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Abstract—Sparse superposition codes were originally proposed
as a capacity-achieving communication scheme over the gaussian
channel, whose coding matrices were made of i.i.d. gaussian en-
tries [1]. We extend this coding scheme to more generic ensembles
of rotational invariant coding matrices with arbitrary spectrum,
which include the gaussian ensemble as a special case. We further
introduce and analyse a decoder based on vector approximate
message-passing (VAMP) [2]. Our main findings, based on both a
standard replica symmetric potential theory and state evolution
analysis, are the superiority of certain structured ensembles of
coding matrices (such as partial row-orthogonal) when compared
to i.i.d. matrices, as well as a spectrum-independent upper bound
on VAMP’s threshold. Most importantly, we derive a simple
“spectral criterion” for the scheme to be at the same time
capacity-achieving while having the best possible algorithmic
threshold, in the “large section size” asymptotic limit. Our
results therefore provide practical design principles for the coding
matrices in this promising communication scheme.

I. INTRODUCTION AND SETTING

Sparse superposition (SS) codes were introduced for com-
munication over the additive white gaussian noise channel
(AWGNC) [1] and proven to achieve the capacity using power
allocation [3] or spatial coupling under message-passing based
decoding [4], [5], [6], [7]. But the coding matrices were limited
to be constructed from independent gaussian entries. In this
paper, we extend the coding matrices to a much broader class
of matrices beyond the i.i.d. ones, i.e., to rotational invariant
matrix ensembles. We deal with several illustrative coding
ensembles, both theoretically and practically, by introducing
and analyzing a VAMP-based decoding algorithm [2] (which
is similar to OAMP [8]). Furthermore, we empirically con-
firm that a state evolution (SE) recursion accurately tracks
VAMP’s performance. By analyzing the fixed points of this
SE recursion combined with a replica analysis from statistical
mechanics, we precisely quantify computational-to-statistical
gaps for several coding matrix ensembles, and demonstrate
the superiority of coding matrices whose rows are orthogonal
compared to the standard gaussian coding ensemble. Other
important contributions come in the form of a simple criterion
to select “good” coding matrices, i.e., for the coding scheme to
be capacity-achieving and with the best possible algorithmic
threshold, in the large section size limit, but also a spectrum-
independent upper bound on VAMP’s algorithmic threshold
which sets an absolute limit on its performance for any
rotational invariant ensemble.

Let us emphasize that all our results are at the moment non-
rigorous. Our main tools are the replica symmetric method [9]
and the state evolution recursion tracking AMP-like algorithms
[10], [11], [10]. Concerning the replica method, despite being
non-rigorous, a multitude of recent studies prove its exactness
in many similar inference problems [3], [12], [13], [14], [15],
[16]. This strongly points towards the fact that our replica-
based predictions should be exact in a proper asymptotic limit.
For the state evolution analysis, it is proven to track VAMP
but only for separable denoisers (that would correspond to the
trivial B = 1 case of SS codes). Extending the VAMP state
evolution to section-wise priors as needed here requires some
work, in the spirit of [17] for AMP. Even more care is needed
when considering the “large section size limit” that we are also
going to study; see [3] where this was done for the standard
SS codes with gaussian coding matrices under AMP decoding.
Nevertheless, we conjecture that all the present results can,
and will, be proven in the future. We also empirically confirm
our predictions through careful numerics. Therefore our results
must be considered as numerically-verified conjectures based
on by-now well established techniques from statistical physics
and the theory of message passing algorithms.

In SS codes, the message x = [x1, . . . , xL] is a vector
made of L sections, each with B entries. Each section xl,
l ∈ {1, . . . , L} possesses a single non-zero component equal
to 1 whose position encodes the symbol to transmit. B is
the section size (or alphabet size) and we set N ··= LB.
We consider random codes generated by a coding matrix
A ∈ RM×N drawn from a rotational invariant ensemble,
i.e., when considering its singular value decomposition A =
U
√

DVᵀ, the orthogonal basis of singular vectors U and V
are sampled uniformly in the orthogonal group O(M) of
M×M matrices and O(N), respectively. The diagonal matrix
D contains non-negative singular values (Di)i≤N on its main
diagonal, and whose empirical distribution N−1

