weight parameters that could
maximize accuracy degradation. As a result, the distorted
gradients can derail the optimization and lead to low test
accuracy. Devising training algorithms that are resilient
to such failures and which can efficiently aggregate the
received gradients has inspired a series of works (Gupta
& Vaidya, 2019; Alistarh et al., 2018; Chen et al., 2017;
Blanchard et al., 2017).

In order to alleviate the malicious effects, some existing
papers use majority voting and median-based defenses
(Damaskinos et al., 2019; Yin et al., 2019; 2018; Xie et al.,
2018; Blanchard et al., 2017; Chen et al., 2017). Other
works replicate the gradient tasks across the cluster (Kon-
stantinidis & Ramamoorthy, 2021; Yu et al., 2019; Rajput
et al., 2019; Chen et al., 2018; Data et al., 2018). Finally,
some schemes try to rank and/or detect the Byzantines (Re-
gatti et al., 2020; Xie et al., 2019b; Chen et al., 2018).

1.1 Contributions

In this work, we present Aspis, our detection-based Byzan-
tine resilience scheme for distributed training. Aspis uses a
combination of redundancy and robust aggregation. Unlike

Aspis: Robust Detection for Distributed Learning

previous methods, the redundant subset-based assignment
for gradient computations is judiciously chosen such that
the PS can perform global consistency checks on the be-
havior of the workers by examining the returned gradients.
By performing clique-finding in appropriate graphs, the PS
can perform detection as a first line of defense to exclude
adversaries from further being considered during the aggre-
gation. Note that we make no assumption of privacy and our
work as well as compared methods do not apply to federated
learning.

Aspis has the following salient features: (i) Under weak
attacks where the Byzantines act independently (without
significant collusion) they will always be detected by the
proposed novel clique-based algorithm. (ii) Furthermore,
Aspis is resilient to stronger attacks where adversaries col-
lude in optimal ways; these are much stronger than those
considered in prior work. In particular, instead of simulat-
ing a random set of adversaries (Rajput et al., 2019; Chen
et al., 2018), we have crafted a non-trivial attack designed
explicitly for our system such that the adversaries can evade
detection and potentially corrupt more gradient values.

For both weak and strong attacks we provide theoretical
guarantees on the fraction of corrupted gradients for Aspis.
Comparisons with other methods indicate reductions in the
fraction of corrupted gradients ranging from 16% to 99%.

Finally, we present exhaustive top-1 classification accuracy
results on the CIFAR-10 dataset for a variety of gradient
distortion attacks coupled with choice/behavior patterns of
the adversarial nodes. Our results indicate an average 30%
accuracy increase on CIFAR-10 (Krizhevsky, 2009) under
the most sophisticated attacks. In summary, the performance
gap between Aspis and other methods is especially stark in
the strong attack scenario.

1.2 Related Work

Existing papers consider a wide range of assumptions re-
garding the maximum number of adversaries, their ability
to collude, their possession of knowledge involving the data
assignment and the defense protocol, and whether the adver-
sarial machines are chosen at random or systematically. In
this work, we will assume strong adversarial models as in
prior work (Konstantinidis & Ramamoorthy, 2021; Baruch
et al., 2019; Xie et al., 2018; Yin et al., 2018; El Mhamdi
et al., 2018; Shen et al., 2016).

The first category of related prior work is called robust ag-
gregation (Damaskinos et al., 2019; Yin et al., 2019; 2018;
Xie et al., 2018; Blanchard et al., 2017; Chen et al., 2017).
These methods provide robustness guarantees up to a con-
stant fraction of the nodes being adversarial. However, this
fraction is usually very small and the guarantees are limited
(e.g., only guaranteeing that the output of the aggregator has

positive inner product with the true gradient (E1 Mhamdi
et al., 2018; Blanchard et al., 2017)), which compromises
their practicality. Also, they require significant asymptotic
complexity (Xie et al., 2018) and strict assumptions such
as convexity of the loss function that need to be adjusted
for each individual training algorithm. Some popular robust
aggregators are based on trimmed mean (Xie et al., 2018;
Yin et al., 2018; El Mhamdi et al., 2018) and return a subset
of the values which are closest to the median element-wise.
Auror in (Shen et al., 2016) runs k-means clustering on the
gradients and outputs the mean of the largest cluster. In
signSGD (Bernstein et al., 2019), workers retain only the
sign information and the PS uses majority voting aggrega-
tion. Krum in (Blanchard et al., 2017) determines a single
honest worker whose gradient minimizes the distance to
its £k € N nearest neighbors. Krum may converge to an
ineffectual model in non-convex high dimensional problems
and Bulyan (El Mhamdi et al., 2018) is proposed as an alter-
native. However, Bulyan is designed to defend only up to a
small fraction of corrupted workers.

The second category is based on redundancy and it estab-
lishes resilience by assigning each gradient task to more
than one node (Konstantinidis & Ramamoorthy, 2021; Yu
et al., 2019; Rajput et al., 2019; Chen et al., 2018; Data
et al., 2018). Existing techniques are sometimes combined
with robust aggregation (Rajput et al., 2019). Fundamen-
tally, these methods require higher computation load per
worker but they come with stronger guarantees of correcting
the erroneous gradients. It is important to note that most
schemes in this category can be made to fail by a powerful
omniscient adversary which can mount judicious attacks
(Konstantinidis & Ramamoorthy, 2021). DRACO (Chen
et al., 2018) builds on (Raviv et al., 2018; Tandon et al.,
2017) and uses majority vote and Fourier decoders to filter
out the adversarial effects. With ¢ Byzantines, it guarantees
recovery as if the system had no adversaries, when each
task is replicated » > 2¢ + 1 times; it is not applicable if
this bound is violated. Nonetheless, this requirement is very
restrictive for the common assumption that up to half of
the workers can be Byzantine. DETOX in (Rajput et al.,
2019) extends DRACO and performs multiple stages of gra-
dient filtering requiring smaller redundancy. However, its
resilience guarantees depend heavily on a “random choice”
of the adversaries. Subsequent work in (Konstantinidis &
Ramamoorthy, 2021) has crafted simple attacks to make
this aggregator fail under a more careful choice of adver-
saries. ByzShield in (Konstantinidis & Ramamoorthy, 2021)
borrows ideas from combinatorial design theory (Van Lint
& Wilson, 2001) to redundantly assign the tasks and mini-
mize the distortion fraction. Despite ByzShield’s accuracy
improvements, its authors have not designed an attack tai-
lored to their method. In this work, we propose a worst-case
attack that targets Aspis and prove that it is optimal.

Aspis: Robust Detection for Distributed Learning

Aggregation Robust aggregation

000123000123 (000123000123
Successful

LY& detection? Noj
d TR d

Detection
do|lloe |lee|dd @l @

U1 U.- 9 U- 3 U. 4 U5 U6

Figure 1: Aggregation of gradients on a cluster.

A third category focuses on ranking and/or detection (Re-
gatti et al., 2020; Chen et al., 2018; Xie et al., 2019b). Zeno
in (Xie et al., 2019b) ranks each worker using a score that
depends on the estimated loss and the magnitude of the up-
date. Zeno requires strict assumptions on the smoothness of
the loss function and the variance of the gradient estimates
in order to tolerate an adversarial majority in the cluster.
Similarly, ByGARS (Regatti et al., 2020) computes reputa-
tion scores for the nodes based on an auxiliary dataset; these
scores are used to weigh the contribution of each gradient to
the model update. Its convergence result depends on the as-
sumption of a strongly convex loss function. In contrast, our
method does not rely on such restrictive assumptions. Also,
these works have not used or constructed worst-case attacks
that would evaluate the methods in adversarial settings.

2 DISTRIBUTED TRAINING
FORMULATION

The formulation we discuss is standard in distributed deep
learning. Assume a loss function /;(w) for the i*" sample
where w € R? is the parameter set of the model.! We use
mini-batch Stochastic Gradient Descent (SGD) to minimize
the loss over the entire dataset, i.e.,

H&IIHL —mm—Zl

where n is the dataset size. Initially, w is randomly set to w
(w, is the model state at the end of iteration ¢). A random
batch B; of b samples is chosen to perform the update in
the t*" iteration. Thus,

Wil =

mlB‘ZVZ W) (1)

1€DBy

where 7); is the learning rate of the ¢'" iteration. The workers,
denoted Uy, Us, ..., Uk, compute gradients on subsets of
the batch. The training is synchronous, i.e., the PS waits for

!The paper’s heavily-used notation is summarized in Appendix
Table 6.

all workers to return before performing an update. It stores
the dataset and the model and coordinates the protocol.

