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Abstract—Recent years have seen renewed attention to arith-
metic coding (AC). This is thanks to the use of AC for distribution
matching (DM) to control the channel input distribution in
probabilistic amplitude shaping. There are two main problems in-
herent to AC: (1) its required arithmetic precision grows linearly
with the input length, and (2) high-precision multiplications and
divisions are required. Here, we introduce a multiplication-free
AC-based DM technique via three lookup tables (LUTs) which
solves both problems above. These LUTs are used to approximate
the high-precision multiplications and divisions by additions and
subtractions. The required precision of our approach is shown
to grow logarithmically with the input length. We prove that this
approximate technique maintains the invertibility of DM. At an
input length of 1024 symbols, the proposed technique achieves
negligible rate loss (< 0.01 bit/sym) against the full-precision
DM, while requiring less than 4 kilobytes of storage.

I. INTRODUCTION

Distribution matching (DM) converts a binary string into
a symbol sequence with the desired distribution. DM is an
essential block in probabilistic amplitude shaping (PAS) that
controls the channel input distribution [1]. Thanks to this con-
trol, PAS achieves the capacity of the additive white Gaussian
noise (AWGN) channel [2], [3]. PAS has also become popular
in wireless [4], [5] and fiber optical communications [6]–[9].

The DM technique used when PAS was introduced was
constant composition distribution matching (CCDM) [10].
In CCDM, binary strings—which are the data sequences in
this context—are converted into amplitude sequences with a
fixed composition. By selecting this composition such that
the resulting amplitude distribution resembles a one-sided
Gaussian distribution and by selecting the signs uniformly,
a Gaussian-like channel input is obtained, which increases
the achievable rates for the AWGN channel [1] and optical
channels [7].

When CCDM was first introduced [10], it was implemented
using arithmetic coding (AC) [11]. AC is a source coding
algorithm that represents nonuniform source sequences by
subintervals of the unit interval [12, Sec. 6.2]. Since DM is
the dual operation to compression [13, p.222], AC can be
used to realize DM in an “inverted encoder-decoder pair”
setup [14] as illustrated in Fig. 1: matching is realized via
AC decoding (decompression), dematching is realized via AC
encoding (compression).

There are two main problems inherent to AC. First, the
required arithmetic precision grows linearly with the input
length, which makes AC very challenging to realize for

Source
Sequences

Code
Sequences

compression

decompression

Amplitude
Sequences

Data
Sequences

dematching

matching

Fig. 1. Duality of source coding (top) and DM (bottom), and the effect of
having overlapping subintervals in arithmetic coding (middle).

inputs longer than a thousand symbols. Long blocklengths are
necessary to decrease the rate loss of CCDM [10, Fig. 2].
Second, multiplications and divisions are necessary to realize
the algorithm. There is a large amount of research dedicated
to solving these problems in the context of source coding, see
e.g., [15] and references therein. For DM, the first problem
is solved via a finite-precision implementation in [16]. To the
best of our knowledge, there is no study solving the second
problem for DM.

In this paper, we introduce “Log-CCDM”, an approximate
logarithmic (log) domain AC-based algorithm that solves both
problems above. Log-CCDM works based on three lookup
tables (LUTs). High-precision multiplications and divisions
required in AC are approximated by low-precision additions
and subtractions in the log domain. The required arithmetic
precision of Log-CCDM grows logarithmically with the input
length. We prove that the invertibility of DM is maintained.
We demonstrate that the performance of this approximate
algorithm (in terms of rate) depends on the sizes of the
LUTs. Requiring less than a few kilobytes (kBs), the rate loss
of Log-CCDM against full-precision CCDM (FP-CCDM) is
negligible, i.e., < 0.01 bit/sym. This performance is achieved
using 20-bit arithmetic operations which is comparable to
that of the finite-precision algorithm of [16] that requires
multiplications and divisions.

II. DISTRIBUTION MATCHING VIA ARITHMETIC CODING

Consider a composition C = [n0, n1, . . . , nA−1] of symbols
m ∈ A = {0, 1, . . . , A − 1}, resp., where

∑
a∈A na = N

and A the symbol alphabet. The corresponding set Ccc of
CC symbol sequences x = (x1, x2, . . . , xN ) consists of all
sequences that have

∑N
i=1 1[xi = a] = na for a ∈ A. Here
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1[·] is the indicator function which is 1 when its argument
is true and 0 otherwise. CCDM is a shaping technique that
maps k-bit strings (indices) v = (v1, v2, . . . , vk) to CC symbol
sequences x ∈ Ccc [10]. This is called matching, while the
reverse operation is called dematching. The matching rate is
then defined as k/N bit/sym. CCDM can be realized via AC.

