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Abstract

In machine learning and statistical data analysis, we often run into objective function that
is a summation: the number of terms in the summation possibly is equal to the sample size,
which can be enormous. In such a setting, the stochastic mirror descent (SMD) algorithm is
a numerically efficient method—each iteration involving a very small subset of the data. The
variance reduction version of SMD (VRSMD) can further improve SMD by inducing faster
convergence. On the other hand, algorithms such as gradient descent and stochastic gradient
descent have the implicit regularization property that leads to better performance in terms
of the generalization errors. Little is known on whether such a property holds for VRSMD.
We prove here that the discrete VRSMD estimator sequence converges to the minimum mirror
interpolant in the linear regression. This establishes the implicit regularization property for
VRSMD. As an application of the above result, we derive a model estimation accuracy result
in the setting when the true model is sparse. We use numerical examples to illustrate the
empirical power of VRSMD.

1 Introduction

In statistics and machine learning, it is common to optimize an objective function that is a finite-
sum. SMD efficiently optimizes such an objective by using a subset of data to do one step update
of the variable/parameter. Further adopting the variance reduction technique to SMD, we get the
VRSMD algorithm that enjoys fast convergence [1], [2].

The implicit regularization is a relatively new concept [3] that explains why a result of an
algorithm generalizes well in some overparameterized models [3], [4]. It refers to the fact that
an algorithm can automatically select a minimum norm solution, which is not explicitly induced
by the objective function. There are works on implicit regularization for Gradient Descent [5]–
[8], Stochastic Gradient Descent [9]–[12], and Stochastic Mirror Descent [13]. Considering the
computational advantage of VRSMD compared to all the algorithms above, it would be even better
if VRSMD also has the useful implicit regularization property.

From technical point of view, our work contains the following two results:

• In linear regression (including underfitting and overfitting), we show that the solution sequence
of VRSMD converges to the minimum mirror interpolant, which is the implicit regularization
property of VRSMD, and we also specify the convergence rate.
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• In sparse regression, by choosing a proper mirror map, we show that the implicit regularization
estimator finds the sparse true parameter with a small error. Moreover, compared with the
deterministic algorithms in [5], [6], our algorithm is equally good in estimating a sparse truth
while being computationally faster, as supported by our experiments.

From the application point of view, our result shows that the Mirror Descent and its variants
are useful to explore the low dimensional geometric structure from high dimensional data, which
leads to nice generalization properties.

Notation. The following notations are used throughout this paper. For a matrix X ∈ Rn×p,
we denote by col(X) := {u ∈ Rn : ∃v ∈ Rp,u = Xv} the column space of X, and we denote by
N (X) := {v ∈ Rp : Xv = 0} the null space of X. For a vector v ∈ Rp, we use the definition of `p
norm of v that ‖v‖p = (

∑
i |vi|p)1/p for p ≥ 1 and we denote the number of non-zero elements in v

as ‖v‖0. For a subset of indexes I ⊂ {1, . . . , p}, we define vI := (vi)i∈I , and denote the cardinality
of I as |I|. For a set X ⊂ Rp, define PXv = argminu∈X ‖u − v‖2. For two non-negative-valued
functions a(x) and b(x), we denote a(x) ∼ O(b(x)) if there exists an absolute constant C such
that a(x) ≤ Cb(x); and we denote a(x) ∼ Θ(b(x)) if there are absolute constants c, C such that
cb(x) ≤ a ≤ Cb(x).

Organization. The rest of the paper is as follows. In Section 2, we describe our problem
formulation and algorithm. Section 3 states the main theory on the implicit regularization. Section
4 develops insight into the implicit regularization and establishes the sparse recovery property.
Section 5 supports the theory on implicit regularization by simulations and experiments. In Section
6, we discuss the finding of our work and some future directions. All proofs are deferred to the
appendix.

2 Formulation and Algorithm

To better present the material, we split this section into two subsections. In Subsection 2.1 we
formulate the optimization problem motivated from linear regression. In Subsection 2.2, we present
the Variance Reduction Stochastic Mirror Descent (VRSMD) algorithm for solving such an opti-
mization problem.

2.1 Formulation

Assume we observe data pairs {(xi, yi) ∈ Rp×R}ni=1, the goal is to predict the response y based on
x. Under the empirical risk minimization framework, we consider the general optimization problem
of the form

min
β
F (β) =

1

n

n∑
i=1

fi(β; (xi, yi)), (1)

and we shorten fi(β; (xi, yi)) as fi(β) to simplify the notation.
As a concrete example, for the linear regression model, the classical least squares method is to

find coefficient β that minimizes the objective function

min
β
F (β) =

1

2n

n∑
i=1

(
xTi β − yi

)2
=

1

2n
‖Xβ − y‖22, (2)

where we denote X = [x1, . . . ,xn]T ∈ Rn×p, and y = [y1, . . . , yn]T ∈ Rn.
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When problem (2) has non-unique solutions, it is important yet nontrivial to find a solution that
has nice generalization property. It is well known that when running Gradient Descent algorithm
with initialization β0 = 0 on (2), the corresponding solution is the minimal `2 norm solution among
all solutions of (2), see [14]. Also, the properties of SMD are studied in [13]. It is unknown what
happens to the solution if we run variants of SMD, for example, variance reduced SMD.

2.2 VRSMD Algorithm

Let us now present the main idea of the variance reduced stochastic mirror descent (VRSMD)
algorithm as follows.

To understand why we need variance reduction, consider the Stochastic Mirror Descent(SMD)
algorithm using a strictly convex and differentiable mirror map ψ(·). At step t, the SMD updates
βt+1 such that

∇ψ(βt+1) = ∇ψ(βt)− ηt∇fit(βt),

where it is randomly sampled from {1, . . . , n}. Now the term ∇fit(βt) has E[∇fit(βt)] = ∇F (βt),
so SMD has unbiased update compared to Mirror Descent, where the update is ∇ψ(βt+1) =
∇ψ(βt) − ηt∇F (βt). However, in general Var[∇fit(βt)] 6= 0 for any βt, so we need ηt → 0,
which may lead to slow convergence.

Variance reduction addresses the issues above by replacing ∇fit(βt) with term At such that

• E[At] = E[∇fit(βt)] to keep unbiased update;

• Var[At] < Var[∇fit(βt)] to control variance.