Task assignment: Each batch By is split into f disjoint files
{By.;}/Z;. These files are then assigned to the workers ac-
cording to our placement policy. Computational redundancy
is introduced by assigning a given file to r > 1 workers;
we will occasionally use the term group (of the assigned
workers) to refer to a file. It follows that each worker is
responsible for I = fr/K files (I is the computation load).
We let N (Uj) to be the set of files assigned to worker U;

and N/ (Bt,z) to be the group of workers that are assigned ﬁle
B4 ;. Our placement scheme is such that N'(B; ;) uniquely
identifies the file B, ;; thus, we will sometimes refer to the
file By, by its worker assignment, N'(B; ;). The actual
placement algorithm will be presented in Section 3.

Adversary model: We assume that at most ¢ workers can
be adversarial, i.e., they can return arbitrary values to the
PS. The workers know the data assignment of all nodes,
the parameters w; and the defense at every iteration (om-
niscient attack); they can also collude. The adversarial
machines may change at every single iteration. We will sup-
pose that ¢ < K /2. We emphasize that our attack setting is
more powerful than random failures considered in related
redundancy-based work (Rajput et al., 2019; Chen et al.,
2018). For each assigned file B; ; a worker U; will return

the value g(J) to the PS. Then,

) _) Bt
gtjz - { *
where g; ; is the sum of the loss gradients on all samples in

file By, i.e.,
> Vii(we)
JEB&,i

if U; is honest,
otherwise,

2

and * is any arbitrary vector in R%. Within this setup, we
examine multiple adversarial scenarios.

Training: We will refer to Figure 1 for this exposition.
There are K = 6 machines and f = 4 distinct files (repre-
sented by colored circles) replicated » = 3 times.?> Each of
the workers is assigned to [= 2 files and computes the sum
of gradients (or an distorted value) on each of them. The
“d” ellipses refer to detection operations the PS performs
immediately after receiving all the gradients.

The algorithm starts with the assignment of files to workers.
Subsequently, each worker U; will compute all [file gradi-
ents that involve its assigned files N'(U;) and return them
to the PS. In every iteration, the PS will initially run our
detection algorithm in an effort to identify the ¢ adversaries
and will act differently depending on the detection outcome.

2Some arrows and ellipses have been omitted from Figure 1;
however, all files will be going through detection.

Aspis: Robust Detection for Distributed Learning

* Case 1: Successful detection. The PS will ignore
all detected faulty machines and keep only the gradients
from the remaining workers. Assume that h workers
Ui,,Ui,,...,U;, have been identified as honest. For each
of the f files if there is at least one honest worker that
processed it, the PS will pick one of the “honest” gradient
values. The chosen gradients are then averaged for the up-
date (cf Eq. (1)). For instance, in Figure 1, assume that U7,
U, and U, have been identified as faulty. During aggrega-
tion, the PS will ignore the red file as all 3 copies have been
compromised. For the orange file, it will pick either the
gradient computed by Us or U as both of them are honest.

* Case 2: Unsuccessful detection. During aggregation, the
PS will perform a majority vote across the computations
of each file. Recall that each file has been processed by r
workers. For each such file B; ;, the PS decides a majority
value m;

m,; := majority {gﬂ)

U eNBL} ()

Assume that r is odd and let ' = Tgl . Under the rule in Eq.
(3), the gradient on a file is distorted only if at least ' of
the computations are performed by Byzantines. Following
the majority vote, we will further filter the gradients using
coordinate-wise median and will be referring to the combi-
nation of these two steps as robust aggregation; a similar
setup was considered in (Konstantinidis & Ramamoorthy,
2021; Rajput et al., 2019). For example, in Figure 1, all
returned values for the red file will be evaluated by a major-
ity vote function on the PS which decides a single output
value; a similar voting is done for the other 3 files. After
the voting process, Aspis applies coordinate-wise median
on the “winning” gradients m;, ¢ = 0,1,..., f — 1.

The details of this procedure are described in Algorithm
1. In both cases, we ensure that there are no floating point
precision issues in our implementation, i.e., all honest work-
ers assigned to B, ; will return the exact same gradient. In
general, even if such issues arise they can easily be handled.
In Case 1, if the honest gradients for a file were different
the PS could average them. In Case 2, we could cluster the
gradients and compute the average of the largest cluster.

Metrics: We are interested in two main metrics, the fraction
of distorted files and the top-1 test accuracy of the final
trained model. We evaluate these metrics for the various
competing methods.

3 TASK ASSIGNMENT

In this section, we propose our technique which determines
the allocation of gradient tasks to workers in Aspis. Let U
be the set of workers. Our scheme has || < f (i.e., fewer
workers than files).

1
2
3

Q9 o v &

11

12

13
14

16

17
18

19
20

21

22
23

24
25

26

27

Algorithm 1: Proposed Aspis aggregation algorithm to

alleviate Byzantine effects.

Input: Dataset of n samples, batchsize b, computation
load [, redundancy r,
number of files f, maximum iterations 7, file
assignments {N(U;)}X£,.
The PS randomly initializes model’s parameters to wy.
fort =117T do
PS chooses a random batch B; C {1,2,...,n} of b
samples, partitions it into f files {Bm}fgol and
assigns them to workers according to {N(U;)} £ ;.
It then transmits w; to all workers.
for each worker U; do
if U; is honest then
for each file i € N'(U;) do
U; computes the sum of gradients
gl = 3" Vin(wy).
kEDBy,;
end
else
U; constructs [adversarial vectors

~ () A0) ~(J)
gt,Jil) gt,ji27 cee gt,]il.

end

U, returns gt“}l) gg,]ilv -

7 ., &) to the PS.
end
PS runs a detection algorithm to identify the
adversaries.
if detection is successful then
Let H be the detected honest workers. Initialize
a non-corrupted gradient set as G = ().
for each file in { B, ;}1= do
PS chooses the gradient of a worker in
N (B¢ ;) N H (if non-empty) and adds it to
g.

end

S

1
Wi+l = Wi — Tty
91 £
else
for each file in {B, ;}/_. do
PS determines the r workers in N (B ;)
which have processed B, ; and computes
m; = majority {g?) 1j € /\/(Bm)}} .
end
PS updates the model via
Wil = wi—mp xmedian{m, : 1 = 0,1,. ..

end

end

To allocate the batch of an iteration, B;, to the K work-

-

~

PN

Aspis: Robust Detection for Distributed Learning

Algorithm 2: Aspis subset-based file assignment.

Algorithm 3: Proposed Aspis graph-based detection.

Input: Batch size b, computation load [/, redundancy r
and worker set U, [U| = K.
PS partitions batch By into f = () disjoint files of
b/ f samples each
Bt:{Btﬂ'l’l‘:O,l,...,f—l}.
PS constructs all subsets Sy, S1, . . ., 5(5)71
U= {U1, Us,... ,UK} such that Vz, |Sz‘ =T.
fori =0t f —1do
PS identifies all workers in group
S; ={U;,,Uj,,...,U;, } and assigns the file
indexed with ¢ in B, to all of them. Formally,
N(U;) =N (U;) U{By,} for
J € iz, dr

of

end

ers, first, we will partition B, into f = () disjoint files .

By, By, .., B —1;recall that r is the redundancy. Fol-
lowing this, we associate each file with exactly one of the
subsets Sg, S1,. .., S(ﬁf)—1 of {U1,Us,...,Uk} each of
cardinality r, essentially using a bijection. Each file con-
tains b/ f samples. The details are specified in Algorithm 2.
The following example showcases the proposed protocol of
Algorithm 2.

Example 1. Consider K = 7 workers Uy, Us ..., U7 and
r = 3. Based on our protocol, the f = (;) = 35 files of
each batch B; are associated one-to-one with 3-subsets of
U, e.g., the subset Sy = {Uy, Uz, Us} corresponds to file
By ¢ and will be processed by Uy, Us and Us.

Remark 1. Our task assignment ensures that every pair of
workers processes ([:__22) files. Moreover, the number of
adversaries is ¢ < K/2. Thus, upon receiving the gradients
from the workers, the PS can examine them for consistency
and flag certain nodes as adversarial if their computed gra-
dients differ from g + 1 or more of the other nodes. We use
this intuition to detect and mitigate the adversarial effects
and to compute the fraction of corrupted files.