In AC, the binary string v is represented by a number d(v) ∈
[0, 1) which is defined as d(v)

∆
=
∑k
i=1 vi2

−i. Further, each
symbol sequence x corresponds to a subinterval I(x) of the
interval [0, 1). These subintervals partition the interval [0, 1).
During arithmetic encoding, the interval I(x) is found based
on x, then a number d(v) ∈ I(x) is determined. The outcome
of this process is v. During arithmetic decoding, the input v
is mapped to sequence x if d(v) ∈ I(x).

The interval I(x) can be found based on the probability
model pn(a)

∆
= Pr{Xn = a|X1, X2, . . . , Xn−1} for n =

1, 2, . . . , N and a ∈ A. The base bN and width wN of the
interval I(x) = [bN , bN+wN ) are computed via the recursions

bn = bn−1 + wn−1

∑
a<xn

pn(a), (1)

wn = pn(xn)wn−1, (2)

for n = 1, 2, . . . , N where b0 = 0 and w0 = 1. From (2),
we see that the width wN =

∏N
n=1 pn(xn) which is equal

to p(x) via the chain rule. Thus, recursions (1)–(2) result
in intervals I(x) of length p(x). Typically, d(v) ∈ I(x) is
selected as the number that leads to the v with the shortest
representation [17, Sec. 5.2.3.1]. The minimum length of v
is d− log I(x)e bits, and AC generates variable-length v in
general. Here, log denotes the binary logarithm.

In the case of CCDM, the order of coding operations is
inverted. At the transmitter, arithmetic decoding is used to map
v to a x ∈ Ccc, while arithmetic encoding is realized for the
reverse mapping at the receiver. For CCDM, the probability
model pn(a) can be obtained considering the composition C
of the sequence x and the composition of already-processed
symbols (x1, x2, . . . , xn−1). It is given by

pn(a) =
na −

∑n−1
i=1 1[xi = a]

N − n+ 1
. (3)

Via (3), the symbol probabilities are initialized as p1(a) =
na/N , and recursively updated by decreasing na whenever a
symbol x = a is processed. From (3), we see that p(x) =∏N
n=1 pn(xn) = (

∏A−1
a=0 na!)/N ! = 1/|Ccc| for all x ∈ Ccc.

A one-to-one mapping from v to x ∈ Ccc is established if
each I(x) contains at most one d(v). Since the intervals are
of equal length 1/|Ccc|, the maximum k which guarantees this
is k = blog |Ccc|c, and AC becomes fixed-length coding.

Example 1. (Binary-output CCDM) Consider the composi-
tion C = [3, 2] for A = {0, 1}, i.e., we want to generate binary
sequences of length N = 5 containing 2 ones. There are 10
such sequences and k = 3. As an example, let us find the CC
sequence x that is mapped to v = (1, 1, 0) (d(v) = 0.75)
which is written with blue in Fig. 2. The first symbol x1

partitions the interval [0, 1) in fractions p1(0) = n0/N = 3/5
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n 0 1 2 3 4 5

wn 1.0 0.4 0.3 0.2 0.1 0.1
bn 0.0 0.6 0.6 0.6 0.7 0.7

Fig. 2. CCDM for C = [3, 2] and A = 2 via AC. Blue sequences x =
(1, 0, 0, 1, 0) and v = (1, 1, 0) (with d(v) = 0.75) are mapped to each
other. Base bn follows the yellow path, while the width wn is the height
of the red region, see (1)–(2). Sequences (0, 1, 0, 1, 0) and (1, 1, 0, 0, 0) are
not utilized since the corresponding intervals [0.4, 0.5) and [0.9, 1.0) do not
contain a number d(v) for a 3-bit v.

