
Practical Considerations in
Repairing Reed-Solomon Codes

Thi Xinh Dinh†, Luu Y Nhi Nguyen†, Lakshmi J. Mohan†, Serdar Boztas†, Tran Thi Luong‡, and Son Hoang Dau†
†RMIT University, ‡Academy of Cryptographic Technique, Hanoi, Vietnam

Abstract—The issue of repairing Reed-Solomon codes currently
employed in industry has been sporadically discussed in the
literature. In this work we carry out a systematic study of these
codes and investigate important aspects of repairing them under
the trace repair framework, including which evaluation points to
select and how to implement a trace repair scheme efficiently.
In particular, we employ different heuristic algorithms to search
for low-bandwidth repair schemes for codes of short lengths with
typical redundancies and establish three tables of current best
repair schemes for [n, k] Reed-Solomon codes over GF(256) with
4 ≤ n ≤ 16 and r = n − k ∈ {2, 3, 4}. The tables cover most
known codes currently used in the distributed storage industry.

I. INTRODUCTION

Reed-Solomon codes [1], invented more than 60 years ago,
still constitute the most widely used family of erasure codes in
distributed storage systems to date (see Table I). Due to their
popularity in practice as well as their fundamental role in the
development of classical coding theory, a significant amount
of research has been conducted in recent years to improve their
repair bandwidth and I/O cost required in recovering a single or
multiple erasures [2]–[26]. In the context of distributed storage
systems, the repair bandwidth of an erasure code refers to the
amount of data downloaded from the helper nodes by a recovery
node to reconstruct its lost content, while the I/O cost is the total
amount of data read from the local disks of the helper nodes.

TABLE I: A table of Reed-Solomon codes employed in major
distributed storage systems - an updated version of [18, Table I].

Despite the growing literature, the treatment of short-length
Reed-Solomon codes used in (or relevant to) practical storage
systems has been sporadic and rather limited: RS(14,10) (used
in Facebook’s f4) has received the most attention [2]–[4], [10],
[12], [23], while RS(5,3) and RS(6,4) were investigated in [2],
and RS(11,8) and RS(12,8) were discussed in [23]. Apart from
[10] and [23], in which they were studied as the main topic of
interest, these codes were mostly used as examples to demon-
strate the inefficiency of the naive repair and the improvements
in repair bandwidths that a carefully designed repair scheme
can bring. We address this gap in the literature by providing
a systematic investigation of low-bandwidth repair schemes for

short-length Reed-Solomon codes that are relevant for the data
storage industry and discuss several practical aspects including
the selection of the evaluation points and implementation.

We first revisit four constructions of Reed-Solomon codes
in existing implementations, observing that all but one are the
same as the classical construction using polynomial evaluations
(Section III). Next, we discuss heuristic algorithms that can be
used for construction of repair schemes for such codes and as a
result, establish three tables of current-best repair schemes for
codes of length n ≤ 16 and redundancy r ≤ 4 (Section IV). We
also study in this section the impact of the evaluation points on
repair bandwidths, demonstrating with an example that codes
having the same n and k but using different lists of evaluation
points may end up having different repair bandwidths. Finally,
we propose an efficient way to implement (in C) a trace repair
scheme for Reed-Solomon code based on lookup tables and
fast bitwise operations [27] on top of the state-of-the-art Intel
Intelligent Storage Acceleration Library (ISA-L) (Section V).

II. DEFINITIONS AND NOTATIONS

Let [n] , {1, 2, . . . , n} and [m,n] , {m,m + 1, . . . , n}.
Let Fq be the finite field of q elements and Fq` be its extension
field of degree `, where q is a prime power. In this work we only
consider the case q` = 256. The field F256 can also be viewed
as a vector space over its subfields, i.e., F256

∼= F2
16
∼= F4

4
∼= F8

2.
Each element b of F256 can be represented as one byte, i.e., a
vector of eight bits (b1, b2, . . . , b8), or an integer in [0, 255].
For instance, 6 = 22+2 is represented by the vector 00000110
and corresponds to b = z2 + z, where z = 2 is a primitive
element of F256. To accelerate the computation over F256,
additions between integers representing finite field elements
are performed bitwise while multiplications are based on table
lookups. Bitwise operators in C including XOR ‘ˆ’, AND ‘&’,
and bit-shift ‘�’ are heavily used in code optimization.

We use spanFq
(U) to denote the Fq-subspace of Fq` spanned

by a subset U ⊆ Fq` . We use dimFq (·) and rankFq (·) to denote
the dimension of a subspace and the rank of a set of vectors
over Fq . The (field) trace of an element b ∈ Fq` over Fq is
TrF

q`
/Fq

(b) ,
∑`−1

i=0 b
qi . Given an Fq-subspace W of Fq` , the

polynomial LW (x) =
∏

w∈W (x − w) is called the subspace
polynomial corresponding to W .

A linear [n, k] code C over Fq` is an Fq` -subspace of Fn
q` of

dimension k. Each element ~c = (c1, c2, . . . , cn) ∈ C is referred
to as a codeword and each component cj is called a codeword
symbol. The dual C⊥ of a code C is the orthogonal complement
of C in Fn

q` and has dimension r = n− k. The elements of C⊥
are called dual codewords. We call r the redundancy of the
code. A matrix G ∈ Fk×n

q`
of rank k over Fq` whose rows

are codewords of C is called a generator matrix of the code.

ar
X

iv
:2

20
5.

11
01

5v
1

 [
cs

.I
T

]
 2

3
M

ay
 2

02
2

Given a generator matrix G, a message ~u = (u1, . . . ,uk) is
transformed into a codeword ~c = ~uG. A parity check matrix
of C is simply a generator matrix H of the dual code C⊥.