∑
i≤N δDi

weakly converges to a well-defined compactly supported prob-
ability density function ν(λ) as N,M → ∞ (not necessarily
proportionally). We denote its aspect ratio α = M/N . The
cardinality of the code is BL. Hence, the (design) rate is
R = L log2(B)/M = log2(B)/(αB) and thus the code is
fully specified by (M,R,B). For a message x as before,
the codeword is Ax ∈ RM . We enforce the power constraint
‖Ax‖22/M = 1+oL(1) by tuning the spectrum ν(λ) to satisfy
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Algorithm 1 VAMP-based decoder for SS codes
Require: Max iteration K, coding matrix A, observed y

1: Initialize r1,0 and γ1,0 ≥ 0.
2: for k = 0, 1, . . . ,K (or until convergence) do
3: // Denoising
4: x̂1,k = g1(r1,k, γ1,k), α1,k = 〈g′1(r1,k, γ1,k)〉
5: r2,k = (x̂1,k − α1,kr1,k)/(1− α1,k)
6: γ2,k = γ1,k(1− α1,k)/α1,k

7: // LMMSE estimation
8: x̂2,k = g2(r2,k, γ2,k), α2,k = 〈g′2 (r2,k, γ2,k)〉
9: r1,k+1 = (x̂2,k − α2,kr2,k)/(1− α2,k)

10: γ1,k+1 = γ2,k(1− α2,k)/α2,k

11: end for
12: Return x̂ = x̂1,K .

∫
dλλν(λ) = αB. Codewords are transmitted through an

AWGNC, i.e., the received corrupted codeword is y = Ax+z,
with i.i.d. zµ ∼ N

(
0, σ2

)
, µ ≤M , so that the signal-to-noise

ratio is snr = σ−2.

II. THE VAMP-BASED DECODER

The VAMP algorithm we propose, see Algorithm 1 below,
aims at computing the minimum mean-square (MMSE) esti-
mator given by the expectation of the Bayesian posterior

P (x | y,A) =
1

Z(y,A)
exp

(
− snr

2
‖Ax− y‖22

)∏
l≤L

P0(xl),

where Z(y,A) is a normalization. But as we will see it is
successful in doing so only for certain rates R. The hard
constraints for the sections of the message are enforced by
the prior distribution P0(xl) = B−1

∑
i∈l δxi,1

∏
j∈l,j 6=i δxj ,0,

where {i ∈ l} are the B scalar components indices of the
section belonging to the section indexed by l.

VAMP was originally derived for generalized linear estima-
tion [2]. In the present generalization to the vectorial setting of
SS codes, only the input non-linear steps differ from canonical
VAMP: here the so-called denoiser g1(r, γ) acts section-wise
instead of component-wise. In full generality, it is defined as
g1(r, γ) ··=E[X | R=r] for the random variable R=X+

√
γ Z

with X ∼ P⊗L0 and Z ∼ N (0, IN ). Plugging P0 yields the
component-wise expression of the denoiser and its variance:{

[g1(r, γ)]i = exp(ri/γ)∑
j∈li

exp(rj/γ) ,

[g′1(r, γ)]i = γ−1[g′1(r, γ)]i(1− [g′1(r, γ)]i),

where [g′1(r, γ)]i := ∂xi
g1(x, γ)|xi=ri , li is the section to

which belongs the ith scalar component. g2(r, γ) can be
recognized as the MMSE estimate of a random vector x from
the data y ∼ N (Ax, snr−1IN ) and prior x ∼ N (r, γ−1IN ):{

g2(r, γ) = (snrAᵀA + γIN )−1(snrAᵀy + γr),

〈g′2(r, γ)〉 = γN−1 Tr[(snrAᵀA + γI)−1].

We will track two error metrics for the VAMP estimator x̂ =
(x̂1, . . . , x̂L) = (x̂1, . . . , x̂N ), namely the mean-square error

(MSE) per section EL and the section error rate SERL (I(·)
is the indicator):

EL ··=
1

L
‖x− x̂‖22, SERL ··=

1

L

∑
l≤L

I (xl 6= x̂l) .