4 ADVERSARIAL DETECTION

The PS will run our detection method in every iteration
as our model assumes that the adversaries can be different
across different steps. The following analysis applies to any
iteration; thus, the iteration index ¢ will be omitted from
most of the notation used in this section. Let the current
set of adversaries be A C {Uy,Us,..., Uk} with |4] = ¢;
also, let H be the honest worker set. The set A is unknown
but our goal is to provide an estimate A of it. Ideally, the
two sets should be identical. In general, depending on the
adversarial behavior, we will be able provide a set A such
that A C A. For each file, there is a group of r workers
which have processed it and there are (g) pairs of workers

—

[N

Input: Computed gradients gi{}, 1=0,1,....f—1,
j=1,2,..., K, redundancy r and empty
graph G with worker vertices U.
for each pair (U;,,Uj,), j1 # j2 of workers do
PS computes the number of agreements o/1:72) of
the pair U;, , U;, on the gradient value.
if at1:72) = (X72) then
Connect vertex Uj, to vertex U, in G.
end

¢ end

R-I-)

11
12

PS enumerates all £ maximum cliques
ME M, MP inG.
if there is a unique maximum clique Mg (k = 1) then
PS determines the honest workers H = Mg and

the adversarial machines A = U — M, G-

o else

‘ PS declares unsuccessful detection.
end

in each group. Each such pair may or may not agree on the
gradient value for the file. For an iteration, let us encode the
agreement of workers U, , U;, on a common file 7 of them
NURSIE { Lif gt =g,

¢ 0 otherwise,

“4)

where the iteration subscript ¢ is skipped for the computed
gradients. Then, across all files, let us denote the total
number of agreements between a pair of workers U, , U},

by
>

’LEN(UJI)ﬂN(sz)

aldriz) .—

&)

Oégjl’h).

Since the placement is known, the PS can always per-
form the above computation. Next, we form an undi-
rected graph G whose vertices correspond to all workers
{U1,Us,...,Uk}. Anedge (Uj,,Uj,) exists in G only if
the computed gradients of Uj;, and U;, match in all their

(}f__f) common groups.

A clique in an undirected graph is defined as a subset of
vertices in which there is an edge between any pair of them.
A maximal clique is one that cannot be enlarged by adding
additional vertices to it. A maximum clique is a clique
such that there is no clique with more vertices in the given
graph. We note that the set of honest workers H will pair-
wise agree everywhere. In particular, this implies that the
subset H forms a clique (of size K — ¢) within G. The
clique containing the honest workers may not be maximal.
However, it will have a size at least K —¢q. Let the maximum
clique on G be Mqg. Any worker U; with deg(U;) <
K — g — 1 will not belong to a maximum clique and can
straight away be eliminated as a “detected” adversary.

Aspis: Robust Detection for Distributed Learning

‘/i}z \Tﬁ/Uis‘\“
A
‘\Ulz U4

ey Us /

(a) Unique max-clique, detection succeeds.

[Uy —— Us)

(b) Two max-cliques, detection fails.

Figure 2: Detection graph G for K = 7 workers among
which Uy, U, and Us are the adversaries.

The essential idea of our detection is to run a clique-finding
algorithm on G (summarized in Algorithm 3). If we find
a unique maximum clique, we declare it to be the set of
honest workers; the gradients from the detected adversaries
are ignored. On the other hand, if there is more than one
maximum clique, we resort to the robust aggregation tech-
nique discussed in Section 2. Let us denote the number of
distorted tasks upon Aspis detection and aggregation by ¢(9)
and its maximum value (under the worst-case attack) by
cfgg)lx. The distortion fraction is € := @ / f. Clique-finding
is well-known to be an NP-complete problem (Karp, 1972).
Nevertheless, there are fast practical algorithms that have ex-
cellent performance on graphs even up to hundreds of nodes
(Cazals & Karande, 2008; Etsuji et al., 2006). Specifically,
the authors of (Etsuji et al., 2006) have shown that their
proposed algorithm which enumerates all maximal cliques
has similar complexity as other methods (Robson, 1986;
Tarjan & Trojanowski, 1977) which are used to find a single
maximum clique. We utilize this algorithm which is proven
to be optimal. Our extensive experimental evidence sug-
gests that clique-finding is not a computation bottleneck for
the size and structure of the graphs that Aspis uses. We have
experimented with clique-finding on a graph of K = 100
workers and » = 5 for different values of ¢; in all cases,
enumerating all maximal cliques took no more than 15 mil-
liseconds. These experiments and asymptotic complexity of
entire protocol are addressed in Appendix Section A.1.

4.1 Weak Adversarial Strategy

We first consider a class of weak attacks where the Byzan-
tine nodes attempt to distort the gradient on any file that they
participate in. For instance, a node may try to return arbi-

0.8r
Baseline

—A— Aspis
DETOX

o
3

0.6

051

0.4r

03r

021

Fraction of distorted files (¢)

0.1r

0 AA A b
0 5 10 15 20 25

Number of adversaries (q)

(a) Optimal attacks.
05
Baseline
—A— Aspis
04+ DETOX

03r

0.2r

0.1 fo

0 5 10 15 20 25
Number of adversaries (q)

(b) Weak attacks.

Fraction of distorted files (¢)

Figure 3: Distortion fraction of optimal and weak attacks
for (K, r) = (50, 3) and comparison.

trary gradients on all its files. A more sophisticated strategy
(but still weak) for the node would be to match the result
with other adversarial nodes that process the same file. In
both cases, it is clear that the Byzantine node will disagree
with at least X' — ¢ honest nodes and thus the degree of the
node in G will be at most ¢ — 1 < K — ¢ — 1 and it will
not be part of the maximum clique. Thus, each of the adver-
saries will be detected and their returned gradients will not
be considered further. The algorithm declares the (unique)
maximum clique as honest and proceeds to aggregation (cf.
Section 2). The only files that can be distorted in this case
are those that consist exclusively of adversarial nodes.

Figure 2a (corresponding to Example 1) shows an example
where in a cluster of size K = 7, the ¢ = 3 adversaries are
A = {U;,U,, Us} and the remaining workers are honest
with H = {Uy4, Us, Ug, Uz }. In this case, the unique maxi-
mum clique is Mg = H and detection is successful. Under
this attack, the number of distorted tasks are those whose
all copies have been compromised, i.e., ¢(9 = (9).

Remark 2. We emphasize that even though we call this
attack “weak” this is the attack model considered in several
prior works (Rajput et al., 2019; Chen et al., 2018). To
our best knowledge, most of them have not considered the
adversarial problem from the lens of detection.

Aspis: Robust Detection for Distributed Learning

4.2 Optimal Adversarial Strategy

Our second scenario is strong and involves adversaries
which collude in the “best” way possible while knowing the
full details of our detection algorithm. In this discussion,
we provide an upper bound on the number of files that can
be corrupted in this case and demonstrate a strategy that the
adversarial workers can follow to achieve this upper bound.

Let us index the g adversaries in A = {A;, As,..., Ay}
and the honest workers in /7. We say that two workers U},
and U}, disagree if there is no edge between them in G. The
non-existence of an edge between Uj;, and U, only means
that they disagree in at least one of the (**) files that they
jointly participate in. For corrupting the gradients, each
adversary has to disagree on the computations with a subset
of the honest workers. An adversary may also disagree with
other adversaries. Let D; denote the set of disagreement
workers for adversary A;,¢ = 1,2,...,q, where D; can
contain members from A and from H.

Upon formation of G we know that a worker U; will be
flagged as adversarial if deg(U;) < K —gq— 1. Therefore to
avoid detection, a necessary condition is that \Dj| <gq. We
now upper bound the number of files that can be corrupted
under any possible strategy employed by the adversaries.
We fall back to robust aggregation in case of more than
one maximum clique in G. Then, a gradient can only be
corrupted if a majority of the workers computing it are
adversarial and agree on a wrong value.