III. EXISTING CONSTRUCTIONS OF REED-SOLOMON CODES

A. Classical Construction by Reed and Solomon

The following construction of Reed-Solomon codes is the
original one proposed by Reed and Solomon in [1].

Definition 1. Let Fq` [x] denote the ring of polynomials
over Fq` . A Reed-Solomon code RS(A, k) ⊆ Fn

q` of dimension
k with evaluation points A = {αj}nj=1 ⊆ Fq` is defined as

RS(A, k) =
{(
f(α1), . . . , f(αn)

)
: f ∈ Fq` [x], deg(f) < k

}
.

We also use the notation RS(n, k), ignoring the evaluation
points. Clearly, a generator matrix of this code is the Vander-
monde matrix Vand(α1, . . . ,αn) ,

(
αi−1

j

)
1≤i≤k,1≤j≤n.

A generalized Reed-Solomon code, GRS(A, k, ~λ), where
~λ = (λ1, . . . ,λn) ∈ Fn

q` , is defined similarly to a Reed-
Solomon code, except that the codeword corresponding to a
polynomial f is defined as

(
λ1f(α1), . . . ,λnf(αn)

)
, where

λj 6= 0 for all j ∈ [n]. It is well known that the dual of a Reed-
Solomon code RS(A, k) is a generalized Reed-Solomon code
GRS(A,n−k, ~λ), for some multiplier vector ~λ ([28, Chp. 10]).
We sometimes use the notation GRS(n, k), ignoring A and ~λ.

We often use f(x) to denote a polynomial of degree at most
k − 1, which corresponds to a codeword of the Reed-Solomon
code C = RS(A, k), and g(x) to denote a polynomial of degree
at most r−1 = n−k−1, which corresponds to a codeword of
the dual code C⊥. Since

∑n
j=1 g(αj)(λjf(αj)) = 0, we also

refer to the polynomial g(x) as a check polynomial for C.
Next, we discuss four main constructions of Reed-Solomon

codes found in practical systems, three of which are equivalent
to the original construction and one is invalid. All are over F256.
B. Constructions in Intelligent Storage Acceleration Library

Both implementations of Reed-Solomon codes provided by
ISA-L are systematics [29]. The first one, also found in the
Quantcast File System [30], uses the generator matrix G =
[Ik | V] in which V is a k × (n − k) Vandermonde matrix:
V = (xi−1

j), i ∈ [1, k], j ∈ [1, n], where xj = z
j−1 and z = 2

is a primitive element of F256. This is not a construction of a
Reed-Solomon code, not even an MDS code (i.e., achieving the
Singleton bound [28]). Indeed, it is known that G = [Ik | V]
generates an MDS code only if every square submatrix of V
is invertible ([28, Ch. 11, Thm. 8]), which is not true for a
Vandermonde matrix in general. Although when n = 9 and
k = 6, as in the Quantcast File System [31], the code is still
MDS, we ignore this construction as it is incorrect in general.

We focus on the second construction, which uses the gener-
ator matrix G = [Ik | C] in which C is a k× (n− k) Cauchy
matrix: C =

(
ci,j =

1
xi+yj

)
, i ∈ [1, k], j ∈ [1, n − k], where

xi = i− 1 and yj = k+ j− 1. Note that xi and yj are written
using the integer representations of elements of F256 and xi+yj
refers to the (bitwise) addition of two field elements. According
to [32, Thm. 1], this code is the same as GRS(A, k, ~λ) with
A = [~x | ~y] = [0, n− 1] and ~λ = (λ1, . . . ,λn) defined as

λj =

{
1/
∏k

s=1,s6=j(xs + xj), 1 ≤ j ≤ k,
1/
∏k

s=1(xs + yj−k), k + 1 ≤ j ≤ n.

For example, for n = 9, k = 6, the Cauchy-based construction
of RS(9,6) code, or more precisely, a GRS(9,6), uses ~x =
(0, 1, 2, 3, 4, 5) and ~y = (6, 7, 8) and has a generator matrix

G=

I6
122 186 173
186 122 157
71 167 221
167 71 152
142 244 61
244 142 170

=
I6

z229 z57 z252

z57 z229 z32

z253 z205 z204

z205 z253 z17

z254 z230 z228

z230 z254 z151

,

where z = 2 is a primitive element of F256 satisfying z8+z4+
z3 + z2 + z0 = 0 (see the list of Conway polynomials [33]).
Note that we are using both the integer representation and the
exponent representation of a finite field element. For instance,
122 has the binary representation 01111010, corresponding to
z6 + z5 + z4 + z3 + z = z229. This is a GRS(A, 6, ~λ) with
A = [0, 8] = {0, 1, z, z25 = 1 + z, z2, z50 =
z2 + z0, z26 = z2 + z, z198 = z2 + z + 1, z3} and
~λ = (z177, z177, z5, z5, z234, z234, z208, z208, z119). Using
[28, Ch. 10, Thm. 4], we can deduce that the dual
of this GRS(A, 6, ~λ) is an GRS(A, 3, ~γ), where ~γ =
(z47, z82, z171, z239, z221, z144, z75, z199, 1). We believe that
the selection of A as the first n nonegative integers in ISA-L
is purely for the convenience of the for-loops in its C code and
has no significant reasons behind.

C. Code Construction in Backblaze Vaults
Backblaze Vaults ([34], [35]) uses a systematic generator

matrix G = [Ik | V −11 V2] = V −11 V , where V = [V1 | V2]
is the k × n Vandermonde matrix created by the finite field
elements corresponding to 0, 1, . . . , n− 1. In other words, this
is a standard RS(A, k) in which A = [0, n − 1], the same set
of evaluation points as in the GRS(A, k, ~λ) of ISA-L.