III. STATE EVOLUTION AND REPLICA ANALYSES

We now present the state evolution (SE) and replica sym-
metric analyses, valid in the asymptotic L→∞ limit, of the
performance of SS codes under MMSE and VAMP decoding,
for rotational invariant coding matrices. Both analyses are
intimately related, and linked to the estimation problem of
a single section S ∼ P0 transmitted through an “effective
gaussian channel” with noise variance

Σ(E)2 ··= (BsnrR(−snrE))−1.

Here R(z) ··= C−1(−z) − z−1 is the R-transform associated
to the asymptotic spectral density ρ of B−1AᵀA, where C−1

is the functional inverse of the Cauchy transform C(z) :=∫ ρ(λ)
λ−zdλ, see, e.g., [18], [19].
State evolution Let the scalar-valued SE operator

T (E) ··= ES,Z‖S−E[S | S+Σ(E)Z]‖22
= EZ[(g(1)(Σ(E),Z)−1)2+(B−1)g(2)(Σ(E),Z)2]

where S ∼ P0,Z ∼ N (0, IB) and we define{
g(1)(Σ, z) ··= [1+e−

1
Σ2
∑B
j=2 e

1
Σ (zj−z1)]−1,

g(2)(Σ, z) ··= [1+e
1

Σ2 +(z1−z2) 1
Σ +
∑B
k=3 e

(zk−z2) 1
Σ ]−1.

The SE operator corresponds to the MMSE of S when trans-
mitted over the effective gaussian channel. The SE recursion
tracking the asymptotic L → ∞ limit E(t) of VAMP’s MSE
at iteration t is then obtained as a straightforward adaptation
of the results of [2] and reads

E(0) = 1− 1/B, E(t+1) = T (E(t)), t ≥ 0. (1)

We refer to [2] for the proof of VAMP’s state evolution in
regression. Fig. 1 is a numerical demonstration of the validity
of our SE recursion for tracking VAMP for SS codes.

Replica symmetric analysis A remarkable property of the
SE recursion (1) is that its stationary point(s) are in one-to-
one correspondence with the critical point(s) of the so-called
replica symmetric potential (or “free entropy”) ΦB(E) derived
from the replica method [9], [20], [4]:

∂EΦB(E)|E∗ = 0⇔ T (E∗) = E∗.

For the SS codes in the present setting it is:
ΦB(E) ··= SB(Σ(E))−UB(E),

UB(E) ··= B
2

∫ snrE
0
R(x)dx− E

2Σ2(E) ,

SB(Σ(E)) ··= EZ logB
(
1 +

∑B
i=2 ei(Z,Σ(E))

)
,

where ei(Z, x) ··= exp((Zi−Z1)/x−1/x2) and i.i.d. Zi ∼
N (0, 1). The validity of such replica analysis has by-now been
proven in many related settings to ours, such as generalized
linear regression and compressive sensing but with gaussian
i.i.d. matrices [12], [15], [13]. Apart from few recent works



Fig. 1. State evolution (dashed dotted curves) tracking the VAMP decoder
MSE (solid crossed lines) ran on single instances of size L = 216 for B = 4
and snr = 28, as a function of the iterations. The SE is computed using
Monte Carlo integration with 105 samples. Two types of coding matrices are
considered: standard coding matrices with i.i.d. gaussian entries, and partial
row-orthogonal ones, in both cases for rates smaller and larger than their
respective algorithmic thresholds RVAMP.

[16], [21], [22], [23], [24], the rigorous study of linear regres-
sion problems with rotationally invariant matrix ensembles is
only at its premises. Thus, proving our present conjectures is
an interesting avenue left for future work.

We illustrate our results through three coding ensembles:
• (i) As base case we consider the standard gaussian setting

where all entries of A are i.i.d. gaussian. The asymptotic
results turn out to depend only on the asymptotic eigenvalue
distribution ρ(λ) of B−1ATA, which is given in this case
by the Marchenko–Pastur distribution ρ(λ) = (1 − α)δ(λ) +√

(λ− λ−)(λ+ − λ)/(2πλ), where λ± ··= (1 ±
√
α)2. Then

R(z) = α/(1−z) [18]. As it should, the analysis does recover
in this case the results of [25], [4], [3].
• (ii) The row-orthogonal ensemble constructed by ran-

domly selecting M ≤ N rows from a uniformly sampled N×
N orthogonal matrix. For this ensemble ρ(λ) = (1−α)δ(λ)+
αδ(λ−1) and R(z) = (1+z+

√
(1− z)2 + 4αz)/(2z)−z−1.