For a given file F, let A’ C A with |A’| > 7’/ be the set of
“active adversaries” in it, i.e., A’ C F consists of Byzantines
that collude to create a majority that distorts the gradient
on it. In this case, the remaining workers in F' belong
to N;eaD;, where we note that | N;ear D;| < ¢. Let
X,;,j=r',7"+1...,r denote the subset of files where the
set of active adversaries is of size j; note that X; depends
on the disagreement sets D;,7 = 1,2,. .., q. Formally,

X, = {F:34' CANF|A| =}
andVUj S F\AI,Uj S ﬁiEA’Di}~ (6)

Then, for a given choice of disagreement sets, the number of
files that can be corrupted is given by | Ui, X |. We obtain
an upper bound on the maximum number of corrupted files
by maximizing this quantity with respect to the choice of
D;,i=1,2,...,q,ie,

9 _
Cﬁn;x - ma.x
D;,|D;|<q,i=1,2,...,q

| Ujmrr X (7

where the maximization is over the choices of the disagree-
ment sets D1, Do, ..., D,. An intuitive adversarial strategy

based on Eq. (6) would be to maximize the set (] D;
ICANF

for every possible file F'. In order to achieve this, for all

groups F, the adversaries will need to fix a subset of ¢ non-

adversaries, say D C H, which will be the set of workers

with which all adversaries will disagree, i.e., D; = D for
i = 1,2,...,9. We present the following theorem (see
Appendix Section A.2 for proof).

Theorem 1. Consider a training cluster of K workers with
q adversaries using Algorithm 2 to assign the f = (%) files
to workers and Algorithm 3 for adversary detection. Under
an optimal adversary model the maximum number of files
that can be corrupted is

1/2
D) = (q). (8)
2\ r

Furthermore, if all adversaries fix a set D C H of honest
workers with which they will consistently disagree on the
gradient (by distorting it), this upper bound can be achieved.

In particular, the proposed attack is optimal and there is
no other attack that can corrupt more files under the Aspis
algorithm. One such attack is carried out in Figure 2b for the
setup of Example 1. The adversaries A = {Uy, Us, U3} con-
sistently disagree with the workers in D = {Uy, Us, Us} C
H. The ambiguity as to which of the two maximum cliques
({U1,Us,Us,Uz} or {Uy,Us,Us,Ur}) is the honest one
makes an accurate detection impossible; robust aggregation
will be performed instead.

5 DISTORTION FRACTION EVALUATION

We have performed simulations of the fraction of distorted
files (defined as € = (@) /f) incurred by Aspis and other
competing aggregators. The main motivation of this analysis
is that our deep learning experiments (cf. Section 6.2) as
well as prior work (Konstantinidis & Ramamoorthy, 2021)
show that e serves as a surrogate of the model’s convergence
with respect to accuracy. In addition, our simulations show
that Aspis enjoys values of € which are as much as 99%
lower for the same ¢ compared to other techniques and
this attests to our theoretical robustness guarantees. This
comparison involves our work and state-of-the-art schemes
under the best- and worst-case choice of the ¢ adversaries
with respect to the achievable value of e. We compare
our work with baseline approaches which do not involve
redundancy or majority voting. Their aggregation is applied
directly to the K gradients returned by the workers (f = K,
8 =qande= q/K).

Let us first discuss the scenario of an optimal attack. For
Aspis, we used the proposed attack from Section 4.2 and
the corresponding computation of ¢(?)-45P%5 of Theorem 1.
DETOX in (Rajput et al., 2019) employs a redundant as-
signment followed by majority voting and offers robustness
guarantees which crucially rely on a “random choice” of
the Byzantines. (Konstantinidis & Ramamoorthy, 2021)
have demonstrated the importance of a careful task assign-
ment and observed that redundancy is not sufficient to yield

Aspis: Robust Detection for Distributed Learning

Byzantine resilience dividends. They proposed an optimal
choice of the ¢ Byzantines that maximizes ¢?#79X which
we used in our experiments. In short, DETOX splits the
K workers into K/r groups. All workers within a group
process the same subset of the batch, specifically containing
br/ K samples. This phase is followed by majority voting
on a group-by-group basis. The authors of (Konstantinidis
& Ramamoorthy, 2021) suggested choosing the Byzantines
such that at least ' workers in each group are adversarial
in order to distort the corresponding gradients. In this case,
(- DETOX — | 4| and PETOX = | | x v /K. We also
compare with the distortion fraction incurred by ByzShield
(Konstantinidis & Ramamoorthy, 2021) under a worst-case
scenario. For this scheme, there is no known optimal at-
tack and its authors performed an exhaustive combinatorial
search to find the ¢ adversaries that maximize ¢Bv#Shield
among all possible options; we follow the same process here
to simulate ByzShield’s distortion fraction computation and
utilize their scheme based on mutually orthogonal Latin
squares. The reader can refer to Figure 3a and Appendix
Tables 1, 2 and 3 for our results. Aspis achieves major re-
ductions in ¢; for instance, e4°P** is reduced by up to 99%

compared to both eB2s¢line and ePETOX ip Figure 3a.

We will next introduce the utilized weak attacks. For our
scheme, we will make an arbitrary choice of ¢ adversaries
which carry out the method introduced in Section 4.1, i.e.,
they will distort all files and a successful detection is pos-
sible. As discussed, the fraction of corrupted gradients
is eAspis = (9)/ (I:) in that case. For DETOX, a simple
benign attack is used. To that end, let the K/r files be
By, Bi, ..., By k/r—1. Initialize A = () and choose the
q Byzantines as follows: fori = 0,1,...,q¢ — 1, among the
remaining workers in {Uy,Us, ..., Uk} — A add a worker
from the group B, ; moa k/r to the adversarial set A. Then,

o@.DETOX _) 4~ %(7’/ -1) ifg> %(T/ - 1),
0 otherwise.

The results on this scenario are in Figure 3b.

For baseline schemes, there is no notion of “weak” or “op-
timal” attack with respect to the choice of the ¢ Byzan-
tines; hence we can choose any subset of them achieving
6Baseline — q/K

6 LARGE-SCALE DEEP LEARNING
EXPERIMENTS

6.1 Experiment Setup

We have evaluated the performance of our method and com-
peting techniques in classification tasks on Amazon EC2
clusters. The project is written in PyTorch (Paszke et al.,
2019) and uses the MPICH library for communication be-
tween the different nodes. We worked with the CIFAR-10

dataset (Krizhevsky, 2009) using the ResNet-18 (He et al.,
2016) model. We used clusters of K = 15 and 21 workers
and redundancy r = 3. We simulated values of ¢ = 2,4, 6
during training. Detailed information about the implementa-
tion can be found in Appendix Section A.3.

There are two different dimensions we experimentally eval-
uate with respect to the adversarial setup:

1) Choice/orchestration of the adversaries: This involves
the different ways in which adversaries are chosen and can
work together to inflict damage (c¢f. weak and optimal at-
tacks in Section 4).

2) Gradient distortion methods: This dimension is con-
cerned with the method an adversary uses to distort the
gradient value (cf. Algorithm 1). We use a variety of state-
of-the-art methods for distorting the computed gradients.
ALIE (Baruch et al., 2019) involves communication among
the Byzantines in which they jointly estimate the mean p;
and standard deviation o; of the batch’s gradient for each
dimension ¢ and subsequently use them to construct a dis-
torted gradient that attempts to distort the median of the
results. Another powerful attack is Fall of Empires (FoE)
(Xie et al., 2019a) which performs “inner product manipula-
tion” to make the inner product between the true gradient
and the robust estimator to be negative even when their dis-
tance is upper bounded by a small value. Reversed gradient
distortion returns —cg for ¢ > 0, to the PS instead of the
true gradient g. The ALIE algorithms is, to the best of our
knowledge, the most sophisticated attack in literature.

Competing methods: We compare Aspis against the base-
line implementations of median-of-means (Minsker, 2015),
Bulyan (El Mhamdi et al., 2018) and Multi-Krum (Blan-
chard et al., 2017). If cfggx is the number of adversarial
computations then Bulyan requires at least 4053%)(+ 3 total
number of computations while the same number for Multi-
Krum is QCI(T(QX + 3. These constraints make these methods
inapplicable for larger values of ¢ for which our method is
robust. The second class of comparisons is with methods
that use redundancy and specifically DETOX (Rajput et al.,
2019) for which we show that it can easily fail under mali-
cious scenarios for large q. We compare with median-based
techniques since they originate from robust statistics and are
the base for many aggregators. DETOX is the most related
redundancy-based work that is based on coding-theoretic
techniques. Finally, Multi-Krum is a highly-cited aggre-
gator that combines the intuitions of majority-based and
squared-distance-based methods.