D. Code Construction in Facebook’s f4
The GRS(14,10) used in Facebook’s f4 storage system [36]

has been used repeatedly in the literature to demonstrate
either the inefficiency of Reed-Solomon code’s naive repair
scheme or improvements from it. At the moment we could
no longer locate the official source of the implementation of
this code. However, from the previous studies [2]–[4], [10]
and from our own copy of the code, GRS(14,10) in f4 was
constructed via the generator polynomial (see [28, Chp. 7])
g(x) = (x − 1)(x − z)(x − z2)(x − z3). In general, the
generator polynomial is g(x) =

∏r−1
i=0 (x − zi) and the code-

words correspond to vectors of coefficients of all polynomials
c(x) =

∑n−1
i=0 cix

i ∈ F256[x] that admit 1, z, z2, . . . ,zr−1 as
roots, where r = n − k. Equivalently, the code has a parity
check matrix H = Vand(1, z, z2, . . . ,zn−1), and hence, it is
the dual of an RS(A, k) with A = {1, z, z2, . . . ,zn−1}.

To summarize, all (valid) constructions of (generalized) Reed-
Solomon codes in industry available to us, although may look
different, are still the same as the original one provided in
Section III-A. This is good news because we can focus on just
the original construction. Although straightforward, this section
serves as a one-stop reference for future studies in this direction.

IV. HEURISTIC SEARCH FOR LOW-BANDWIDTH SCHEMES

A. Trace Repair Framework
Following the framework developed in [3], [4], a (linear)

trace repair scheme for the component cj∗ of a codeword ~c

of a linear [n, k] code C over Fq` corresponds to a set of `
dual codewords

{
~g(i)
}
i∈[`] ⊂ C

⊥, ~g(i) =
(
~g
(i)
1 , . . . , ~g

(i)
n

)
,

satisfying the Full-Rank Condition: rankFq

{
~g
(i)
j∗ : i ∈ [`]

}
= `.

Such a repair scheme is denoted R
(
{~g(i)}i∈[`]

)
, which can be

viewed as an ` × n repair matrix with ~g
(i)
j as its (i, j)-entry.

As established in [3], [4], the repair bandwidth of such a
repair scheme (in bits) is b(R) =

∑
j∈[n]\{j∗} rj , where

rj , rankFq

({
~g
(i)
j : i ∈ [`]

})
. To repair all n components of ~c,

we need n such repair schemes (possibly with repetition). See,
e.g., [22], for a detailed explanation of why the above scheme
works with an example. We describe an implementation of this
repair scheme later in Section V.

Note that as the dual of a (generalized) Reed-Solomon code
is another generalized Reed-Solomon code, searching for a
set of dual codewords is equivalent to searching for a set of
polynomials {gi(x) : i ∈ [`]} ⊂ Fq` [x] of degree at most r− 1.
Using the notation above, we have ~g(i)j = λjgi(αj). As λj’s
do not affect the repair bandwidth, we usually ignore them.

B. Heuristic Search for Low-Bandwidth Repair Schemes

As discussed in Section III and Section IV-A, to con-
struct low-bandwidth repair schemes for Reed-Solomon codes
over F256, one must find sets of eight check polynomials
{gi(x)}i∈[8] ⊂ F256[x] that satisfy the Full-Rank Condition
while incurring low repair bandwidths.

There are two main types of check polynomials applicable for
Reed-Solomon codes over F256: the algebraic ones are based
on algebraic structures such as subfields and subspaces [3], [4],
[9], [15], [22], [23] or cosets of subfields [11], [12], while the
others are found by a computer search [3], [10]. In some special
cases, for example when r = 4 and n ≥ 12 (e.g., GRS(14,10)
or GRS(12,8)), the algebraic constructions generate the lowest
known repair bandwidths [23]. But for many other cases, an
algebraic construction only yields an insignificant reduction
from the naive bandwidth, e.g., 6% when r = 3 and n = 11,
whereas a computer search can produce a scheme achieving a
much higher reduction, e.g., 28% in this case (see Table III).

Note that there are many different RS(n, k)’s depending on
which set of evaluation points A is chosen (we will show
later that different A’s may lead to different (optimal) repair
bandwidths). In this work, we examine two types of codes:
• ISAL-codes: A = [0, n− 1] ⊆ F256, n ≤ 256,
• F16-based codes: A={0, 1, z16, . . . ,zn−216 }⊆F16, n ≤ 16,

where z16 is a primitive element of F16 satisfying z416 +
z16 + 1 = 0 (see the list of Conway polynomials [33]).

Searching for good repair schemes for ISAL-codes is much
harder because of the very large search space (over F256). For
F16-based codes, the search complexity is lower, which allows
us to locate good schemes within a reasonable amount of time.
The “lifting” technique, which previously has been employed
only in the context of algebraic constructions [11]–[14], [23],
is now used in our heuristic algorithms to transform a repair
scheme for codes over F16 to a repair scheme for codes over
F256 (Proposition 2). We observe that the current-best repair
bandwidths of F16-based codes are always at least as low as
those of ISAL-codes and in many cases are smaller. Showing
that this is true in general for Reed-Solomon codes over F256

(or finding a counterexample) is an interesting open problem.

To find the lowest-bandwidth repair scheme, in general, we
need to examine

(
P
`

)
different sets of ` polynomials each, where

P is the number of candidate check polynomials. This number
is huge even for very modest parameters. To reduce the search
complexity, one needs to reduce P and/or `. We discuss different
ways to achieve complexity reduction below.