Algorithm 1: FP-CCDM (Matching)
Input: Index v, composition C = [n0, n1]
Output: Sequence x ∈ {0, 1}N

1 Initialize: w0 ← 1, I0 ← d(v), N ← n0 + n1

2 for n = 0, 1, . . . , N − 1 do
3 if In ≥ wnn0/(N − n) then
4 xn+1 ← 1
5 In+1 ← In − wnn0/(N − n)
6 wn+1 ← wnn1/(N − n)
7 n1 ← n1 − 1
8 else
9 xn+1 ← 0

10 In+1 ← In
11 wn+1 ← wnn0/(N − n)
12 n0 ← n0 − 1
13 end
14 end
15 return x = (x1, x2, . . . , xN )

and p1(1) = n1/N = 2/5. Since d(v) = 0.75 ∈ [6/10, 1), this
interval is selected and x1 = 1. Then the second symbol x2

partitions the interval [6/10, 1) in fractions p2(0) = n0/(N −
1) = 3/4 and p2(1) = (n1 − 1)/(N − 1) = 1/4. Since
d(v) = 0.75 ∈ [6/10, 9/10), this interval is selected and
x2 = 0. This procedure is repeated until x5 and the final
sequence x = (1, 0, 0, 1, 0) is obtained.

During matching, the interval I(x) that includes d(v) can
also be found without storing the base bn, but instead, by
successively subtracting it from d(v). The corresponding de-
matching algorithm can also be realized straightforwardly. A
pseudo-code for this FP-CCDM is given in Algorithm 1 for
A = {0, 1}. The recursive subtraction of base from the input
index is realized in line 5 (highlighted in red). This algorithm
can also be realized in the log domain, which is the main idea



behind Log-CCDM. Then the width would be updated by an
addition and a subtraction, instead of the multiplication and
the division in lines 6 and 11 (highlighted in blue).

III. LOG-CCDM WITH LUTS

We will explain Log-CCDM for the binary case for sim-
plicity. Binary DM can be used to approximately shape the
channel inputs [18]–[22]. Extension to nonbinary alphabets is
possible for all the techniques discussed in this section.

A. Log-CCDM
We define an exponential function for positive integer s

F (s)
∆
=

{⌈
M2−s/S

⌉
if 1 ≤ s ≤ S,⌈

M2−r/S
⌉

2−d if s = r + dS > S,
(4)

where integers r > 0, d > 0. In (4), both S and M are positive
integers. We see from (4) that F (s) can be computed for any
positive integer s by storing F (s) only for s = 1, 2, . . . , S.
This requires a LUT with S entries. For s > S, F (s) can
be computed only with shifts in base-2 thanks to the 2−d

factor in (4). We assume that M is an integer power of two,
and each entry of this LUT is stored with logM bits. Note
that with logM bits, only the nonnegative numbers below M
can be stored in an exact manner. This, i.e., F (s) < M for
1 ≤ s ≤ S, is ensured when S < M from (4). An example of
F (s) is shown in Fig. 3.

Consider Algorithm 1 realized in the binary domain. Here,
0 ≤ In < 1 and 0 ≤ wn < 1 for n = 0, 1, . . . , N and
hence, their integer parts are always 0. Thus, we neglect their
integer part and focus on their fractional part. We approximate
the fractional part of wn by F (sn) where s0

∆
= 1. At step n

of Algorithm 1, there are two possible choices for the width
wn+1 corresponding to symbols 1 and 0, resp., see lines 6 and
11. We approximate these choices by first defining

sn+1
∆
=

{
sn − S log(n1/(n0 + n1)) if xn+1 = 1,

sn − S log(n0/(n0 + n1)) if xn+1 = 0.
(5)

Then we observe from (4) that F (r + dS) = 2−dF (r) which
implies F (r − S logK) = KF (r) for integer S logK. Then

F (sn+1) =

F
(
sn − S log

(
n1

n0+n1

))
≈ F (sn) n1

n0+n1
,

F
(
sn − S log

(
n0

n0+n1

))
≈ F (sn) n0

n0+n1
,

(6)
for xn+1 = 1, 0, resp., for n = 1, 2, . . . , N . In the context of
Algorithm 1, (5) corresponds to the width updates in lines
6 and 11. Updating wn to wn+1 using multiplications is
equivalent to updating sn to sn+1 using subtractions.

However, we observe that (5) requires the computation of
log function with FP which is typically no less complex than a
multiplication. To circumvent this complexity, we define two
logarithmic functions (s.t. means such that)

Lg+(n)
∆
= max
s=1,2,...,S

min
∆=0,1,...

F (s)≥nF (s+∆)

{∆}, (7)

Lg−(n)
∆
= min
s=1,2,...,S

max
∆=0,1,...