Note that for a baseline scheme all choices of A are equiv-
alent in terms of the value of €. In our comparisons with
DETOX we will consider two attack scenarios with respect
to the choice of the adversaries. For the optimal choice in
DETOX, we will use the method proposed in (Konstantini-
dis & Ramamoorthy, 2021) and compare with the attack

Aspis: Robust Detection for Distributed Learning

~
o

70

~
S}

Median, q =2
Median, q = 4

Multi-Krum, q = 2
Multi-Krum, q = 4
—A—Aspis, q =2
—A—Aspis, q = 4

@
=}
o
=}

—&— Aspis, q =2
—A— Aspis, q =4

DETOX-MoM,
—*—DETOX-MoM

@
=}

a
=}

\ I
EN]
Top-1 test accuracy (%)
(41
o

o
=}

IS
S

w
=}

Top-1 test accuracy (%)
w sy
o o

Top-1 test accuracy (%)
Py
o

SN\ e
20 sor 20 v
10 20 10
0 5 10 15 0 5 10 15
Epochs Epochs Epochs

(a) Median-based defenses. (b) Bulyan-based defenses. (¢) Multi-Krum-based defenses.

Figure 4: ALIE distortion under optimal attack scenarios (CIFAR-10), K = 15.

©
o
©
o
©
o

O\
\?\&
\

~
o

Multi-Krum, q = 2
Multi-Krum, q = 4
—A— Aspis, = 2
—A—Aspis, q =4

Median, q =2
Median, q =4
—A— Aspis, q = 2
—A— Aspis, q =4
DETOX-MoM, q =2 40 -
—*—DETOX-MoM, q = 4

IS
S
\\\

Top-1 test accuracy (%)
u (2]
o o
5
Top-1 test accuracy (%)
(2]
o

3
=}
o
=}

w
o
Top-1 test accuracy (%)
(2]
o

40

N
o

=
S}
w
o

. : . . . 30 . . .
0 5 10 15 0 5 10 15 0 5 10 15
Epochs Epochs Epochs

(a) Median-based defenses. (b) Bulyan-based defenses. (¢) Multi-Krum-based defenses.

Figure 5: Reversed gradient distortion under optimal attack scenarios (CIFAR-10), K = 15.

introduced in Section 4.2. For the weak one, we will choose
the adversaries such that e is minimized in DETOX and
compare its performance with the scenario of Section 4.1.

6.2 Experimental Results
6.2.1 Comparison under Optimal Attacks

We compare the different defense algorithms under opti-
mal attack scenarios. Figure 4a compares our scheme Aspis
with the baseline implementation of coordinate-wise median
(e = 0.133,0.267 for ¢ = 2,4, respectively) and DETOX
with median-of-means (¢ = 0.2,0.4 for ¢ = 2,4, respec-
tively) under the ALIE attack. Aspis converges faster and
achieves at least a 35% average accuracy boost (at the end
of the training) for both values of ¢ (¢4°P** = 0.004, 0.062
for ¢ = 2,4, respectively).’ In Figures 4b and 4c we ob-
serve similar trends in our experiments with Bulyan and
Multi-Krum where Aspis significantly outperforms these
techniques. For the current setup, Bulyan is not applicable
for ¢ = 4since K = 15 < 4C$§2lx—|—3 =49+ 3 = 19.
Also, neither Bulyan nor Multi-Krum can be paired with
DETOX for g > 1 since the inequalities f > 401(52“ + 3 and

3Please refer to Appendix Tables 1 and 2 for the values of the
distortion fraction e each scheme incurs.

f> 2c§32x + 3 cannot be satisfied. Please refer to Section
6.1 and Section 5 for more details on these requirements.
Also, note that the accuracy of most competing methods
fluctuates more than in the results presented in the corre-
sponding papers (Rajput et al., 2019) and (Baruch et al.,
2019). This is expected as we consider stronger attacks
compared to those papers, i.e., optimal deterministic attack
on DETOX and, in general, up to 27% adversarial workers
in the cluster. Also, we have done multiple experiments
with different random seeds to demonstrate the stability and
superiority of our accuracy results compared to other meth-
ods (against median-based defenses in Appendix Figure 10,
Bulyan in Figure 11 and Multi-Krum in Figure 12); we point
the reader to Appendix Section A.3.3 for this analysis. This
analysis is clearly missing from most prior work, includ-
ing that of ALIE (Baruch et al., 2019), and their presented
results are only a snapshot of a single experiment which
may or may not be reproducible as is. The results for the
reversed gradient attack are shown in Figures Sa, 5b and 5c.
Given that this is a much weaker attack (Konstantinidis &
Ramamoorthy, 2021; Rajput et al., 2019) all of the schemes
considered, including the baseline methods, are expected to
perform well; indeed in most of the cases, the model con-
verges to approximately 80% accuracy. However, DETOX
fails to converge to high accuracy for ¢ = 4 as in the case

Aspis: Robust Detection for Distributed Learning

90 90

~

o
©
=

o

=]
-
=}

Median, q = 2
Median, q = 4
—A— Aspis, q = 2
—A— Aspis, g =4
DETOX-MoM, q = 2
—#*—DETOX-MoM, q = 4

IS
S}

Top-1 test accuracy (%)
w wu
o o
(52
o
S»

.

Top-1 test accuracy (%)
o
o

/:i:;:q:ﬁ

70

i
o
w
S

0 2 4 6 8 10 12 14 16 0 5
Epochs

Figure 6: FoE optimal attack and
median-based defenses (CIFAR-10),

Epochs

Figure 7: Reversed gradient weak
attack and median-based defenses

60
<
<50
)
<
DETOX-MoM, q = 6 § 40 'd Median, g = 6
[+ /‘/ —A— Aspis, =6
8 30 / DETOX-MoM, q = 6
-«
a 20
(<]
°
10
| | 0 | | |
10 15 0 5 10 15

Epochs

Figure 8: ALIE weak attack and
median-based defenses (CIFAR-10),

K =15 (CIFAR-10), K = 15. K =15.

80 80 80

70 ol 70
X S 2
5 Median, q = 2 >0l 5%
I —A—Aspis, q =2 I Bulyan, q =2 8 Multi-Krum, q = 2
3 50 DETOX-MoM, q = 2 3 —A— Aspis, q = 2 3 50 —A—Aspis, q =2
[} o (53
g S 50 g
3 40 2 gao
L 2 L
< < 40 <
2 30 Q 2 30
O (s} (=}
= e =

20 30 20

10 | | | | | | | I 20 | | | | | | | 10 | | | | | | | |

0 2 4 6 8 10 12 14 16 0 2 4 & 10 12 14 16 0 2 4 6 8 10 12 14 16
Epochs Epochs Epochs

(a) Median-based defenses.

(b) Bulyan-based defenses.

(c) Multi-Krum-based defenses.

Figure 9: ALIE distortion under optimal attack scenarios (CIFAR-10), K = 21.

of ALIE; one explanation is that e?FTOX = 0.4 for ¢ = 4.
Under the Fall of Empires (FoE) distortion (cf. Figure 6) our
method still enjoys an accuracy advantage over the baseline
and DETOX schemes which becomes more important as the
number of Byzantines in the cluster increases.

6.2.2 Comparison under Weak Attacks

For baseline schemes, the discussion of weak versus optimal
choice of the adversaries is not very relevant as any choice
of the ¢ Byzantines can overall distort at most g out of
the K gradients. Hence, for weak scenarios, we chose to
compare mostly with DETOX. The accuracy is reported
on Figures 7 and 8 according to which Aspis shows an
improvement under attacks on the more challenging end of
the spectrum (ALIE). According to Appendix Table 1(b),
Aspis enjoys a fraction e4°7% = (.044 while eBaseline —
0.4 and ePETOX = (0.2 for g = 6.

Our experiments on a larger cluster of K = 21 workers
under the ALIE attack can be found in Figure 9.
7 CONCLUSIONS AND FUTURE WORK

In this work we have presented Aspis, a Byzantine-resilient
distributed scheme that uses redundancy and robust aggre-

gation in novel ways to detect adversarial behavior by the
workers. Our theoretical analysis and numerical experi-
ments clearly indicate the superior performance of Aspis
compared to state-of-the-art. Our experiments show that As-
pis requires increased computation and communication time
as compared to prior work, e.g., note that each worker has
to transmit [gradients instead of 1 in related work (Rajput
et al., 2019; Chen et al., 2018) (see Appendix Section A.3.4
for details). We emphasize however, that under strong at-
tacks (optimal Byzantine behavior) Aspis converges to high
accuracy while competing methods will never converge ir-
respective of how long the algorithm runs for (please refer
to Figures 4, 5a and 6); for a strong distortion attack like
ALIE, this is evident even under weak adversarial strategies
with respect to the Byzantine node behavior (cf. Figure 8).