To reduce P , the number of candidate check polynomials, we
make the following simplifying assumptions (see also [10]).
• (A1) deg(gi) = r − 1: we prove in Proposition 1 that this

assumption does not lead to suboptimal solutions, and
• (A2) gi(x) has r − 1 (possibly repeated) roots in A: this

is based on the (unproven) intuition that more zeros in the
repair matrix R may lead to a low repair bandwidth. This
has been confirmed empirically in our various experiments.

Proposition 1. Let {gi(x)}i∈[`] be a set of check polynomials
of degree at most r − 1 corresponding to a repair scheme for
cj∗ of an RS(A, k) over Fq` . Then there exists another set of
check polynomials {hi(x)}i∈[`] of degree exactly r−1 that can
repair cj∗ with the same or smaller bandwidth.

Proof. Case 1. If one polynomial has degree exactly r−1, e.g.,
deg(g1) = r − 1, then we set

hi(x) =

{
gi(x), if deg(gi) = r − 1,

gi(x) + g1(x), if deg(gi) < r − 1.

Then deg(hi) = r − 1 for every i and moreover,

spanFq

(
{hi(α)}i∈[`]

)
= spanFq

(
{gi(α)}i∈[`]

)
,

for every α ∈ A. Thus, {hi(x)}i∈[`] is another repair scheme
for cj∗ and has the same bandwidth as {gi(x)}i∈[`].

Case 2. If deg(gi) < r−1 for every i ∈ [`] then we select an
α ∈ A\{αj∗} and set hi(x) = gi(x)(x−α)r−1−maxt{deg(gt)}.
Then {hi(x)}i∈[`] is another repair scheme for cj∗ and has the
same or smaller bandwidth. Moreover, at least one hi has degree
exactly r − 1, which reduces this case to Case 1. �

To reduce `, the number of polynomials needed in a search,
we use the well-known lifting and extension techniques. The
lifting technique allows us, for instance, to transform a repair
scheme for a Reed-Solomon code constructed in F16 to a repair
scheme for another Reed-Solomon code constructed in F256

using the same set of evaluation points while doubling the
bandwidth. The extension technique allows us, for example, to
transform a repair scheme of a Reed-Solomon code over F256

with the base field F4 into a repair scheme with base field F2.
For completeness, we formalize these techniques below.
Proposition 2 (Lifting). Suppose that m | ` and {gi(x)}i∈[m] ⊂
Fqm [x] corresponds to a repair scheme with bandwidth b (mea-
sured in elements in Fq) for the j∗-th component of an RS(A, k)
over Fqm . Then {βjgi(x)}i∈[m],j∈[`/m], where {βj}j∈[`/m] is
an Fqm -basis of Fq` , corresponds to a repair scheme with
bandwidth `

mb for the j∗-component of the RS(A, k) with the
same evaluations points A but constructed over Fq` .
Proposition 3 (Extension). Suppose that m divides ` and the set
{gi(x)}i∈[`/m] ⊂ Fq` [x] corresponds to a repair scheme with
bandwidth b (measured in elements in Fqm) for the component
cj∗ of an RS(A, k) over Fq` , treating Fqm as the base field.
Then the set {γjgi(x)}i∈[`/m],j∈[m], where {γj}j∈[m] is an Fq-
basis of Fqm , corresponds to a repair scheme with bandwidth
bm (measured in elements in Fq) for the cj∗ of the same code.

Redundancy
r = 2

Default ISA-L
heuristic

F16-based
algebraic

F16-based
heuristic

n = 4 16 12 (-25%) 18 (+12.5%) 12 (-25%)
n = 5 24 18 (-25%) 24 (-0%) 18 (-25%)
n = 6 32 24 (-25%) 30 (-6.3%) 24 (-25%)
n = 7 40 32 (-20%) 36 (-10%) 30 (-25%)
n = 8 48 38 (-20.8%) 42 (-12.5%) 38 (-20.8%)
n = 9 56 44 (-21.4%) 48 (-14.3%) 44 (-21.4%)
n = 10 64 50(-21.9%) 54 (-15.6%) 50 (-21.9%)
n = 11 72 58 (-19.4%) 60 (-16.7%) 56 (-22.2%)
n = 12 80 64 (-20%) 66 (-17.5%) 64 (-20%)
n = 13 88 72 (-18.2%) 72 (-18.2%) 70 (-20.5%)
n = 14 96 80 (-16.7%) 78 (-18.8%) 76 (-20.8%)
n = 15 104 84 (-19.2%) 84 (-19.2%) 84 (-19.2%)
n = 16 112 90 (-19.6%) 90 (-19.6%) 90 (-19.6%)

TABLE II: Current-best repair bandwidths (measured in bits)
for Reed-Solomon codes with 4 ≤ n ≤ 16 and r = 2.

Applying the above complexity reduction assumptions and
techniques, we construct low-bandwidth repair schemes for
ISAL-codes and F16-codes utilizing the following algorithms.

• Algorithm 1: (degree-four repair) Introduced in [10] to
tackle GRS(14,10) over F256, this algorithm first constructs
a list of pairs of polynomials in Fq` [x] (treating Fq`/2

as the base field) that has bandwidth at most a threshold
θ2, and then search for sets of four polynomials (treating
Fq`/4 as the base field) consisting of two pairs from
that list (keeping the first pair unchanged while adding
a multiplicative factor to the second) that has bandwidth
at most θ4 (θ4 < θ2). Various thresholds θ2 and θ4 were
tested to produce the lowest bandwidth.