One choice of At is At = ∇fit(βt)−Bt+E[Bt], where Bt and ∇fit(βt) are positively correlated with
correlation coefficient r > 0.5 and Var[Bt] ≈ Var[∇fit(βt)]. For this At one can check that E[At] =
E[∇fit(βt)] and Var[At] = Var[∇fit(βt) − Bt] = Var[∇fit(βt)] − 2r

√
Var[∇fit(βt)] Var[Bt] +

Var[Bt] < Var[∇fit(βt)]. For a proper Bt such that Var(At)
t→∞−→ 0, the algorithm converges

for a fixed η.
For illustration purpose, we use the variance reduction technique in [15] to get the VRSMD

Algorithm 1. However, one should note that this framework applies to other variance reduction
methods such as SARAH [16] and SPIDER [17].

Remark 1. We note the complexity of VRSMD as follows: The total number of stochastic-first-
order calls (i.e. SFO complexity) of Algorithm 1 is O(nS + mS). A popular choice of the inner
loop number m is Θ(n), which leads to O(1) SFO complexity per inner loop.

The variance reduction component of VRSMD is vst in (3). Note that it is equivalent to the
variance reduction scheme we talked above by taking Bt = ∇fit(β̃s−1). The conditions we list
there on Bt hold when βst and β̃s−1 are close, which happens by taking moderate values of the
inner iteration number m and the step-size η.

We show that the VRSMD algorithm is a generalization of the SVRG algorithm in [15], [18]:
For the special case of ψ(·) = 1

2‖ · ‖
2
2, we have ∇ψ(β) = β, then (3) updates βst+1 as:

βst+1 = βst − ηvst ,

which is the SVRG update, and VRSMD reduces to SVRG.
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Algorithm 1: Variance Reduced Stochastic Mirror Descent (VRSMD)

Input: An objective function F (·) = 1
n

∑n
i=1 fi(·), and a strictly convex and differentiable

mirror map ψ(·);
Initialization: Initialize β̃0. Choose the step-size η, outer iteration number S, inner
iteration number m. Denote the estimator at tth inner iteration of sth outer iteration as
βst . Set β1

1 = β0
m+1 = β̃0;

for Outer iteration s = 1,. . . ,S do

Calculate ∇F (β̃s−1);
for Inner iteration t = 1,. . . ,m do

Randomly sample it from {1, . . . , n}, calculate

vst = ∇fit(βst )−∇fit(β̃s−1) +∇F (β̃s−1), (3)

and update βst+1 such that

∇ψ(βst+1) = ∇ψ(βst )− ηvst . (4)

Set β̃s to be a uniform random sample from {βs1, . . . ,βsm};
Option I: Set βs+1

1 = βsm+1;

Option II: Set βs+1
1 = β̃s;

Option I: Output βa chosen uniformly random from {{βst }mt=1}Ss=1;

Option II: Output βa = β̃S .

3 Implicit Regularization

In this section, we present the implicit regularization property of the VRSMD solution. To do so,
it is necessary to first show that the VRSMD converges.

To begin with, we introduce some definitions that will be useful in our theory.

Definition 1 (L-smoothness). f is L-smooth with respect to ‖ · ‖ norm if there exists a constant
L > 0 such that

‖∇f(u)−∇f(w)‖∗ ≤ L‖u−w‖,∀u,w,

where ‖ · ‖∗ := maxy:‖y‖=1〈y, ·〉 is the dual norm of ‖ · ‖.

Definition 2 (α-strongly convex). f is α-strongly convex with respect to ‖ · ‖ norm if there exists
a constant α > 0 such that

f(u) ≥ f(w) +∇f(w)T (u−w) +
α

2
‖u−w‖2,∀u,w.

Definition 3 (Quadratic growth (QG)). Let X be the set of all minimizers of f . f satisfies QG
condition w.r.t. ‖ · ‖ if

µ

2
‖u− PXu‖2 ≤ f(u)− f(PXu),∀u. (5)
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Definition 4 (ε-solution). For the optimization problem

Opt = min
x∈B
{f(x) : gi(x) ≤ 0, 1 ≤ i ≤ m}. (6)

xε ∈ B is called an ε-solution to (6) if

f(xε)−Opt ≤ ε,
gi(xε) ≤ ε, 1 ≤ i ≤ m.

Definition 5 (Restricted eigenvalue (RE)). X satisfies (s, γ)-RE condition if for any β such that
‖β‖0 ≤ s we have

1
n‖Xβ‖

2
2

‖β‖22
≥ γ.

Definition 6 (s-good). A matrix Xn×p is s-good if ∃κ < 1
2 such that ∀u ∈ N (X) ⊂ Rp and

∀I ⊂ {1, . . . , p} with |I| ≤ s, we have

‖uI‖1 ≤ κ‖u‖1.

Next, let us present the convergence result of VRSMD:

Proposition 1. Assume F (·) = 1
n

∑n
i=1 fi(·) has every fi(·) convex and L-smooth w.r.t. an arbi-

trary norm ‖ · ‖, and ψ(·) is α-strongly convex w.r.t. ‖ · ‖. Denote β∗ = arg minF (·).
(a) Run Option I of Algorithm 1 on F with η < α

24L , then we have

E[F (βa)− F (β∗)] ≤ α

(αη − 24Lη2)T
×[

Dψ(β∗, β̃0) +
12Lη2m

α
(F (β̃0)− F (β∗))

]
,

(7)

where T = m ·S, and Dψ(β∗, β̃0) := ψ(β∗)−ψ(β̃0)−〈∇ψ(β̃0),β∗− β̃0〉 is the Bregman divergence.
(b) If we further assume that F (·) satisfies the QG condition in (5) with constant µ, and that

ψ(·) is `-smooth, all w.r.t. ‖ · ‖, and also suppose that we run Option II of Algorithm 1 with a large
enough m such that

τ :=
12Lη2/α+ `/(mµ)

η − 12Lη2/α
< 1, (8)

then the VRSMD has a stronger linear convergence rate:

E[F (βa)− F (β∗)] ≤ τS [F (β̃0)− F (β∗)]. (9)

Remark 2. We analyze the computational complexity implied by Proposition 1: In (a), let m = n
and take η = α

48L , then we have

E[F (βa)− F (β∗)] ≤ 96L

αT
×[

Dψ(β∗, β̃0) +
αn

192L
(F (β̃0)− F (β∗))

]
.

In this case, the number of gradient computations for achieving an ε-solution is O(Lε + n
ε ).

5



Remark 3. The assumption in (b) is moderate. Take m = 110L`
αµ and η = α

36L , we have τ < 1.

This choice of m does not violate the O(1) SFO comlexity per iteration – take a good mirror map so
that `/α = O(1), and consider the most indicative case [15] where the condition number L/µ = n,
we have m = Θ(n).

Our results in Proposition 1 are consistent with those for SVRG. In part (a), the O(1/T )
convergence rate matches the rate in [18]; in part (b), the linear rate matches the rate in [15], while
we reduce their strong convexity assumption to quadratic growth.