F (s)≤nF (s+∆)

{∆}, (8)
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Fig. 3. Exponential function F (s) for 1 ≤ s ≤ 2S, and log functions Lg+
and Lg− for 1 ≤ n ≤ N where S = 16, M = 32, and N = 32. F (s) can
be computed for any positive integer s by storing F (s) only for 1 ≤ s ≤ S
(filled circles) in a LUT. Lg+ and Lg− can be stored in two LUTs.

for n = 1, 2, . . . , N . This computation can be realized offline.
The resulting functions can be stored in two LUTs, each
having N entries. Examples of Lg+(n) and Lg−(n) are shown
in Fig. 3.

We approximate multiplications and divisions involving
F (s) and an integer n by

nF (s) ≈ F
(
s− Lg+(n)

)
, (9)

F (s)

n
≈ F

(
s+ Lg−(n)

)
, (10)

resp. The relations in (9)–(10) are approximate due to the way
Lg+ and Lg− are defined in (7)–(8), and due to the ceiling
operation in (4). Finally, combining (6) and (9)–(10),

F (sn+1) =

{
F
(
sn − Lg+(n1) + Lg−(n0 + n1)

)
,

F
(
sn − Lg+(n0) + Lg−(n0 + n1)

)
,

(11)

for symbols 1 and 0, resp. This way, the FP-CCDM in
Algorithm 1 is converted into the Log-CCDM in Algorithm 2
by: (1) representing the subinterval width wn+1 by F (sn+1),
and (2) keeping track of this width through sn+1 which is
updated via (11) in lines 6 and 11 (highlighted in blue). The
rest of the algorithms are identical.

B. Representability of Data Sequences

When AC is used for compression, if the arithmetic op-
erations are implemented with finite-precision (or in any
approximate way), the decodability of the code becomes ques-
tionable. Decodability is ensured only when the subdivisions
do not create overlapping subintervals, which would make two
different source sequences (the red circles in Fig. 1) mapped
to the same code sequence (the blue circle). This makes
uniquely decodability during decompression impossible [23].
On the other hand, gaps between subintervals only decrease
the efficiency of the source code, i.e., increases its rate.

When AC is used for DM which is a dual of source coding,
see Sec. I, the dual of decodability is representability [14].
AC creates an invertible mapping from data sequences to
CC sequences only if the subintervals do not have gaps in



Algorithm 2: Log-CCDM (Matching)
Input: Index v, composition C = [n0, n1]
Output: Sequence x ∈ {0, 1}N

1 Initialize: s0 ← 1, I0 ← d(v), N ← n0 + n1

2 for n = 0, 1, . . . , N − 1 do
3 if In ≥ F

(
sn − Lg+(n0) + Lg−(N − n)

)
then

4 xn+1 ← 1
5 In+1 ← In−F

(
sn − Lg+(n0) + Lg−(N − n)

)
6 sn+1 ← sn − Lg+(n1) + Lg−(N − n)
7 n1 ← n1 − 1
8 else
9 xn+1 ← 0

10 In+1 ← In
11 sn+1 ← sn − Lg+(n0) + Lg−(N − n)
12 n0 ← n0 − 1
13 end
14 end
15 return x = (x1, x2, . . . , xN )

between. Overlaps are allowed. As discussed above via Fig. 1,
overlaps make two amplitude sequences mapped to the same
data sequence. However, since matching is realized first in the
case of DM (at the transmitter), this does not create a problem:
some channel sequences are just never generated. This only
decreases the efficiency of the code, i.e., decreases its rate.

With an FP implementation, AC creates subintervals that
neither overlap nor have gaps, satisfying the decodability and
representability criteria as in Fig. 2. For our Log-CCDM
algorithm, the representability, i.e., “no gaps”, criterion can
be expressed from (11) as [14, eq. (14)]

F (sn) ≤ F
(
sn − Lg+(n1) + Lg−(n0 + n1)

)
+ F

(
sn − Lg+(n0) + Lg−(n0 + n1)

)
. (12)

Lemma 1. The condition in (12) is satisfied for F (s), Lg+(n),
and Lg− defined in (4), (7), and (8), resp.

Proof. First, observe that the following inequalities are satis-
fied from (7)–(8) by definition for any positive integer s:

F (s− Lg+(n)) ≥ nF (s), (13)

F (s+ Lg−(n)) ≥ F (s)

n
. (14)

Then for the first case in (11), we can write

F (sn+1) = F
(
sn − Lg+(n1) + Lg−(n0 + n1)

)
(13)
≥ n1F

(
sn + Lg−(n0 + n1)

)
(14)
≥ n1F (sn)

n0 + n1
. (15)

Similarly, for the second case in (11), we can write

F (sn+1) ≥ n0F (sn)

n0 + n1
. (16)

Combined, (15) and (16) imply that (12) is satisfied.