• Algorithm 2: (exhaustive search) For r = 2, 3, we can also
apply a direct exhaustive search for sets of polynomials
with low-bandwidths. Note that we do not have to wait for
the algorithm to finish (which would take too long). We can
retrieve the currently found bandwidths for all codeword
components and stop if find them satisfactory or see that
there is little chance to improve further.

Note that both algorithms go through each valid set of poly-
nomials once and check which codeword components could be
repaired by the set. Algorithm 1 terminates if repair schemes
of bandwidth not exceeding the specified threshold have been
found for all codeword components. Best found bandwidths for
codes with 4≤ n≤ 16 and 2≤ r≤ 4 are reported in Table II,
Table III, and Table IV. Column “F16-based algebraic” refers
to repair schemes using subspace polynomials and lifting [12],
[22]. F16-based heuristic always finds the best bandwidths,
which could also be due to the fact that it is cheaper to search
over F16 than F256. We maintain a web page [37] to keep track
of the best bandwidths and the corresponding repair schemes.

Definition 2 (Bandwidth profile). Given n > 0 and ` > 0, a
bandwidth profile~b = (b1, b2, . . . , bn), bj ∈ [`], is feasible for an
RS(A, k), where A ⊆ Fq` , |A| = n, if there exists a collection
of n repair schemes that require bandwidth bj for the j-th
components of its codeword, j ∈ [n]. A bandwidth profile ~b∗ is
optimal if for every j ∈ [`], b∗j is the lowest bandwidth possible
to (linearly) repair the j-th codeword component of the code.

Note that in Table II, Table III, and Table IV, we report
max

(
~b
)
, max{bj : j ∈ [`]}, where ~b is a feasible bandwidth

profile. Individual components may require lower bandwidths.
Visit our web page [37] for the most updated bandwidths.

Redundancy
r = 3

Default ISA-L
heuristic

F16-based
algebraic

F16-based
heuristic

n = 4 8 8 (-0%) 18(+100%) 8 (-0%)
n = 5 16 12 (-25%) 24 (+50%) 12 (-25%)
n = 6 24 16 (-33.3%) 30 (+25%) 16 (-33.3%)
n = 7 32 22 (-31.3%) 36 (+12.5%) 22 (-31.3%)
n = 8 40 28 (-30%) 42 (+5%) 28 (-30%)
n = 9 48 34 (-29.2%) 48 (0%) 32 (-33.3%)
n = 10 56 40 (-28,6%) 54 (-3.6%) 40 (-28,6%)
n = 11 64 46 (-28.1%) 60 (-6.3%) 46 (-28.1%)
n = 12 72 52 (-27.8%) 66 (-8.3%) 52 (-27.8%)
n = 13 80 58 (-27.5%) 72 (-10%) 58 (-27.5%)
n = 14 88 66 (-25%) 78 (-11.4%) 64 (-27.3%)
n = 15 96 72 (-25%) 84(-12.5%) 70 (-27.1%)
n = 16 104 78 (-25%) 90 (-13.5%) 76 (-26.9%)

TABLE III: Current-best repair bandwidths (measured in bits)
for Reed-Solomon codes with 4 ≤ n ≤ 16 and r = 3.

Redundancy
r = 4

Default ISA-L
heuristic

F16-based
algebraic

F16-based
heuristic

n = 5 8 8 (-0%) 16 (+100%) 8 (-0%)
n = 6 16 12 (-25%) 20 (+25%) 12 (-25%)
n = 7 24 16 (-33.3%) 24 (0%) 16 (-33.3%)
n = 8 32 22 (-31.3%) 28 (-12.5%) 22 (-31.3%)
n = 9 40 28 (-30%) 32 (-20%) 26 (-35%)
n = 10 48 36 (-25%) 36 (-25%) 32 (-33.3%)
n = 11 56 42 (-25%) 40 (-28.6%) 38 (-32.1%)
n = 12 64 48 (-25%) 44 (-31.3%) 44 (-31.3%)
n = 13 72 54 (-25%) 48 (-33.3%) 48 (-33.3%)
n = 14 80 62 (-22.5%) 52 (-35%) 52 (-35%)
n = 15 88 68 (-22.7%) 56 (-36.4%) 56 (-36.4%)
n = 16 96 60 (-37.5%) 60 (-37.5%) 60 (-37.5%)

TABLE IV: Current-best repair bandwidths (measured in bits)
for Reed-Solomon codes with 5 ≤ n ≤ 16 and r = 4.

C. The Impact of Evaluation Points

In this section we discuss important issues regarding the
selection of the evaluation points in Reed-Solomon codes. In
particular, we demonstrate via an example that different sets of
evaluation points may lead to different repair bandwidths.

Proposition 4. Translating and dilating the set of evaluation
points of a Reed-Solomon code do not affect its optimal band-
width profile. In other words, RS(A, k) and RS(βA + γ, k),
where β,γ ∈ Fq` , β 6= 0, have the same optimal bandwidth
profile (up to a permutation).

Proof. Suppose that {gi(x)}i∈[`] is a repair scheme for
RS(A, k), which can be used to repair f(αj), αj ∈ A, and
has bandwidth b. We set hi(x) , gi ((x− γ)/β), i ∈ [`]. Then
hi(βα+ γ) = gi(α) for every α ∈ A. Therefore, {hi(x)}i∈[`]
can be used to repair βαj + γ ∈ βA + γ with bandwidth b.
Hence, βα + γ ∈ βA + γ can be repaired in RS(βA + γ, k)
with a bandwidth not exceeding that for α ∈ A in RS(A, k).
Since A = β−1(βA + γ) − β−1γ, the same argument proves
that the reverse conclusion is also true. Thus, these two codes
have the same optimal repair bandwidth for their corresponding
codeword components (f(α) and f(βα+ γ)). �

As a corollary of Proposition 4, although there are
(
q`

n

)
different RS(n, k) codes over Fq` , we can divide them into
classes of codes that have evaluation points obtained from each
other by translations and dilations. Each class can have at most
q`(q` − 1) members with the same optimal bandwidth profile
(up to permutations). Identifying other transformations of A that
preserve the optimal bandwidth profile is an open problem.