Our experiments involve clusters of up to 21 workers. As we
scale our solution to more workers, the total number of files
and the computation load [of each worker will also scale;
this increases the memory needed to store the gradients dur-
ing aggregation. For complex neural networks, the memory
to store the model and the intermediate gradient computa-
tions is by far the most memory-consuming aspect of the
algorithm. For these reasons, our scheme is mostly suitable
to training large datasets using fairly compact models that do

Aspis: Robust Detection for Distributed Learning

not require too much memory. Also, there are opportunities
for reducing the time overhead. For instance, utilizing GPUs
and communication-related algorithmic improvements are
worth exploring. Finally, convergence analysis is under in-
vestigation and space limitations do not allow us to discuss
it here.

Aspis: Robust Detection for Distributed Learning

REFERENCES

Alistarh, D., Allen-Zhu, Z., and Li, J. Byzantine stochastic
gradient descent. In Advances in Neural Information
Processing Systems, December 2018.

Baruch, G., Baruch, M., and Goldberg, Y. A Little Is
Enough: Circumventing defenses for distributed learning.
In Advances in Neural Information Processing Systems,
pp. 8635-8645, December 2019.

Bernstein, J., Zhao, J., Azizzadenesheli, K., and Anandku-
mar, A. signSGD with majority vote is communication
efficient and fault tolerant. arXiv, 2019. 1810.05291.

Blanchard, P., El Mhamdi, E. M., Guerraoui, R., and Stainer,
J. Machine learning with adversaries: Byzantine tolerant
gradient descent. In Advances in Neural Information
Processing Systems, pp. 119-129, December 2017.

Boyer, R. S. and Moore, J. S. MJRTY—A Fast Majority Vote
Algorithm. Springer Netherlands, Dordrecht, 1991.

Cazals, F. and Karande, C. A note on the problem of report-
ing maximal cliques. Theoretical Computer Science, 407
(1):564-568, November 2008.

Chen, L., Wang, H., Charles, Z., and Papailiopoulos, D.
DRACO: Byzantine-resilient distributed training via re-
dundant gradients. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, pp. 903-912,
July 2018.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao,
T., Xu, B., Zhang, C., and Zhang, Z. MXNet: A flexible
and efficient machine learning library for heterogeneous
distributed systems. arXiv, 2015. 1512.01274.

Chen, Y., Su, L., and Xu, J. Distributed statistical ma-
chine learning in adversarial settings: Byzantine gradient
descent. Proc. ACM Meas. Anal. Comput. Syst., 1(2),
December 2017.

Damaskinos, G., El Mhamdi, E. M., Guerraoui, R., Guirguis,
A. H. A., and Rouault, S. L. A. Aggregathor: Byzantine
machine learning via robust gradient aggregation. In
Conference on Systems and Machine Learning (SysML)
2019, pp. 19, March 2019.

Data, D., Song, L., and Diggavi, S. Data encoding for
Byzantine-resilient distributed gradient descent. In 2018
56th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pp. 863-870, October
2018.

El Mhamdi, E. M., Guerraoui, R., and Rouault, S. The
hidden vulnerability of distributed learning in Byzantium.
In Proceedings of the 35th International Conference on
Machine Learning, pp. 3521-3530, July 2018.

Etsuji, T., Akira, T., and Haruhisa, T. The worst-case time
complexity for generating all maximal cliques and com-
putational experiments. Theoretical Computer Science,
363(1):28-42, October 2006.

Gupta, N. and Vaidya, N. H. Byzantine fault-tolerant paral-
lelized stochastic gradient descent for linear regression.
In 2019 57th Annual Allerton Conference on Communi-
cation, Control, and Computing (Allerton), pp. 415-420,
September 2019.

Hagberg, A. A., Schult, D. A., and Swart, P. J. Exploring net-
work structure, dynamics, and function using networkx.
In Proceedings of the 7th Python in Science Conference,
pp- 11-15, August 2008.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
770-778, June 2016.

Karp, R. M. Reducibility among Combinatorial Problems.
Springer US, Boston, MA, 1972.

Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J. H., Lee, D.,
Wilkerson, C., Lai, K., and Mutlu, O. Flipping bits in
memory without accessing them: An experimental study
of dram disturbance errors. In Proceeding of the 41st

Annual International Symposium on Computer Architecu-
ture, pp. 361—372, June 2014.

Konstantinidis, K. and Ramamoorthy, A. ByzShield: An
efficient and robust system for distributed training. In
Machine Learning and Systems 3 (MLSys 2021), April
2021.

Krizhevsky, A. Learning multiple layers of features from
tiny images. 2009.

Minsker, S. Geometric median and robust estimation in
Banach spaces. Bernoulli, 21(4):2308-2335, November
2015.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. PyTorch: An imperative style,
high-performance deep learning library. In Advances in
Neural Information Processing Systems, pp. 8024—-8035,
December 2019.

Rajput, S., Wang, H., Charles, Z., and Papailiopoulos, D.
DETOX: A redundancy-based framework for faster and
more robust gradient aggregation. In Advances in Neu-
ral Information Processing Systems, pp. 10320-10330,
December 2019.

Aspis: Robust Detection for Distributed Learning

Rakin, A. S., He, Z., and Fan, D. Bit-flip attack: Crush-
ing neural network with progressive bit search. In 2019
IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 1211-1220, October 2019.

Raviv, N., Tandon, R., Dimakis, A., and Tamo, I. Gradient
coding from cyclic MDS codes and expander graphs.
In Proceedings of the 35th International Conference on
Machine Learning, pp. 4302—4310, July 2018.

Regatti, J., Chen, H., and Gupta, A. ByGARS: Byzantine
sgd with arbitrary number of attackers. arXiv, 2020.
2006.13421.

Robson, J. Algorithms for maximum independent sets. Jour-
nal of Algorithms, 7(3):425-440, September 1986.

Seide, F. and Agarwal, A. CNTK: Microsoft’s open-source
deep-learning toolkit. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 2135, August 2016.

Shen, S., Tople, S., and Saxena, P. Auror: Defending against
poisoning attacks in collaborative deep learning systems.
In Proceedings of the 32nd Annual Conference on Com-
puter Security Applications, pp. 508—-519, December
2016.

Tandon, R., Lei, Q., Dimakis, A. G., and Karampatziakis, N.
Gradient coding: Avoiding stragglers in distributed learn-
ing. In Proceedings of the 34th International Conference
on Machine Learning, pp. 3368-3376, August 2017.

Tarjan, R. E. and Trojanowski, A. E. Finding a maximum
independent set. SIAM Journal on Computing, 6(3):537-
546, 1977.

Van Lint, J. H. and Wilson, R. M. A Course in Combina-
torics. Cambridge University Press, New York, 2001.

Xie, C., Koyejo, O., and Gupta, I. Generalized Byzantine-
tolerant SGD. arXiv, 2018. 1802.10116.

Xie, C., Koyejo, O., and Gupta, 1. Fall of Empires: Breaking
byzantine-tolerant sgd by inner product manipulation. In
35th Conference on Uncertainty in Artificial Intelligence,
UAI 2019, pp. 6893-6901, July 2019a.

Xie, C., Koyejo, S., and Gupta, I. Zeno: Distributed stochas-
tic gradient descent with suspicion-based fault-tolerance.

In Proceedings of the 36th International Conference on
Machine Learning, pp. 6893-6901, June 2019b.

Yin, D., Chen, Y., Kannan, R., and Bartlett, P. Byzantine-
robust distributed learning: Towards optimal statistical
rates. In Proceedings of the 35th International Confer-
ence on Machine Learning, pp. 5650-5659, July 2018.

Yin, D., Chen, Y., Ramchandran, K., and Bartlett, P. L. De-
fending against saddle point attack in Byzantine-robust
distributed learning. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, pp. 7074-7084,
June 2019.

Yu, Q., Li, S., Raviv, N., Kalan, S. M. M., Soltanolkotabi,
M., and Avestimehr, S. Lagrange coded computing: Op-
timal design for resiliency, security and privacy. arXiv,
2019. 1806.00939.