IV. PROPERTIES OF LOG-CCDM
A. Input Length of the Matcher

The final width for any input in Algorithm 2 is F (sN ) where

sN = s0 +

n0+n1∑
i=1

Lg−(i)−
n0∑
j=1

Lg+(j)−
n1∑
t=1

Lg+(t)︸ ︷︷ ︸
∆
=γ

. (17)

Thus, all CC sequences are represented with an interval of
identical width. This allows us to represent each interval with
a fixed length k-bit index as discussed in Sec. II.

There are F (s0)/F (sN ) CC sequences, i.e., |Ccc| =
F (s0)/F (sN ). Then as in Sec. II,

k = blog |Ccc|c =

⌊
log

F (s0)

F (sN )

⌋
=

⌊
log

F (s0)

F (s0 + γ)

⌋
(4)
=

⌊
log

F (s0)

2−bγ/ScF (s0)

⌋
=
⌊ γ
S

⌋
. (18)

The parameters γ and k can be computed offline.

B. Storage Complexity and Arithmetic Precision

The storage complexity of Log-CCDM is S logM +
2N(logS + log logN) bits. To store F (s) in (4), we need a
LUT with S entries, each stored with logM bits as discussed
in Sec. III-A. Thus, the storage requirement of this LUT is
S logM bits. From (4) and (9)–(10), it can be shown that
both Lg+(n) and Lg−(n) are approximately equal to S log n.
Therefore, the entries in the corresponding LUTs can be stored
with approximately logS + log logN bits assuming S and N
are integer powers of two. Thus, the total storage requirement
of these two LUTs is 2N(logS + log logN) bits.

In line 5 of Algorithm 2 (highlighted in red), values of
F (·) are recursively subtracted from the input index. These
subtractions require an arithmetic precision of logM + logN
bits assuming again N is an integer power of two. The proof
of this will consist of a lemma and a theorem.

Lemma 2. If In < F (sn), then Algorithm 2 guarantees that
In+1 < F (sn+1). This implies that if I0 < F (s0), then all In
for n = 0, 1, . . . , N satisfy In < F (sn).

Proof. We define sn,0
∆
= sn − Lg+(n0) + Lg−(N − n) and

sn,1
∆
= sn−Lg+(n1) + Lg−(N −n) for n = 0, 1, . . . , N − 1.

Note that sn,0 and sn,1 are the candidates for sn+1 in lines
11 and 6 of Algorithm 2. We first observe that

In < F (sn)
(12)
≤ F (sn,0) + F (sn,1). (19)

Then there are two options at the nth step of Algorithm 2:
• If In ≥ F (sn,0) (line 3), then sn+1 = sn,1 and

In+1 = In − F (sn,0)
(19)
< F (sn,0) + F (sn,1)− F (sn,0) = F (sn+1).

• If In < F (sn,0) (line 8), then sn+1 = sn,0 and

In+1 = In < F (sn,0) = F (sn+1).



Since I0 < 1 ≤ F (s0 = 1) due to (4) and Algorithm 2, we
conclude that In < F (sn) for n = 0, 1, . . . , N . We note that
this proof is similar to the proof of [24, Lemma 1].

Theorem 1. The subtraction In − F (sn,0) in line 5 of
Algorithm 2 requires an arithmetic precision of at most
logM + logN bits assuming N is an integer power of two.

Proof. First, observe from (15) that

F (sn,0)

F (sn)
≥ n0

n0 + n1
≥ 1

N
. (20)

Thus, since In < F (sn) from Lemma 2, the subtrahend of the
subtraction In − F (sn,0) in line 5 of Algorithm 2 can be at
most N times smaller than its minuend. Since each entry of
the LUT of F (·) is logM -bit long, this subtraction requires
an arithmetic precision of at most logM + logN bits.

Remark 1. Log-CCDM can be implemented with two
(logM +logN)-bit shift registers. The k-bit input index (and
some trailing zeros if necessary) is gradually loaded into the
first register, which stores the minuend. The logM -bit F (·)
values are loaded into the second register, which stores the
subtrahend. The dematching can be implemented with the
same principle via (logM + logN)-bit additions.