Finally, we are ready to present our main result on implicit regularization. In the following
theorem, we show that VRSMD finds an ε-solution of the minimum mirror interpolation problem.

Theorem 1. For the objective function in (2), assume ψ(β) is α-strongly convex w.r.t. ‖ · ‖2,
denote L = maxi ‖xi‖22 and let sm be the smallest nonzero singular value of X. The VRSMD
algorithm converges to the minimum mirror map interpolant

βψ := argminβ ψ(β)

s.t. F (β) = min
β′

F (β′).
(10)

We describe the convergence by the following ε-solution:
(a) Run Option I of Algorithm 1 with choice η < α

24L and initialization β̃0 such that ∇ψ(β̃0) ∈
col(XT ), assume that the output βa satisfies ‖∇ψ(βa)‖2 ≤ B, then we will have

E[ψ(βa)− ψ(βψ)] ≤ B

sm

√
α

(αη − 24Lη2)T
×[

2nDψ(βψ, β̃0) +
24nLη2m

α

(
F (β̃0)− F (βψ)

)].5
,

(11)

which describes how far is the objective value at βa away from the optimal solution to (10). More-
over, we have

E[F (βa)− F (βψ)] ≤ α

(αη − 8Lη2)T
×[

Dψ(βψ, β̃0) +
12Lη2m

α

(
F (β̃0)− F (βψ)

)]
,

(12)

which characterizes how much does βa violates the constraints of (10). They together show that
the VRSMD algorithm finds an ε-solution to (10) for T = O( 1

ε + 1
ε2 ).

(b) Further assume that ψ(·) is `-smooth w.r.t. ‖ · ‖2 and

τ ′ =
12Lη2/α+ `n/(ms2m)

η − 12Lη2/α
< 1. (13)

Run Option II of Algorithm 1, we can show that:

E[ψ(βa)− ψ(βψ)] ≤ B(τ ′)S/2
√

2n

sm

√
F (β̃0)− F (βψ),

E[F (βa)− F (βψ)] ≤ (τ ′)S
(
F (β̃0)− F (βψ)

)
. (14)
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Remark 4. We need to point out that the assumptions in Theorem 1 are moderate. For instance,
for the assumption that ∇ψ(β̃0) ∈ col(XT ), we can take β̃0 = (∇ψ)−1(XTa) for any a. One
feasible choice is a = 0, resulting in β̃0 = arg minβ∈Rp ψ(β). Since ψ is strongly convex, this
minimizer is not hard to calculate, for example: we have
·ψ(·) = ‖ · ‖qq or ψ(·) = ‖ · ‖2q for q > 1⇒ arg minψ(·) = 0;

·ψ(β) = βTHβ for a positive definite H ⇒ arg minψ(·) = 0;
·ψ(β) =

∑p
i=1 βi log(βi)− βi ⇒ arg minψ(·) = 1.

Remark 5. As for the assumption in (b), we can take m = 110L`n
αs2m

and η = α
36L to get τ ′ =

(1 + 108/110)/2 < 1. Take a good mirror map such that `/α = O(1) and assume L/s2m = O(1), we
further have m = Θ(n), so the algorithm can be implemented efficiently.

It is useful to provide a high level understanding of Theorem 1. It implies that the discrete
update of the VRSMD Algorithm on the unregularized objective (2) is an ε-solution of the reg-
ularized optimization problem (10), so it is an implicit regularization result. Furthermore, since
(10) minimizes a strictly convex function over a convex set, the solution will be unique, thus the
estimator from VRSMD must converge to this unique solution. The finding in Theorem 1 can be
further extended to other variants of SMD.

4 Further Understanding of Implicit Regularization

In this section, we provide a deeper understanding of our theoretical results in the previous section
by analyzing two special mirror maps for linear regression model: one is ψ(β) = ‖β‖22/2, the other
is ψ(β) = ‖β‖1+δ1+δ for small δ > 0.

Let us first consider ψ(·) = ‖ · ‖22/2, where VRSMD reduces to SVRG algorithm in [15]. In this
case, we further show that ‖βa − βψ‖22 linearly converges to 0, where βψ is the minimum `2 norm
solution βψ = (XTX)+XTy = X+y:

Corollary 1. Denote L = maxi ‖xi‖22, take ψ(·) = ‖ · ‖22/2, let β̃0 = β0
m = 0, ηt = η < 1/(24L),

and assume

τ ′′ =
12Lη2 + n/(ms2m)

η − 12Lη2
< 1. (15)

Run Option II of Algorithm 1 on (2), we have

E‖βa −X+y‖22 ≤
(τ ′′)S

s2m
‖Pcol(X)y‖22. (16)

Next, let us consider the mirror map ψ(β) = ‖β‖1+δ1+δ for a small δ > 0 in VRSMD, which leads
to a sparse solution. Assume that ‖βst ‖∞ ≤ K for a large enough K throughout the updates, we

then have ψ(βst ) is (1+δ)δ
K1−δ -strongly convex and ‖∇ψ(βa)‖2 ≤

√
p(1 + δ)Kδ. By Theorem 1 we have

the estimator sequence converges to the penalized solution

β(δ) = argminβ
{
‖β‖1+δ1+δ : Xβ = Pcol(X)y

}
. (17)

This choice of mirror map has limδ→0 ‖β‖1+δ1+δ = ‖β‖1 and the solution β(0) := argminβ{‖β‖1 :

Xβ = Pcol(X)y} is sparse. Thus we expect that for small δ, β(δ) is close to β(0) and recovers a
sparse true parameter.
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Figure 1: Run VRSMD Algorithm on simulated noiseless data. (a) the squared error objective
function converges quickly to 0. In (b), the `1 estimation error converges to smaller value for
smaller δ, indicating the nearly exact recovery of the sparse signal, which supports Theorem 2. In
(c), for ψ(·) = ‖ · ‖1.051.05, the VRSMD estimator converges to the true parameter values. In (d), for
a smaller δ, the convergence value of VRSMD estimator is closer to ground truth.

We now provide a rigorous argument for the sparse recovery. Assume that the data is generated
by y = Xβo for a sparse βo. In the following theorem we have β(δ) accurately recovers βo when
the design matrix X satisfies some proper conditions.

Theorem 2 (Sparse Recovery). Under the sparse setting defined above, denote s = ‖βo‖0. Assume
that the design matrix X satisfies (s, γ)-RE condition and is s-good with constant κ < 1

2 . For any
ξ > 0, if we choose

δ ≤
log
(

1 +
(1−2κ)√nγ√

s‖y‖2
ξ
)

log p− log
(

1 +
(1−2κ)√nγ√

s‖y‖2
ξ
) , (18)

we have
‖β(δ) − βo‖1 ≤ ξ. (19)

By Theorem 2, the estimator β(δ) estimates the sparse truth with a small error ξ. In this way,
VRSMD algorithm 1 achieves near sparse recovery via implicit regularization.