This will recover similar results as found in [26].
• (iii) Finally, a discrete spectrum ρ(λ) = (1 − α)δ(λ) +

α
2 δ(λ −

1
2 ) + α

2 δ(λ −
3
2 ). This ensemble is obtained by

generating a spectrum with the proper fractions of singular
values of A in {0,

√
1/2,

√
3/2} and then multiplying by

uniform orthogonal matrices of proper dimensions. The R-
transform is obtained as the solution of a cubic equation solved
numerically. This rather artificial case will serve as tractable
example of a non capacity-achieving ensemble.

Fig. 1 shows that SE properly tracks VAMP for non-
standard rotational invariant coding matrices. Under VAMP
decoding, SS codes exhibit, as L → ∞, a sharp phase
transition at an algorithmic threshold RVAMP below Shannon’s

Φ

Fig. 2. Replica symmetric potential ΦB(E) with row-orthogonal coding
matrix, snr = 28 and B = 2. The red dot is the global maximum while the
blue dot is the local one. The MMSE can be read-off as the argmaxΦB(E).
The algorithmic threshold RVAMP is indicated by the appearance of an
inflexion point, i.e., appearance of a local maximum (black curve). The
information-theoretic threshold RIT is obtained as the rate when the two
maxima are equal (we never observed that more than two maxima are present).
When there is a unique maximum, such as when R < RVAMP, or if the
global maximum is the rightmost one (at “large” E value), namely when
R > RIT (purple curve), then VAMP is conjectured to be asymptotically
optimal: in both these scenarios VAMP matches the MMSE performance, but
if R < RVAMP the decoding error is “low”, while if R > RIT VAMP is
still optimal but even the MMSE is poor. The presence of a local maximum
whenever R ∈ (RVAMP, RIT) (blue curve) prevents VAMP to decode: a
statistical-to-computational gap is present.

capacity. RVAMP is defined as the highest rate such that for
R ≤ RVAMP, (1) has a unique fixed point. For the gaussian
ensemble Rgauss

VAMP = 1.52 and for the row-orthogonal one
Rortho

VAMP = 1.62 and is therefore better compared with the
gaussian coding matrices, as noted already for compressive
sensing [26]. Whenever R < RVAMP VAMP decodes well (and
we conjecture optimally), see red and blue curves. If instead
R>RVAMP VAMP fails, see green and black curves.

Fig. 2 depicts the replica potential for the row-orthogonal
coding ensemble with snr = 28 and B = 2 (a similar picture
would appear for another ensemble). The advantage of the
potential when compared to the SE analysis is that, in addition
to encode RVAMP as the rate at which an inflexion point appears
(which blocks the SE recursion seen as a gradient ascent of
ΦB(E) initialized at high E), it allows us to also obtain the
information-theoretic threshold of the code, defined as the rate
where both the “good” and “bad” maxima of ΦB(E) are equal.
If R < RVAMP, VAMP’s estimate is conjectured to match the
MMSE estimator when initialized randomly, as in standard
gaussian SS codes or in linear regression [4], [3], [15], [13].
Instead, if R > RVAMP VAMP is sub-optimal.

At finite size VAMP’s performance close its threshold
RVAMP, itself extracted from the potential as explained in the
caption of Fig. 2, is shown in Fig. 3. This was done using a



Fig. 3. VAMP’s performance quantified by its section error rate near its
algorithmic threshold (black dotted line) for L = 216, snr = 15.0 and various
B. We use discrete cosine transform matrices as proxy of the row-orthogonal
ensemble. The curves are averaged over 300 realizations.

proxy of the row-orthogonal ensemble based on discrete cosine
transform matrices. Using these structured matrices dramati-
cally speeds-up the decoding under VAMP while having same
performance, which is practically interesting. As predicted by
our theory, recovery is good whenever R < RVAMP but poor
else. When B increases, the SER changes more drastically
as the rate increases. Near its threshold and due to finite
size effects, the VAMP performance (averaged over many
realizations) has a transient behavior smoothly interpolating
between very “poor” and very “good”.