Remark 2. It is not straightforward to evaluate the complexity
of FP-CCDM [25, Sec. 6]. In this work, we have transformed
FP-CCDM, which requires no storage but is based on multipli-
cations and divisions, into Log-CCDM, which requires a small
amount of storage but is based on additions and subtractions.
Then the selection among these two depends on how costly
the multiplications and divisions are in comparison to a certain
amount of storage for given hardware.

C. Rate Loss

There are two sources of inaccuracies in Log-CCDM. The
first is due to (4) which leads to an imprecise representation
of the log of the interval width. The second is due to (7)
and (8), and then to (13) and (14) which lead to imprecise
multiplications (with n0 or n1) and divisions (with n0 + n1).
These two inaccuracies lead to overlapping intervals as dis-
cussed in Sec. III-B. Thus, some CC sequences that would be
generated by FP-CCDM are never produced by Log-CCDM,
which decreases the rate k/N , causing a rate loss.

In Fig. 4, we show k/N as a function of N for a composi-
tion of C = [0.75N, 0.25N ] for FP-CCDM and Log-CCDM
with different (S,M) pairs. First, we see that FP-CCDM is
asymptotically optimum for large N as shown in [10]. This is
in the sense that it has a matching rate ∆

= kmax/N converging
to the (binary) entropy H(0.75) = 0.8113 bits of the resulting
distribution, see the black curve in Fig. 4. However, Log-
CCDM is suboptimal, i.e., it does not converge to the entropy.
By increasing S and M , this rate can be made closer to the
entropy, while the required storage increases, see Sec. IV-B.

Next, we see that for increasing S and M , the matching
rate of Log-CCDM gets closer to kmax/N . When using LUTs
with S = 512 and N ≤ 1024 entries (the red circles), the gap
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Fig. 4. Rate k/N of Log-CCDM with (S,M). Top-left inset: Required
arithmetic precision in bits. Bottom-right inset: Required storage in kBs.

to kmax/N is around 0.007 bit/sym. The gap increases to 0.03
bit/sym for LUTs with S = 128 and N ≤ 1024 entries (the
blue curve with squares). Thus, there is a trade-off between the
rate loss with respect to kmax/N and the table sizes. Assume
we operate at N = 1024, S = 512, M = 1024, and k/N =
0.7988 < 0.8063 = kmax/N bit/sym (the filled red circle).
Then the required storage for the three LUTs is S logM +
2N(logS+log logN) = 3.79 kBs (bottom-right inset figure),
and the required arithmetic precision is logM + logN = 20
bits (top-left inset figure), see Sec. IV-B.

Last, we see that for S = 256, the required storage is
virtually identical with M = 512 and 1024 (bottom-right inset
figure). However, the rate loss of (S = 256,M = 1024)
(dashed green) is smaller. For instance, the same rate loss
as (S = 512,M = 1024, N = 1024) (filled red circle) is
obtained via (S = 256,M = 1024, N = 1024) (dashed
green), requiring 3.22 kBs of storage instead of 3.79. This
demonstrates that M plays a more important role in determin-
ing the rate loss. For a given M , a smaller S can be chosen to
decrease the storage complexity, since the rate loss is relatively
insensitive to the changes in S.

V. CONCLUSION

In this paper, we have introduced Log-CCDM: an approx-
imate algorithm to realize arithmetic-coding-based constant
composition distribution matching. Log-CCDM operates in the
logarithmic domain and is based on three simple lookup tables
(LUTs). Thanks to these LUTs, it is possible to realize CCDM
(1) with an arithmetic precision that grows logarithmically
with input length (instead of linearly), and (2) only using
additions and subtractions (instead of multiplications and divi-
sions). This decreases the computational complexity, however,
increases the storage complexity (to a few kilobytes) due to
the LUTs. The performance of Log-CCDM in terms of rate
depends on the sizes of these LUTs.
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[18] A. Guillén i Fàbregas and A. Martinez, “Bit-interleaved coded modula-

tion with shaping,” in Proc. IEEE Inf. Theory Workshop, Dublin, Ireland,
Aug.-Sep. 2010.

[19] M. Pikus and W. Xu, “Bit-level probabilistically shaped coded modula-
tion,” IEEE Commun. Lett., vol. 21, no. 9, pp. 1929–1932, Sep. 2017.

[20] F. Steiner, P. Schulte, and G. Böcherer, “Approaching waterfilling
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