5 Numerical Experiment

Simulation. We generate data by a sparse model as follows: Set n = 1000, p = 5000 > n
for the design matrix X. Simulate X = Σ1/2W where the entries of W are i.i.d. N(0, 1) and
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Σ = 0.5 ∗ diag(1n) + 0.5 ∗ 1n×n. The true parameter βo ∈ Rp has its first 30 entries sampled from
i.i.d. N(0, 1) and the rest entries set to 0. Compute responses y = Xβo.

We then run VRSMD on objective function (2) for this simulated X and y. For a range of δ, set
the mirror map as ψ(·) = ‖ · ‖1+δ1+δ, and run VRSMD with initialization β̃0 = 0, step-size η = 0.0002,
outer iteration number 50 and inner iteration number 1000 = n. The result is in Fig. 1.

Experiment on RNA dataset. We use the gene expression cancer RNA-Seq data set1 for
experiment. The data consists of 801 observations, each of dimension 20, 531. Randomly split the
data into 600 training data and 201 testing data. Run VRSMD algorithm on training data using
mirror function ψ = ‖ · ‖1.11.1 where initialization β̃0 = 0, step-size η = 0.015, inner iteration number
400 and outer iteration number determined by 5-fold cross validation (i.e. early stopping). We
also compare VRSMD with the Hadamard GD [5], [6], which also has implicit regularization for
sparsity. The result is in Fig. 2.

Figure 2: Run VRSMD Algorithm on RNA dataset. In (a), we plot the solution path of the
first 100 entries of β, and it shows that the early stopped estimator is sparse. In (b) and (c), we
compare the performance of VRSMD with Hadamard GD. Plot (b) shows that VRSMD trains faster
than Hadamard GD, which is tested significant by one-sided Wilcoxon signed-rank test (p-value =
9.77 × 10−4). Plot (c) shows that the two algorithms have same prediction error on testing data,
for which we test by two-sided Wilcoxon signed-rank test (p-value = 0.56).

6 Conclusions and Future Research

Our work analyzes the implicit regularization property of VRSMD, which covers both underfitting
and overfitting cases in linear regression. In particular, our theorem shows that the implicit regular-
ization property can help VRSMD find a sparse ground truth with a small error. Our experiments
illustrate that the VRSMD is computationally efficient compared to the Hadamard GD algorithm
that has implicit regularization for sparsity [6], thanks to the stochastic nature of VRSMD.

1https://archive.ics.uci.edu/ml/datasets/gene+expression+cancer+RNA-Seq

9

https://archive.ics.uci.edu/ml/datasets/gene+expression+cancer+RNA-Seq


We discuss some future directions of our research. First, it is useful to study the implicit
regularization properties of the VRSMD in the nonEuclidean setup. For example, one can consider
the generalized linear model (GLM) where the data lies in a Riemannian manifold and mirror
descent and/or natural gradient descent are efficient. Our analysis can be extended from the linear
regression model to the GLM case.

Second, it is interesting to investigate the minimax property of the VRSMD estimator. We
see from our experiment that VRSMD with early stopping has comparable prediction performance
to Hadamard GD that is minimax optimal for sparse regression [5], [6]. This leads to the open
question of how to select a good mirror map and an optimal stopping time in VRSMD (or variants
of VRSMD) such that the resulting estimator is minimax optimal and thus generalizes well.

Third, one can explore the implicit regularization properties of other variants of SMD. For
example, one can consider the accelerated version of VRSMD as the Katyusha algorithm in [19].
Such an algorithm is well studies in optimization literature, and it has a better convergence rate that
can match the theoretical optimum. We hypothesize that it also enjoys the implicit regularization
property, but the proof is out of the scope of this work.

Finally, our results might provide a better understanding of deep neural networks. By [20],
Gradient Descent on Hadamard reparameterized linear regression, which is related to a neural
network with multiple layers, can be approximated by Mirror Descent on original parameters. This
point of view allows us to study a neural network from the VRSMD perspective and helps to explain
why the Gradient Descent gives a sparse estimator in some deep learning models.
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A Comparison with the VRSMD work [1]

Besides the implicit regularization property that is emphasised in this work, the variance reduced
stochastic mirror descent (VRSMD) itself is an algorithm of independent interest to the optimization
community. We notice a concurrent work that also applies variance reduction to SMD [1]. Our work
is independently done without been affected by their work, and we have different focuses. The high
level difference of their work and this one is that: their main goal is the convergence analysis, while
this work focus on the interesting implicit regularization property and its implication of VRSMD.
Nevertheless, we can compare the overlapping part of our work with theirs, which is the convergence
analysis. Here we do it from three perspectives: assumptions, measurement of convergence, and
the the number of stochastic gradient ∇fi(x) (i.e. SFO calls) required to achieve a ε convergence:

Difference in assumption: There are 4 main difference in assumptions:
1. They assume their objective function to be min 1

n

∑
i fi(x) + g(x), where g is possibly non-

smooth but convex and fi is possibly non-convex but smooth. Our formulation does not have the
non-smooth component, and we assume fi to be convex. In their work, they assume the proximal
operator in g can be efficiently solved to handle the non-smoothness. And they use different
measurement for convergence compared to our work due to non-convexity.

2. Their assumptions on the strong convexity of mirror map and the smoothness of the objective
fis are with respect to `2 norm. Our assumptions of the strong convexity and smoothness are for an
arbitrary norm. Considering that the mirror descent is a nonEuclidean variant of gradient descent,
assume a nonEuclidean norm would be more suitable.

3. They assume that the fi has bounded variance as Ei[‖∇fi(x) − ∇f(x)‖22] ≤ σ2. This
assumption is not required in our work.

4. They assume the PL inequality (w.r.t. the `2 norm) holds to achieve a linear convergence
rate. We prove the same rate, but under Quadratic Growth (QC) condition (w.r.t. an arbitrary
norm). When considering the `2 norm, the PL condition implies the QC condition [21], thus their
assumption is stronger than our assumption here.