Aspis: Robust Detection for Distributed Learning

A APPENDIX
A.1 Asymptotic Complexity

If the gradient computation has linear complexity (assuming
O(1) cost for the gradient computation with respect to one
model parameter) and since each worker is assigned to [
files of b/ f samples each, the gradient computation cost at
the worker level is O((Ib/f)d) (K such computations in
parallel). In our schemes, however, b is a constant multiple
of f and in general 7 < I = (% '); hence, the complexity
becomes O(ld) which is similar to other redundancy-based
schemes in (Konstantinidis & Ramamoorthy, 2021; Rajput
et al., 2019; Chen et al., 2018). The clique-finding problem
that follows as part of our detection is NP-complete. How-
ever, our experimental evidence suggests that for the kind
of graphs we construct this computation takes a infinitesi-
mal fraction of the execution time. The NetworkX package
(Hagberg et al., 2008) which we use for enumerating all
maximal cliques is based on the algorithm of (Etsuji et al.,
2006) and has asymptotic complexity O(3% /3). We provide
extensive simulations of the clique enumeration time under
the Aspis file assignment for X = 100 and redundancy
r = 5 (cf. Tables 4(a), 4(b) for weak and optimal attack as
introduced in Section 4, respectively). We emphasize that
this value of K exceeds by far the typical values of K of
prior work and the number of servers would suffice for the
majority of challenging training tasks. Even in this case, the
cost of enumerating all cliques is negligible. For this exper-
iment, we used an EC2 instance of type i3.16xlarge.
The complexity of robust aggregation varies significantly
depending on the operator. For example, majority voting
can be done in time which scales linearly with the num-
ber of votes using MJRTY proposed in (Boyer & Moore,
1991). In our case, this is O(Kd) as the PS needs to use
the d-dimensional input from all K machines. Krum (Blan-
chard et al., 2017), Multi-Krum (Blanchard et al., 2017)
and Bulyan (EI Mhamdi et al., 2018) are applied to all K
workers by default and require O(K?2(d + logK)).

A.2 Proof of Theorem 1

With X; given in (6), assuming ¢ > r’, the number of
distorted files is upper bounded by

| Ui X < Z | X;| (by the union bound). (9)

j=r'

For that, recall that v’ = r(r + 1)/2 and that an adversarial
majority of at least 7’ distorted computations for a file is
needed to corrupt that particular file. Note that X; consists
of those files where the active adversaries A’ are of size 7;
these can be chosen in () ways. The remaining workers
in the file belong to N;c 4+ D; where | N;car D;| < q. Thus,
the remaining workers can be chosen in at most (.7 ;) ways.

It follows that

we()(r)

Therefore,

IN

) (1))
L)) G) o

))
-S(O00) -2) o
_ ;(27?). (14)

Eq. (12) follows from the convention that (Z) = 0 when
k> nork < 0. Eq. (14) follows from Eq. (13) using the
following observations

* o (D(L) = Tisg ()(,%) = () in which
the first equality is straightforward to show by taking
all possible cases: ¢ < r,q=rand g > r.

¢ By Symmetry’ Z:/:_Ol ((11) (rgz) = :’1:7" ((zz) (rzz) =

().

The upper bound in Eq. (11) is met with equality when
all adversaries choose the same disagreement set which is
a ¢-sized subset of the honest workers, i.e., D; = D C
H fori = 1,...,q. In this case, it can be seen that the
sets X;,j = r’,...,r are disjoint, so that (9) is met with
equality. Moreover, (10) is also an equality. This finally
implies that (11) is also an equality, i.e., this choice of
disagreement sets saturates the upper bound.

It can also be seen that in this case the adversarial strategy
yields a graph G with multiple maximum cliques. To see
this, we note that the adversaries in A agree with all the
computed gradients in H \ D. Thus, they form of a clique
of Mg) of size K — ¢ in G. Furthermore, the honest

workers in H form another clique Mg) which is also of
size K — q. Thus, the detection algorithm cannot select one
over the other and the adversaries will evade detection; and
the fallback robust aggregation strategy will apply.

Aspis: Robust Detection for Distributed Learning

Table 1: Distortion fraction of optimal and weak attacks for (K, f,1,r) = (15,455,91, 3) and comparison.

6Aspis 6Baseline 6DETOX 6ByzShield 6Aspzs 6Baselzne 6DET()X

q q

2 0.004 0.133 0.2 0.04 2 0.002 0.133 0
3 0.022 0.2 0.2 0.12 3 0.002 0.2 0
4 0.062 0.267 0.4 0.2 4 0.009 0.267 0
5 0.132 0.333 0.4 0.32 5 0.022 0.333 0
6 0242 0.4 0.6 0.48 6 0.044 0.4 0.2
7 04 0.467 0.6 0.56 7 0.077 0.467 0.4

1(a) Optimal attacks. 1(b) Weak attacks.

Table 2: Distortion fraction of optimal and weak attacks for (K, f,1,r) = (21,1330, 190, 3) and comparison.

eAspis 6Baseline GDETOX 6ByzShield 6Aspis Baseline DETOX

q q € €

2 0.002 0.095 0.143 0.02 2 0.001 0.095 0
3 0.008 0.143 0.143 0.06 3 0.001 0.143 0
4 0.021 0.19 0.286 0.1 4 0.003 0.19 0
5 0.045 0.238 0.286 0.16 5 0.008 0.238 0
6 0.083 0.286 0.429 0.24 6 0.015 0.286 0
7 0.137 0.333 0.429 0.33 7 0.026 0.333 0
8 0.211 0.381 0.571 0.43 8 0.042 0.381 0.143
9 0.307 0.429 0.571 0.51 9 0.063 0.429 0.286
10 | 0.429 0.476 0.59 10 0.09 0.476 0.429

2(a) Optimal attacks. 2(b) Weak attacks.

Table 3: Distortion fraction of optimal and weak attacks for (K, f,1,r) = (24,2024, 253, 3) and comparison.

6Aspis 6Baseline 6DETOX 6Byzéhieloi EAspzs 6Baselme EDETOX

q q

2 0.001 0.083 0.125 0.031 2 0 0.083 0
3 0.005 0.125 0.125 0.063 3 0 0.125 0
4 0.014 0.167 0.25 0.125 4 0.002 0.167 0
5 0.03 0.208 0.25 0.188 5 0.005 0.208 0
6 0.054 0.25 0.375 0.281 6 0.01 0.25 0
7 0.09 0.292 0.375 0.375 7 0.017 0.292 0
8 0.138 0.333 0.5 0.5 8 0.028 0.333 0
9 0.202 0.375 0.5 0.5 9 0.042 0.375 0.125
10 0.282 0.417 0.625 0.531 10 0.059 0.417 0.25
11 0.38 0.458 0.625 0.625 11 0.082 0.458 0.375

3(a) Optimal attacks. 3(b) Weak attacks.

Table 4: Clique enumeration time in Aspis graph of K = 100 vertices and redundancy r = 5.

q Time (milliseconds) q Time (milliseconds)
5 9 5 11

15 7 15 11

25 5 25 9

35 5 35 8

45 5 45 6

4(a) Adversaries carry out weak attack. 4(b) Adversaries carry out optimal attack.

Aspis: Robust Detection for Distributed Learning

Table 5: Parameters used for training.

Learning rate

Figure Schemes

schedule
4a 1,2,5,6 (0.01,0.7)
4a 3,4 (0.1,0.95)
4b 1 (0.001,0.95)
4c 1,2 (0.01,0.7)
S5a 1,2 (0.1,0.7)
S5a 34 (0.1,0.95)
S5a 5,6 (0.01,0.7)
5b 1 (0.1,0.7)
5¢ 1,2 (0.01,0.975)
6 1,2 (0.1,0.7)
6 34 (0.1,0.95)
6 5,6 (0.01,0.95)
7 1 (0.1,0.95)
7 2 (0.01,0.7)
8 1 (0.01,0.7)
8 2 (0.1,0.95)
8 3 (0.01,0.7)
9a 1,2 (0.01,0.7)
9a 3 (0.1,0.95)
9b 2 (0.01,0.7)
9¢ 2 (0.01,0.95)

A.3 Experiment Setup Details
A.3.1 Cluster Setup

We used clusters of K = 15 and 21 workers arranged in
various setups within Amazon EC2. Initially, we used a
PS of type 13.16xlarge and several workers of type
c5.4xlarge to setup a distributed cluster. However, this
requires training data to be transmitted from the PS to every
single machine based on our current implementation; an
alternative approach one can follow is to setup shared stor-
age space accessible by all machines to store the training
data. Also, some instances were automatically terminated
by AWS per the AWS spot instance policy limitations;* this
incurred some delays in resuming the experiments that were
stopped. In order to facilitate our evaluation and to avoid
these issues we decided to simulate the PS and the workers
for the rest of the experiments on a single instance of type
x1.16xlarge. We emphasize that the choice of the EC2
setup does not affect any of the numerical results in this
paper since in all cases we used a single virtual machine
image with the same dependencies.