To examine the impact of evaluation points on repair band-
widths, we consider RS(5,3) codes over F16, which have small
r and field size and hence allow us to determine their optimal
bandwidth profiles. An RS(5,3) (with a given generator matrix)
was first investigated in [2]. We searched through all 524,160
different arrangements of five elements in F16 and found 240
different A’s (orders of elements are important) giving rise to
the same code, e.g., A = {0, 1, z1416 , z816, z1216}, where z16 is
a primitive element of F16 satisfying z416 + z16 + 1 = 0. It
was shown in [2] that the optimal repair bandwidth for each
systematic component (j = 1, 2, 3) is 10 bits. On the other
hand, from Table II and [37], we know that 9 bits are sufficient
to repair other RS(5,3) codes. This shows that different sets of
evaluation points can lead to different repair bandwidths.

In fact, we have obtained a complete picture of the bandwidth
profiles of all RS(n, n − 2) codes, 4 ≤ n ≤ 16, over F16.
First, from the list of 16 monic polynomials of degree one
over F16, we created a list of 6, 142, 500 =

(
16
4

)
153 sets of

four check polynomials (keeping the first monic while adding
arbitrary nonzero coefficients to others). We then generate a
rank profile ~r = (r1, r2, . . . , r16) for each polynomials set
and remove those whose components are all smaller than 4,
which took our GAP program 10 hours to complete. More
than six millions sets of polynomials remain as potential repair
schemes. For each A ⊆ F16, we determine the optimal repair
bandwidth for each codeword component of RS(A, k) by going
through all the rank profiles, restricting to the positions in A.
For instance, when n = 5 and k = 3, among 4368 =

(
16
5

)
different 5-subsets A ⊂ F16, 2880 have bandwidth profile
(9, 9, 9, 9, 8), 1440 have bandwidth profile (9, 9, 9, 9, 9), while
only 48 have bandwidth profile (10, 10, 10, 10, 10). It turns out
that the RS(5,3) examined in [2] is accidentally among the
minority that require 10 bits. Most others need only 9 bits.

V. AN IMPLEMENTATION OF TRACE REPAIR SCHEMES IN C

We implemented a trace repair scheme [27] on top of the
existing C code in the ISA-L [29]. As the bandwidth reduction is
known, we focus on minimizing the computational complexity.
Following our notation in the C code, Node j aims to recovers
cj by downloading relevant data from Nodes i, i ∈ I ⊆ [n]\{j}.
In ISA-L |I| = k while in our implementation |I| = n − 1.
The code implemented in ISA-L is systematic, i.e., the first
k components are data and the last n − k components of
each codeword are parities. Finite field elements over F256 are
represented as integers in [0, 255] (see Section II).

A. ISA-L Implementation

ISA-L uses the naive scheme to repair the generalized Reed-
Solomon codes, which means that each helper Node i sim-
ply reads and sends ci without performing any computation.
Node j, after receiving data from k nodes, can recover cj as fol-
lows. A lost parity component can be repaired by downloading
the data components (systematic part) and performing encoding.
A missing data component, however, requires more work: Node
j performs first a matrix inversion to obtain (G[I])−1, where
G[I] denotes the submatrix of G consisting of columns of G
indexed by I , and then multiply this matrix with the vector
consisting of ci, i ∈ I . This procedure is repeated for T different
codewords, where T is a large number representing the number
of codewords to be repaired. For instance, if the encoded file

Senders Receiver Total
ISA-L (naive) 0 (sec) 0.57 (sec) 0.57 (sec)
Trace repair 0.2 (sec) 1.4 (sec) 1.6 (sec)

TABLE V: The running times of the naive repair (ISA-L) and
trace repair for an RS(9,6) over ten millions codewords and
(random) single erasures (on a Linux server: Intel(R) Xeon(R)
CPU E5-2690 v2 @ 3.00GHz with 792 GB RAM). For senders,
the maximum running time among all helpers was used.

has size 60 MB, and an RS(9,6) is used, then T is roughly ten
million. Note that the matrix inversion is done only once.

B. Our Implementation

In a trace repair scheme, as opposed to ISA-L, both senders
and receiver perform computations. As a large number of
codewords are being repaired, say, millions, it is crucial to
identify parts of the computation that could be precomputed
and stored for fast access. We convert the n repair schemes (for
n components) into three lookup tables: H (helper) allows the
helper nodes to create the repair traces (bits) while R (recover)
and D (dual basis) allow the receiver node to process the repair
traces and recover the lost component. Please refer to [22]
for undefined terminologies. A frequently used operation is the
XOR-sum of the bits of an integer. Hence, we precompute an
array called Parity that store these values for all m ∈ [0, 255].
We describe below the computation for one codeword.

Sender side. Node i extracts the number of traces to be sent
ri = H[i][j][0], and uses ri numbers H[i][j][1] to H[i][j][ri] to
compute ri repair traces. Table H is defined in a way that the
s-th trace from Node i is the inner product of H[i][j][s] and ci,

RepairTracei[s] = Parity
[
H[i][j][s] & ci

]
, s ∈ [1, ri].