Difference in measuring convergence: Since the objective in [1] is nonconvex, the conver-
gence is evaluated for the stability gap E[‖∇f(x)‖22]. Our works applies to a convex objective, so
the convergence is evaluated for the optimization gap E[f(x)]−minx f(x).
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Comparing the SFO complexity: Unify all other notations and conditions in our work and
theirs, we compare the SFO complexity required to achieve a ε stability gap, i.e. E[‖∇f(x)‖22] ≤ ε:

For the general case, our SFO is O( 1
ε + n

ε ), and theirs is O(min(nε ,
σ2

ε2 ) + 1
ε ). Ignoring the

bounded variance assumption by taking σ =∞, then their rate is the same as ours;
For the special case where we have linear convergence rate, our SFO is O(n log 1

ε + 1
µ log 1

ε ), and

theirs is O(min(n, σ
2

µε ) 1
µ log 1

ε + 1
µ log 1

ε ). Again taking σ = ∞, our SFO complexity is better than
theirs, possibly because the difference in problem setting.

B Lemmas

We first list some lemmas that will be used in the proof. For each lemma, we either give its reference
or show the proof.

Lemma 1 ([22]). For a L-smooth function f with respect to ‖ · ‖, we have:

f(u)− f(w)−∇f(w)T (u−w) ≤ L

2
‖u−w‖2. (20)

Lemma 2 (Theorem 2.1.5 in [23]). For a L-smooth function f with respect to ‖ · ‖, we have:

‖∇f(u)−∇f(w)‖2∗ ≤ 2L[f(u)− f(w)− 〈∇f(w),u−w〉]. (21)

And especially, when ∇f(w) = 0:

‖∇f(u)‖2∗ ≤ 2L[f(u)− f(w)]. (22)

Lemma 3. For the problem minβ F (β) = 1
n

∑n
i=1 fi(β), suppose all fis are convex and L−smooth

w.r.t. norm ‖ · ‖, denote β∗ = argminβ F (β), then for i chosen uniformly random from {1, . . . , n},
the term v = ∇fi(β)−∇fi(β̃) +∇F (β̃) have:

E‖v‖2∗ ≤ 12L[F (β)− F (β∗) + F (β̃)− F (β∗)]. (23)

Proof.

E‖v‖2∗ = E‖∇fi(β)−∇fi(β̃) +∇F (β̃)‖2∗
≤ 3E‖∇fi(β)−∇fi(β∗)‖2∗ + 3E‖∇fi(β∗)−∇fi(β̃)‖2∗ + 3‖∇F (β̃)‖2∗
= 3E‖∇fi(β)−∇fi(β∗)‖2∗ + 3E‖∇fi(β∗)−∇fi(β̃)‖2∗ + 3‖∇F (β̃)−∇F (β∗)‖2∗
(21)

≤ 6E{L[fi(β)− fi(β∗)− 〈∇fi(β∗),β − β∗〉]}+ 6E{L[fi(β̃)− fi(β∗)− 〈∇fi(β∗), β̃ − β∗〉]}
+ 6{L[F (β̃)− F (β∗)− 〈∇F (β∗), β̃ − β∗〉]}

= 6L[F (β)− F (β∗)] + 12L[F (β̃)− F (β∗)]

≤ 12L[F (β)− F (β∗) + F (β̃)− F (β∗)]

Lemma 4. For the linear regression objective function F (β) = ‖Xβ − y‖22/(2n) = 1
n

∑n
i=1 fi(β)

where fi(β) =
(
xTi β − yi

)2
/2, the term v = ∇fi(β)−∇fi(β̃) +∇F (β̃) is in col(XT ).
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Proof. Check

∇fi(β) = xi(x
T
i β − yi) = XT

0i−1
1

0n−i

 (xTi β − yi) ∈ col(XT ).

And ∇F (β̃) = XT
[
1
n (Xβ̃ − y)

]
∈ col(XT ). Thus v = ∇fi(β)−∇fi(β̃) +∇F (β̃) ∈ col(XT ).

Lemma 5. For a matrix X ∈ Rn×p, for any u ∈ col(XT ), we have

‖Xu‖22 ≥ s2m‖u‖22 (24)

where s2m is the smallest non-zero eigenvalue of XTX.

Proof. Consider the SVD of XT = QΣV where QTQ = QQT = Ip and V TV = V V T = In

Σ =

[
diag(s)m 0m×(n−m)

0(p−m)×m 0(p−m)×(n−m)

]
p×n

with s = [s1, . . . , sm], s1 > . . . > sm > 0. And write Q = [q1, . . . ,qp], then for any u ∈ col(XT ),
we can write u =

∑m
i=1 wiqi for some w1, . . . , wm, and ‖u‖22 =

∑m
i=1 w

2
i .

Then

Xu = V TΣTQT (

m∑
i=1

wiqi)

= V TΣT



w1

...
wm
0
...
0



= V T



s1w1

...
smwm

0
...
0


.

Thus

‖Xu‖22 = ‖V T



s1w1

...
smwm

0
...
0


‖22 =

m∑
i=1

s2iw
2
i ≥ s2m

m∑
i=1

w2
i = s2m‖u‖22.
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Lemma 6. If f is α−strongly convex w.r.t. ‖ · ‖, then

f(u) ≤ f(w) +∇f(w)T (u−w) +
1

2α
‖∇f(u)−∇f(w)‖2∗. (25)

Proof. Consider g(v) = f(v)− vT∇f(w), then g is also α−strongly convex, and it’s easy to check
that g has a unique minimizer w.

Next, by α−strong convexity of g, for any u we have

g(v) ≥ g(u) +∇g(u)T (v − u) +
α

2
‖v − u‖2. (26)

Minimizing both side of (26) w.r.t. v, we have

g(w) = min
v
g(v) ≥ min

v
g(u) +∇g(u)T (v − u) +

α

2
‖v − u‖2

≥ min
v
g(u)− ‖∇g(u)‖∗‖v − u‖+

α

2
‖v − u‖2

≥ g(u)− 1

2α
‖∇g(u)‖2∗.

That is,

f(w)−wT∇f(w) ≥ f(u)− uT∇f(w)− 1

2α
‖∇f(u)−∇f(w)‖2∗.

Rearrange the terms we get (25).

Lemma 7. If f is α−strongly convex w.r.t. ‖ · ‖, then

[∇f(u)−∇f(w)]T [u−w] ≤ 1

α
‖∇f(u)−∇f(w)‖2∗. (27)

Proof. Apply (25) twice to get:

f(u) ≤ f(w) +∇f(w)T (u−w) +
1

2α
‖∇f(u)−∇f(w)‖2∗, (28)

f(w) ≤ f(u) +∇f(u)T (w − u) +
1

2α
‖∇f(u)−∇f(w)‖2∗. (29)

Sum (28) and (29) we have:

0 ≤ (∇f(w)− f(u))T (u−w) +
1

α
‖∇f(u)−∇f(w)‖2∗

=⇒[∇f(u)−∇f(w)]T [u−w] ≤ 1

α
‖∇f(u)−∇f(w)‖2∗.