A.3.2 Dataset Preprocessing and Hyperparameter Tuning

The images have been normalized using standard values
of mean and standard deviation for the dataset. The value

“https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-
interruptions.html

used for momentum (for gradient descent) was set to 0.9
and we trained for 16 epochs in all experiments. The num-
ber of epochs is precisely the invariant we maintain across
all experiments, i.e., all schemes process the training data
the same number of times. The batch size and the learn-
ing rate are chosen independently for each method; the
number of iterations are adjusted accordingly to account
for the number of epochs. We followed the advice of
the authors of DETOX and chose (K, b) = (15,480) and
(K,b) = (21,672) for the DETOX and baseline schemes.
For Aspis, we used (K, b) = (15,14560) (32 samples per
file) and (K,b) = (21,3990) (3 samples per file) for the
ALIE experiments and b = 1365 (3 samples per file) for the
remaining experiments except for the FoE optimal attack
q = 4 (cf. Figure 6) for which b = 14560 performed better.
In Table 5, a learning rate schedule is denoted by (z, y); this
notation signifies the fact that we start with a rate equal to
x and every z iterations we set the rate equal to z x y*/?,
where ¢ is the index of current iteration and z is set to be
the number of iterations occurring between two consecutive
checkpoints in which we store the model (points in the ac-
curacy figures). We will also index the schemes in order
of appearance in the corresponding figure’s legend. Exper-
iments which appear in multiple figures are not repeated
in Table 5 (we ran those training processes once). In order
to pick the optimal hyperparameters for each scheme, we
performed an extensive grid search involving different com-
binations of (x,y). In particular, the values of x we tested
are 0.1, 0.01 and 0.001 and for y we tried 1, 0.975, 0.95, 0.7
and 0.5. For each method, we ran 3 epochs for each such
combination and chose the one which was giving the lowest
value of average cross-entropy loss (principal criterion) and
the highest value of top-1 accuracy (secondary criterion).

A.3.3 Error Bars

In order to examine whether the choice of the random seed
affects the accuracy of the trained model we have performed
the experiments for the ALIE distortion for two different
seeds for the values ¢ = 2,4 for every scheme; we used
428 and 50 as random seeds. These tests have been per-
formed for the case of K = 15 workers. In Figure 10a,
for a given method we report the minimum accuracy, the
maximum accuracy and their average for each evaluation
point. We repeat the same process in Figures 11a and 12a
when comparing with Bulyan and Multi-Krum, respectively.
The corresponding experiments for ¢ = 4 are shown in the
Figures 10b, 11b and 12b.

Given the fact that these experiments take a significant
amount of time and that they are computationally expensive,
we chose to perform this consistency check for a subset of
our experiments. Nevertheless, these results indicate that
prior schemes (Rajput et al., 2019; Damaskinos et al., 2019;
El Mhamdi et al., 2018) are very sensitive to the choice of

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html

Aspis: Robust Detection for Distributed Learning

7071

Median, q =2
—A— Aspis, q = 2

_6or DETOX-MoM, g = 2
g
350
[
=
Q
& 40 A
7]
Q —
< 30F 7
8‘ 2N
2 -

201

10 | | |

0 5 10 15

Epochs

(a) ¢ = 2 adversaries.

N
o

Median, q = 4
—A— Aspis, q =4
—*—DETOX-MoM, q =4

w
a

Top-1 test accuracy (%)
N w
(%) o

N
o

=
3

=
o

0 5 10 15
Epochs

(b) ¢ = 4 adversaries.

Figure 10: ALIE optimal attack and median-based defenses (CIFAR-10), K = 15 with different random seeds.

707

[=2]
o

Bulyan,g=2
—A— Aspis, q = 2

u
o

Top-1 test accuracy (%)
Fy
o

w
o

20 | | |
0 5 10 15
Epochs

(a) ¢ = 2 adversaries.

50

Bulyan,q=4
—A— Aspis, q =4

Top-1 test accuracy (%)

0 5 10 15
Epochs

(b) ¢ = 4 adversaries.

Figure 11: ALIE optimal attack and Bulyan-based defenses (CIFAR-10), K = 15 with different random seeds.

071

D
o

a
o

Multi-Krum, g = 2
—&— Aspis, q = 2

Top-1 test accuracy (%)
w N
o o

N
o

i
o

0 5 10 15
Epochs

(a) ¢ = 2 adversaries.

N
o

w
a

Multi-Krum, q = 4
—A— Aspis, q =4

Top-1 test accuracy (%)
N w
(¢ o

N
o

i
3

=
o

10 15
Epochs

(b) ¢ = 4 adversaries.

Figure 12: ALIE optimal attack and Multi-Krum-based defenses (CIFAR-10), K = 15 with different random seeds.

the random seed and demonstrate an unstable behavior in
terms of convergence. In all of these cases the achieved
value of accuracy at the end of the 16 epochs of training is
small compared to Aspis. On the other hand, the accuracy
results for Aspis are almost identical for both choices of the
random seed.

A.3.4 Computation and Communication Overhead

Our scheme provides robustness under powerful attacks
and sophisticated distortion methods at the expense of in-
creased computation and communication time. Note that
each worker has to perform [forward/backward propaga-
tion computations and transmit [gradients per iteration. In
related baseline (E1 Mhamdi et al., 2018; Blanchard et al.,

Aspis: Robust Detection for Distributed Learning

2017) and redundancy-based methods (Rajput et al., 2019;
Chen et al., 2018) each worker is responsible for a sin-
gle such computation. Experimentally, we have observed
that Aspis needs up to 5x overall training time compared
to other schemes to complete the same number of train-
ing epochs. We emphasize that the training time incurred
by each scheme depends on a wide range of parameters
including the utilized defense, the batch size and the num-
ber of iterations and can vary significantly. We believe
that implementation-related improvements such as utilizing
GPUs can alleviate some of the overhead. Communication-
related algorithmic improvements are also worth explor-
ing. Finally, our implementation natively supports resuming
from a checkpoint (trained model) and hence, when new
data becomes available we can only use that data to perform
more epochs of training.

A.3.5 Software

Our implementation of the Aspis algorithm used
for the experiments builds on the ByzShield’s
(Konstantinidis & Ramamoorthy, 2021) PyTorch skeleton
and has been provided along with dependency information
and instructions 3. The implementation of ByzShield is
available at https://github.com/kkonstantinidis/ByzShield
and uses the standard Github license. We utilized the
NetworkX package (Hagberg et al., 2008) for the clique-
finding; its license is 3-clause BSD. The CIFAR-10 dataset
(Krizhevsky, 2009) comes with the MIT license; we have
cited its technical report, as required.

Table 6: Main notation of the paper.

Symbol Meaning

K number of workers

q number of adversaries

r redundancy (number of workers each file is
assigned to)

b batchsize

By samples of batch of ¢! iteration

f number of files (alternatively called groups
or tasks)

U, 3" worker

l computation load (number of files per
worker)

N(Uj) set of files of worker U
N(By;) setof workers assigned to file B ;
8t true gradient of file B; ; with respect to w
gg_ji) returned gradient of U; for file B;; with
respect to xw

m; majority gradient for file B; ;

u worker set {Uy, U, ..., Uk }

G graph indicating the agreements of pairs
of workers in all of their common gradient
tasks

A set of adversaries

Mg maximum clique in G

¢l@ number of distorted gradients after detec-
tion and aggregation

nggx maximum number of distorted gradients af-
ter detection and aggregation (worst-case)

D; disagreement set (of workers) for ith adver-
sary

7! (r + 1)/2, i.e., minimum number of dis-
torted copies needed to corrupt majority
vote for a file

€ @ /f, i.e., fraction of distorted gradients
after detection and aggregation

X; subset of files where the set of active adver-

saries is of size j

>https://www.dropbox.com/sh/8bf4itlb3tz804n/A ABKp6PaGlr_ M8tRVmIRM6Pba?dl=0

https://github.com/kkonstantinidis/ByzShield
https://www.dropbox.com/sh/8bf4itlb3tz8o4n/AABKp6PaGlr_M8tRVmIRM6Pba?dl=0