Node i then sends RepairTracei to Node j.
Receiver side. Node j uses RepairTracei, i ∈ [n] \ {j}, R,

and D to recover cj as follows. For each i, it generates eight
column traces ColumnTracei[s], s ∈ [8], using the formula
ColumnTracei[s] = Parity

[
R[i][j][s] & Dec(RepairTracei)

]
,

where Dec(RepairTracei) turns the ri bits in RepairTracei into
a decimal number, ready for bitwise operations. Dec() is also
implemented using bit-shift and XOR operations. Finally,

cj = ⊕8
s=1

((
⊕i∈[n]\{j} ColumnTracei[s]

)
×D[s]

)
.

In our implementation [27], we further optimize the code by
joining the above steps at the receiver to save time. For RS(9,6),
our implementation is 2.8x slower than ISA-L (Table V). For
other codes such as RS(11,8), RS(16,13), RS(12,8), RS(14,10),
RS(16,12), the gap is 1.8x-2.4x. Despite being a negative
result, the small gaps are encouraging because trace repair is
inherently more complicated. Further optimizations may also
reduce the gaps. As shown in [38, Fig. 1], the network transfer
time is much larger than the computation time (say, 40 times)
in naive repair. Hence, the reduction in bandwidth can well
compensate the computation time and make trace repair faster.
For example, a combination of 33% reduction in bandwidth and
200% increase in computation time could still lead to a 1.25x
speed-up compared to naive repair. Implementing trace repairs
on Hadoop 3 to verify this observation is a future work.

ACKNOWLEDGEMENT

This work has been supported by the 210124 ARC DECRA
Grant DE180100768. We thank Nguyen Dinh Quang Minh and
Dau Trung Dung for their help in the implementation.

REFERENCES

[1] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, 1960.

[2] K. Shanmugam, D. S. Papailiopoulos, A. G. Dimakis, and G. Caire, “A
repair framework for scalar MDS codes,” IEEE J. Selected Areas Comm.
(JSAC), vol. 32, no. 5, pp. 998–1007, 2014.

[3] V. Guruswami and M. Wootters, “Repairing Reed-Solomon codes,” in
Proc. Annu. Symp. Theory Comput. (STOC), 2016.

[4] ——, “Repairing Reed-Solomon codes,” IEEE Trans. Inform. Theory,
vol. 63, no. 9, pp. 5684–5698, 2017.

[5] M. Ye and A. Barg, “Explicit constructions of MDS array codes and RS
codes with optimal repair bandwidth,” in Proc. IEEE Int. Symp. Inform.
Theory (ISIT), 2016, pp. 1202–1206.

[6] ——, “Explicit constructions of high-rate MDS array codes with optimal
repair bandwidth,” IEEE Trans. Inform. Theory, vol. 63, no. 4, pp. 2001–
2014, 2017.

[7] A. Chowdhury and A. Vardy, “Improved schemes for asymptotically
optimal repair of MDS codes,” in Proc. 55th Annual Allerton Conf. Comm
Control Comput. (Allerton), 2017.

[8] ——, “Improved schemes for asymptotically optimal repair of MDS
codes,” IEEE Trans. Inform. Theory, vol. 67, no. 8, pp. 5051–5068, 2021.

[9] H. Dau and O. Milenkovic, “Optimal repair schemes for some families of
Reed-Solomon codes,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT),
2017, pp. 346–350.

[10] I. Duursma and H. Dau, “Low bandwidth repair of the RS(10,4) Reed-
Solomon code,” in Proc. Inform. Theory Applicat. Workshop (ITA), 2017.

[11] W. Li, Z. Wang, and H. Jafarkhani, “A tradeoff between the sub-
packetization size and the repair bandwidth for Reed-Solomon code,”
in Proc. 55th Annual Allerton Conf. Comm. Control Comput. (Allerton),
2017, pp. 942–949.

[12] ——, “On the sub-packetization size and the repair bandwidth of Reed-
Solomon codes,” IEEE Trans. Inform. Theory, vol. 65, no. 9, pp. 5484–
5502, 2019.

[13] I. Tamo, M. Ye, and A. Barg, “Optimal repair of Reed-Solomon codes:
Achieving the cut-set bound,” in Proc. 58th Annual IEEE Symp. Founda-
tions Computer Sci. (FOCS), 2017.

[14] ——, “The repair problem for Reed-Solomon codes: Optimal repair of
single and multiple erasures with almost optimal node size,” IEEE Trans.
Inform. Theory, vol. 65, no. 5, pp. 2673–2695, 2018.

[15] A. Berman, S. Buzaglo, A. Dor, Y. Shany, and I. Tamo, “Repairing
Reed–Solomon codes evaluated on subspaces,” in Proc. IEEE Int. Symp.
Inform. Theory (ISIT), 2021, pp. 867–871.

[16] R. Con and I. Tamo, “Nonlinear repair schemes of Reed-Solomon codes,”
2021. [Online]. Available: https://arxiv.org/abs/2104.01652

[17] H. Dau, I. Duursma, H. M. Kiah, and O. Milenkovic, “Repairing Reed-
Solomon codes with two erasures,” in Proc. IEEE Int. Symp. Inform.
Theory (ISIT), 2017, pp. 351–355.

[18] ——, “Repairing Reed-Solomon codes with multiple erasures,” IEEE
Trans. Inform. Theory, vol. 54, no. 10, pp. 6567–6582, 2018.

[19] B. Bartan and M. Wootters, “Repairing multiple failures for scalar MDS
codes,” in Proc. 55th Annual Allerton Conf. Comm Control Comput.
(Allerton), 2017.