Lemma 8 ([21]). If f satisfies PL inequality with respect to `2 norm ‖ · ‖2, then f satisfies the
Quadratic Growth (QG) condition w.r.t. ‖ · ‖2 for the same constant µ.
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C Proof for Proposition 1

Proof. Consider the Bregman divergence

E[Dψ(β∗,βst+1)]

=E[ψ(β∗)− ψ(βst+1)−∇ψ(βst+1)T (β∗ − βst+1)]

=E[ψ(β∗)− ψ(βst+1)− [∇ψ(βst )− ηvst ]T (β∗ − βst + βst − βst+1)]

=E[ψ(β∗)− ψ(βst ) + ψ(βst )− ψ(βst+1)−∇ψ(βst )
T (β∗ − βst )

+∇ψ(βst )
T (βst+1 − βst ) + (ηvst )

T (β∗ − βst+1)]

=E[Dψ(β∗,βst )−Dψ(βst+1,β
s
t ) + (ηvst )

T (β∗ − βst+1)]. (30)

The last term in (30):

E[(vst )
T (β∗ − βst+1)]

=E[(vst )
T (β∗ − βst + βst − βst+1)]

=E[E[(vst )
T (β∗ − βst )|βst ]] +E[(vst )

T (βst − βst+1)]

=E[(∇F (βst )
T (β∗ − βst )] +

1

η
E[(∇ψ(βst )−∇ψ(βst+1))T (βst − βst+1)]

≤E[(F (β∗)− F (βst )] +
1

η
E[(∇ψ(βst )−∇ψ(βst+1))T (βst − βst+1)]

(27)

≤ E[(F (β∗)− F (βst )] +
1

ηα
E[‖∇ψ(βst )−∇ψ(βst+1)‖2∗]

=E[(F (β∗)− F (βst )] +
η

α
E[‖vst‖2∗].

Thus we have

E[Dψ(β∗,βst+1)]

≤E[Dψ(β∗,βst )]−E[Dψ(βst+1,β
s
t )] + ηE[F (β∗)− F (βst )] +

η2

α
E[‖vst‖2∗]

(23)

≤ E[Dψ(β∗,βst )]−E[Dψ(βst+1,β
s
t )]

+ (η − 12Lη2

α
)E[F (β∗)− F (βst )] +

12Lη2

α
E[F (β̃s−1)− F (β∗)]

≤E[Dψ(β∗,βst )] +

(
24Lη2

α
− η
)
E[F (βst )− F (β∗)]

+
12Lη2

α
E[F (β̃s−1)− F (β∗)]− 12Lη2

α
E[F (βst )− F (β∗)]. (31)

Sum (31) for t = 1, . . . ,m, we have

E[Dψ(β∗,βsm+1)] ≤E[Dψ(β∗,βs1)] +

m∑
t=1

(
24Lη2

α
− η
)
E[F (βst )− F (β∗)]

+
12Lη2m

α
E[F (β̃s−1)− F (β∗)]− 12Lη2

α

m∑
t=1

E[F (βst )− F (β∗)]. (32)
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For option I, βs1 = βs−1m+1, β̃s is a uniform random sample from {βs1, . . . ,βsm}, (32) becomes:

E[Dψ(β∗,βsm+1)] ≤E[Dψ(β∗,βs−1m+1)] +

m∑
t=1

(
24Lη2

α
− η
)
E[F (βst )− F (β∗)]

+
12Lη2m

α
E[F (β̃s−1)− F (β∗)]− 12Lη2m

α
E[F (β̃s)− F (β∗)].

That is, (
η − 24Lη2

α

) m∑
t=1

E[F (βst )− F (β∗)]

≤E[Dψ(β∗,βs−1m+1)] +
12Lη2m

α
E[F (β̃s−1)− F (β∗)]

−E[Dψ(β∗,βsm+1)]− 12Lη2m

α
E[F (β̃s)− F (β∗)]. (33)

Thus we can define Lyapunov function

P s := E[Dψ(β∗,βsm+1)] +
12Lη2m

α
E[F (β̃s)− F (β∗)] ≥ 0.

Then

E[F (βa)− F (β∗)] =
1

T

S∑
s=1

m∑
t=1

E[F (βst )− F (β∗)]

(33)

≤ 1

T

S∑
s=1

1

η − 24Lη2

α

[P s−1 − P s]

≤ α

(αη − 24Lη2)T
P 0

For Option II, βs1 = β̃s−1, (32) becomes:

E[Dψ(β∗,βsm+1)] ≤E[Dψ(β∗, β̃s−1)] +

m∑
t=1

(
24Lη2

α
− η
)
E[F (βst )− F (β∗)]

+
12Lη2m

α
E[F (β̃s−1)− F (β∗)]− 12Lη2m

α
E[F (β̃s)− F (β∗)]

=E[Dψ(β∗, β̃s−1)] +m

(
12Lη2

α
− η
)
E[F (β̃s)− F (β∗)]

+
12Lη2m

α
E[F (β̃s−1)− F (β∗)]. (34)

Since ψ is `−smooth and F satisfies QG condition, β∗ is any minimum point of F , we can take β∗

17



as required by Lemma 8 to get

Dψ(β∗, β̃s−1) = ψ(β∗)− ψ(β̃s−1)−∇ψ(β̃s−1)T (β∗ − β̃s−1)

(20)

≤ `

2

∥∥∥β∗ − β̃s−1∥∥∥2
QG of f

≤ `

µ
[F (β̃s−1)− F (β∗)]. (35)

Plug (35) into (34) we have

0 ≤ E[Dψ(β∗,βsm+1)] ≤
(

12Lη2m

α
−mη

)
E[F (β̃s)− F (β∗)]

+

(
12Lη2m

α
+
`

µ

)
E[F (β̃s−1)− F (β∗)].

That is,

E[F (β̃s)− F (β∗)] ≤
12Lη2

α + `
mµ

η − 12Lη2

α

E[F (β̃s−1)− F (β∗)]

= τE[F (β̃s−1)− F (β∗)].

Thus,

E[F (β̃S)− F (β∗)] ≤ τSE[F (β̃0)− F (β∗)]

and by βa = β̃S we get the desired bound.

D Proof for Theorem 1

Proof. We first check that every fi is L−smooth w.r.t. ‖ · ‖2.

‖∇fi(u)−∇fi(w)‖2 = ‖(xTi u− yi)xi − (xTi w − yi)xi‖2
= ‖xTi (u−w)xi‖2
= |xTi (u−w)| ∗ ‖xi‖2
≤ ‖xi‖2‖u−w‖2‖xi‖2
≤ (max

i
‖xi‖22)‖u−w‖2.

First, we prove part (a) of Theorem 1. When ψ(β) is α−strongly convex w.r.t. ‖ · ‖2, we can apply
part (a) of Theorem 1, take β∗ = βψ to get

E

[
1

2n
‖Xβa − y‖22 −

1

2n
‖Xβψ − y‖22

]
≤ α

(αη − 24Lη2)T

[
Dψ(βψ, β̃0) +

12Lη2m

α

(
1

2n
‖Xβ̃0 − y‖22 −

1

2n
‖Xβψ − y‖22

)]
. (36)
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For the L.H.S. of (36) we have

‖Xβa − y‖22 − ‖Xβψ − y‖22
=‖Xβa −Xβψ +Xβψ − y‖22 − ‖Xβψ − y‖22
=‖Xβa −Xβψ‖22 + ‖Xβψ − y‖22 + 2〈Xβa −Xβψ, Pcol(X)y − y〉 − ‖Xβψ − y‖22
=‖Xβa −Xβψ‖22 + 2〈X(βa − βψ),−PN (XT )y〉
=‖Xβa −Xβψ‖22 = ‖Xβa − Pcol(X)y‖22.

Thus (36) becomes

E[‖Xβa −Xβψ‖22] = E[‖Xβa − Pcol(X)y‖22]

≤ α

(αη − 24Lη2)T

[
2nDψ(βψ, β̃0) +

12Lη2m

α

(
‖Xβ̃0 − y‖22 − ‖Xβψ − y‖22

)]
. (37)

Since ∇ψ(β̃0) = ∇ψ(β0
m) ∈ col(XT ), by Lemma 4 we will have ∇ψ(βst ) ∈ col(XT ) for all s and t,

thus
∇ψ(βa) ∈ col(XT ). (38)

Then

E[ψ(βa)− ψ(βψ)]

≤E〈∇ψ(βa),βa − βψ〉
(38)
= E〈∇ψ(βa), Pcol(XT )(β

a − βψ)〉
≤E[‖∇ψ(βa)‖2‖Pcol(XT )(β

a − βψ)‖2]

≤B ∗E‖Pcol(XT )(β
a − βψ)‖2

(24)

≤ B

sm
E‖XPcol(XT )(β

a − βψ)‖2

=
B

sm
E‖Xβa −Xβψ‖2

≤ B

sm
(E‖Xβa −Xβψ‖22)1/2

(37)

≤ B

sm

√
α

(αη − 24Lη2)T

[
2nDψ(βψ, β̃0) +

12Lη2m

α

(
‖Xβ̃0 − y‖22 − ‖Xβψ − y‖22

)]
.

Thus the βa from SMD will have

E[ψ(βa)− ψ(βψ)]

≤ B

sm

√
α

(αη − 24Lη2)T

[
2nDψ(βψ, β̃0) +

12Lη2m

α

(
‖Xβ̃0 − y‖22 − ‖Xβψ − y‖22

)]
(39)

E[‖Xβa − y‖22 − ‖Xβψ − y‖22]

≤ α

(αη − 24Lη2)T

[
2nDψ(βψ, β̃0) +

12Lη2m

α

(
‖Xβ̃0 − y‖22 − ‖Xβψ − y‖22

)]
. (40)
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Set the R.H.S. of (39) and (40) to ε to get an ε−solution, we can solve

T ≥ B2

s2mε
2

α

(αη − 24Lη2)

[
2nDψ(βψ, β̃0) +

12Lη2m

α

(
‖Xβ̃0 − y‖22 − ‖Xβψ − y‖22

)]
T ≥ 1

ε

α

(αη − 24Lη2)

[
2nDψ(βψ, β̃0) +

12Lη2m

α

(
‖Xβ̃0 − y‖22 − ‖Xβψ − y‖22

)]
.

That is, T ∼ O( 1
ε + 1

ε2 ).
For part (b) of Theorem 1, we first need to show that F (·) satisfies PL inequality w.r.t. ‖ · ‖2.

Remember F (β) = 1
2n‖Xβ − y‖

2
2, then

1

2
‖∇F (β)‖22 =

1

2
‖ 1

n
XT (Xβ − y)‖22

=
1

2n2
‖XT (Xβ − Pcol(X)y)‖22

(24)

≥ s2m
2n2
‖Xβ − Pcol(X)y‖22

=
s2m
2n2
‖Xβ − y + PN (XT )y‖22

=
s2m
2n2

[‖Xβ − y‖22 − ‖PN (XT )y‖22]

=
s2m
n

[F (β)− F (βψ)].

Thus F (·) satisfies PL inequality with constant
s2m
n . By Lemma 8, F (·) satisfies QG with the same

constant, so part (b) of Theorem 1 applies here, and we get

E[F (βa)− F (βψ)] ≤ (τ ′)S [F (β̃0)− F (βψ)].

where

τ ′ =

12Lη2

α + `n
ms2m

η − 12Lη2

α

,

By the similar statement as the first part of the proof, we have

E[ψ(βa)− ψ(βψ)]

≤ B

sm
[2nE[F (βa)− F (βψ)]].5

≤B
√

2n(τ ′)S/2

sm
[F (β̃0)− F (βψ)].5.

Thus

E[ψ(βa)− ψ(βψ)] ≤ B(τ ′)S/2

sm

√
‖Xβ̃0 − y‖22 − ‖Xβψ − y‖22

E[‖Xβa − y‖22 − ‖Xβψ − y‖22] ≤ (τ ′)S
(
‖Xβ̃0 − y‖22 − ‖Xβψ − y‖22

)
.
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E Proof of Corollary 1

Proof. For the specific choice of ψ(·) = 1
2‖ · ‖

2
2, we have

∇2ψ(·) = I.

That is, ψ(·) is 1−smooth and 1−strongly convex, for

τ ′′ =
12Lη2 + n

ms2m

η − 12Lη2
< 1,

we can apply part (b) of Theorem 2 to get

E[‖Xβa −Xβψ‖22 ≤ (τ ′′)S
(
‖Xβ̃0 − y‖22 − ‖Xβψ − y‖22

)
= (τ ′′)S

(
‖y‖22 − ‖PN (XT )y‖22

)
= (τ ′′)S‖Pcol(X)y‖22.

Then since ∇ψ(βa) = βa ∈ col(XT ) and βψ = (XTX)+XTy = XT (XXT )+y ∈ col(XT ), we have

E‖βa − βψ‖22
(24)

≤ 1

s2m
E‖Xβa −Xβψ‖22 ≤

τS

s2m
‖Pcol(X)y‖22.