[20] J. Mardia, B. Bartan, and M. Wootters, “Repairing multiple failures for
scalar MDS codes,” IEEE Trans. Inform. Theory, vol. 65, no. 5, pp. 2661–
2672, 2018.

[21] Y. Zhang and Z. Zhang, “An improved cooperative repair scheme for
Reed-Solomon codes,” in Proc. 19th Int. Symp. Comm. Inform. Tech.
(ISCIT), 2019, pp. 525–530.

[22] S. H. Dau, T. X. Dinh, H. M. Kiah, T. T. Luong, and O. Milenkovic,
“Repairing Reed-Solomon codes via subspace polynomials,” IEEE Trans.
Inform. Theory, vol. 67, no. 10, pp. 6395–6407, 2021.

[23] W. Li, Z. Wang, and H. Jafarkhani, “Repairing Reed-Solomon Codes Over
GF (2`),” IEEE Comm. Lett., vol. 24, no. 1, pp. 34–37, 2020.

[24] H. Dau, I. Duursma, and H. Chu, “On the I/O costs of some repair schemes
for full-length Reed-Solomon codes,” in Proc. IEEE Int. Symp. Inform.
Theory (ISIT), 2018, pp. 1700–1704.

[25] H. Dau and E. Viterbo, “Repair schemes with optimal I/O costs for full-
length Reed-Solomon codes with two parities,” in Proc. IEEE Inform.
Theory Workshop (ITW), 2018, pp. 590–594.

[26] W. Li, H. Dau, Z. Wang, H. Jafarkhani, and E. Viterbo, “On the I/O costs
in repairing short-length Reed-Solomon codes,” in Proc. IEEE Int. Symp.
Inform. Theory (ISIT), 2019, pp. 1087–1091.

[27] “An implementation of trace repair for Reed-Solomon codes on top of
ISA-L,” https://github.com/dausonhoang/tracerepair.

[28] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam: North-Holland, 1977.

[29] “Intel(R) Intelligent Storage Acceleration Library (ISA-L)’s Reed-
Solomon codes,” available at https://github.com/intel/isa-l/blob/master/
erasure code/ec base.c.

[30] “Quantcast File System’s Reed-Solomon code,” available at https://github.
com/quantcast/qfs/blob/master/src/cc/qcrs/encode.c.

[31] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly, “The
Quantcast File System,” Proc. VLDB Endow., vol. 6, no. 11, p. 1092–1101,
2013.

[32] R. Roth and G. Seroussi, “On generator matrices of MDS codes,” IEEE
Trans. Inform. Theory, vol. 31, no. 6, pp. 826–830, 1985.

[33] “Frank Luebeck’s list of Conway polynomials,” available at http://www.
math.rwth-aachen.de/∼Frank.Luebeck/data/ConwayPol/CP2.html.

[34] “Backblaze Vaults’ Reed-Solomon codes,” available at https://www.
backblaze.com/blog/reed-solomon/.

[35] “Backblaze Vaults’ Reed-Solomon codes source codes,” available
at https://github.com/Backblaze/JavaReedSolomon/blob/master/src/main/
java/com/backblaze/erasure/ReedSolomon.java.

[36] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan,
S. Shankar, V. Sivakumar, L. Tang, , and S. Kumar, “f4: Facebook’s warm
BLOB storage system,” in Proc. 11th ACM/USENIX Symp. Oper. Syst.
Des. Implementation (OSDI), 2014, pp. 383–398.

[37] “Records of the current-best repair bandwidths found for short-length
Reed-Solomon codes,” https://dausonhoang.github.io/rsbandwidth, backup
link https://rsbandwidth.herokuapp.com.

[38] S. Mitra, R. Panta, M.-R. Ra, and S. Bagchi, “Partial-parallel-repair (PPR):
a distributed technique for repairing erasure coded storage,” in Proc.
European Conf. Computer Syst. (EuroSys), 2016, article No. 30.

https://arxiv.org/abs/2104.01652
https://github.com/dausonhoang/tracerepair
https://github.com/intel/isa-l/blob/master/erasure_code/ec_base.c
https://github.com/intel/isa-l/blob/master/erasure_code/ec_base.c
https://github.com/quantcast/qfs/blob/master/src/cc/qcrs/encode.c
https://github.com/quantcast/qfs/blob/master/src/cc/qcrs/encode.c
http://www.math.rwth-aachen.de/~Frank.Luebeck/data/ConwayPol/CP2.html
http://www.math.rwth-aachen.de/~Frank.Luebeck/data/ConwayPol/CP2.html
https://www.backblaze.com/blog/reed-solomon/
https://www.backblaze.com/blog/reed-solomon/
https://github.com/Backblaze/JavaReedSolomon/blob/master/src/main/java/com/backblaze/erasure/ReedSolomon.java
https://github.com/Backblaze/JavaReedSolomon/blob/master/src/main/java/com/backblaze/erasure/ReedSolomon.java
https://dausonhoang.github.io/rsbandwidth
https://rsbandwidth.herokuapp.com

	I Introduction
	II Definitions and Notations
	III Existing Constructions of Reed-Solomon Codes
	III-A Classical Construction by Reed and Solomon
	III-B Constructions in Intelligent Storage Acceleration Library
	III-C Code Construction in Backblaze Vaults
	III-D Code Construction in Facebook's f4

	IV Heuristic Search for Low-Bandwidth Schemes
	IV-A Trace Repair Framework
	IV-B Heuristic Search for Low-Bandwidth Repair Schemes
	IV-C The Impact of Evaluation Points

	V An Implementation of Trace Repair Schemes in C
	V-A ISA-L Implementation
	V-B Our Implementation

	References