F Proof of Theorem 2

To prove Theorem 2, we will need a few preliminaries.

Lemma 9. Denote β(0) = argminβ{‖β‖1 : Xβ = Pcol(X)y} and β(δ) = argminβ{‖β‖1+δ1+δ : Xβ =
Pcol(X)y}, we have

‖β(δ)‖1 ≤ p
δ

1+δ ‖β(0)‖1 (41)

Proof.

‖β(δ)‖1 =

p∑
i=1

1 ∗ |β(δ)
i |

≤

(
p∑
i=1

1
1+δ
δ

) δ
1+δ

∗

(
p∑
i=1

|β(δ)
i |

1+δ

) 1
1+δ

= p
δ

1+δ ‖β(δ)‖1+δ
≤ p

δ
1+δ ‖β(0)‖1+δ

≤ p
δ

1+δ

(
p∑
i=1

‖β(0) ◦ ei‖1+δ

)

= p
δ

1+δ

(
p∑
i=1

|β(0)
i |

)
= p

δ
1+δ ‖β(0)‖1
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where the first inequality holds by Hölder’s inequality, the second inequality follows from β(δ)

minimizes ‖β‖1+δ1+δ thus minimizes ‖β‖1+δ among all β ∈ B := {β : Xβ = Pcol(X)y}, and the third
inequality follows from triangle inequality.

Lemma 10. Assume y = Xβo where βo ≤ s and X is s−good with parameter κ < 1/2. Use the
notation in Lemma 9 that β(0) = argminβ{‖β‖1 : Xβ = y}, we have β(0) = βo.

Proof. βo is a feasible solution to minβ{‖β‖1 : Xβ = y}. Denote û = βo − β(0), we have(
‖β(0)

S ‖1 + ‖β(0)
Sc ‖1

)
= ‖β(0)‖1 ≤ ‖βo‖1 = ‖βoS‖1

=⇒ ‖β(0)
Sc ‖1 ≤ ‖βoS‖1 − ‖β

(0)
S ‖1 ≤ ‖βoS − β

(0)
S ‖1

⇐⇒ ‖ûSc‖1 ≤ ‖ûS‖1. (42)

On the other hand,

Xû = Xβo −Xβ(0) = y − y = 0.

That is, û ∈ N (X), then by X is s−good, we have for κ < 1
2

‖ûS‖1 ≤ κ‖û‖1

=⇒‖ûS‖1 ≤
κ

1− κ
‖ûSc‖1. (43)

Combine (42) and (43) we get

‖ûSc‖1 ≤ κ
1−κ‖ûSc‖1

=⇒ ‖ûSc‖1 = 0
(43)
=⇒ ‖ûS‖1 = 0.

Thus û = 0, β(0) = βo.

Lemma 11. Assume X ∈ Rn×p is s − good with parameter κ < 1/2, then ∀β ∈ Rp and I ⊂
{1, . . . , p} with |I| ≤ s we have

‖βI‖1 ≤
√
s+ κ

√
p

sm
‖Xβ‖2 + κ‖β‖1

where s2m is the smallest nonzero eigenvalue of XTX.

Proof.

‖βI‖1 ≤ ‖(Pcol(XT )β)I‖1 + ‖(PN (X)β)I‖1
≤
√
s‖(Pcol(XT )β)I‖2 + κ‖PN (X)β‖1

≤
√
s‖Pcol(XT )β‖2 + κ(‖PN (X)β + Pcol(XT )β‖1 + ‖Pcol(XT )β‖1)

(24)

≤
√
s

sm
‖XPcol(XT )β‖2 + κ

(
‖β‖1 +

√
p

sm
‖XPcol(XT )β‖2

)
=

√
s+ κ

√
p

sm
‖Xβ‖2 + κ‖β‖1

where the first inequality holds by triangle inequality, the second inequality holds by Cauchy-
Schwartz inequality and s-goodness of X, the third inequality again uses the triangle inequality.
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Theorem 3. [Theorem 1.3.1 in [24]] Consider the following optimization problem with any norm
‖ · ‖

β̂ = arg min
β

‖β‖1

s.t. ‖Xβ − y‖ ≤ ∆
(44)

Assume ∃α ≥ 0 and κ′ < 1/2 that ∀β ∈ Rp and ∀I ⊂ {1, . . . , p} with |I| ≤ s:

‖βI‖1 ≤ α‖Xβ‖+ κ′‖β‖1

Suppose β̃ is an approximate solution to (44) such that

‖β̃‖1 ≤ ‖β̂‖1 + ν

‖Xβ̃ − y‖ ≤ ∆ + ε.

Then for any nearly s−sparse and feasible β′ for (44), where near s−sparsity means ∃ s−sparse
βs such that ‖β′ − βs‖1 ≤ v, we have

‖β̃ − β′‖1 ≤
2α(2∆ + ε) + 2v + ν

1− 2κ′
.

We are ready to prove Theorem 2.

Proof for Theorem 2. By Lemma 9 we have

‖β(δ)‖1 ≤ ‖β(0)‖1 +
(
p

δ
1+δ − 1

)
‖β(0)‖1

And by Lemma 11

‖βI‖1 ≤
√
s+ κ

√
p

sm
‖Xβ‖2 + κ‖β‖1

Thus we can apply Theorem 3 by setting ∆ = 0, and ‖ · ‖ = ‖ · ‖2, then β̂ = β(0). Take β̃ = β(δ),

β′ = βo, then ν =
(
p

δ
1+δ − 1

)
‖β(0)‖1, ε = 0 , v = 0, α =

√
s+κ
√
p

sm
, κ′ = κ, then we have

‖β(δ) − βo‖1 ≤

(
p

δ
1+δ − 1

)
‖β(0)‖1

1− 2κ
=

(
p

δ
1+δ − 1

)
‖βo‖1

1− 2κ
(45)

where the equality is from Lemma 10.
We can further bound ‖βo‖1. By (s, γ)−RE condition we have

‖βo‖22 ≤
‖Xβo‖22
nγ

=
‖y‖22
nγ

.

Thus

‖βo‖1 ≤
√
s‖βo‖2 ≤

√
s

nγ
‖y‖2. (46)
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Plug (46) into (45), we have

‖β(δ) − βo‖1 ≤

(
p

δ
1+δ − 1

)
1− 2κ

√
s

nγ
‖y‖2

≤

(
p

log

(
1+

(1−2κ)
√
nγ√

s‖y‖2
ξ

)
log p − 1

)
1− 2κ

√
s

nγ
‖y‖2

=

(
1 +

(1−2κ)√nγ√
s‖y‖2

ξ − 1
)

1− 2κ

√
s

nγ
‖y‖2 = ξ.
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