All codes are made available at [27]. Equipped with these
methods, we can therefore completely characterize the perfor-
mance of SS codes and VAMP with generic rotational invariant
coding ensembles as L→∞.

A. Analysis in the large section size limit, and main result

The analysis in the large section size limit B → ∞ re-
quires rescaling the potential Φ̃(E) ··= limB→∞ ΦB(E)/ lnB
for it to possess a finite limit. The “entropic contribution”
limB→∞ SB(Σ)/ lnB = max(1 − Σ̃−2/2, 0) has been com-
puted in [4] using the replica method, where the effective SNR
that needs to be rescaled too is, using R = log2(B)/(αB),
given by Σ̃(E)−2 := limα→0 snrR(−snrE)/(αR ln 2); note
that for R to remain finite as B → ∞ then necessarily
α = Θ(lnB/B)→ 0 and that moreover also R depends on α.
As α→ 0 we Taylor expand C−1(−z) = z−1 +Ψ(z)α+o(α)
and thus R(z)/α = Ψ(z)+oα(1). So Φ̃(E) has a well defined
expression for small α (i.e., large B) given by

max
(

1,
1

2Σ̃(E)2

)
− 1− E

2Σ̃(E)2
−
∫ snrE

0

Ψ(−u)

2R ln 2
du+ oα(1).

The expressions of Ψ for the three spectra we focus on (in
order) are worked out easily and read as follows: Ψgauss(z) =

Ψortho(z) = (1 − z)−1, while Ψdiscrete(z) = (4 − 3z)/((z −
2)(3z − 2)). From the analysis of Φ̃ we can extract our main
result stated below (derived in the next section). Notice that
rank(A) = αN with α ≤ 1, so we can rewrite the asymptotic
spectral density of B−1AᵀA as ρ = (1−α)δ0 +αρsupp where
ρsupp is a p.d.f. of mean 1 due to the power constraint.

Result 1. Consider SS codes with coding matrix A drawn
from a rotational invariant ensemble, whose empirical spectral
measure converges to a well defined density with finite support
as L → ∞. Then the B → +∞ limit RVAMP(∞) of the
VAMP threshold verifies RVAMP(∞) ≤ snr/(2(1 + snr) ln 2).
Moreover the code is capacity achieving in the sense that the
infinite section size limit RIT(∞) of the information-theoretic
threshold satisfies RIT(∞) = log2(1+snr)/2 := C, with C the
Shannon capacity of the AWGNC, if and only if the asymptotic
p.d.f. ρsupp of the non-zero eigenvalues of B−1AᵀA verifies
ρsupp → δ1 in law when B → ∞, α → 0. Moreover, in that
case the algorithmic threshold is as good as it can be, i.e.,
RVAMP(∞) = snr/(2(1 + snr) ln 2).

According to this “spectral criterion” of Result 1, both the
gaussian and row-orthogonal coding ensembles are capacity-
achieving in the large section size limit (taken after the
L→∞ limit), while the discrete spectrum is not. E.g., when
snr = 15 we can extract from potential Φ̃ (see the details in the
derivation of Result 1) that Rgauss

IT (∞) = Rortho
IT (∞) = C = 2

while Rdiscrete
IT (∞) = 1.91. The algorithmic and information-

theoretic thresholds extracted at finite section size B (but
infinite L) are shown in Fig. 4, do converge when B in-
creases to their predicted asymptotics. This criterion strongly
suggests that the row-orthogonal ensemble is optimal among
rotationally invariant ensembles for coding in SS codes, at
least information-theoretically, given that ρsupp = δ1 even for
finite B. Fig. 4 also indicates that also the VAMP threshold
seems better than with other ensembles.

B. Derivation of Result 1 by a replica analysis
The derivation of Result 1 relies on an auxiliary lemma:

Lemma 1. For z ∈ R<0: (i) R′(z) > 0; (ii) Ψ(z) ≤ 1
1−z .

Proof. We start with (i). C′(z) =
∫
dλ ρ(λ)

(λ−z)2 so C is strictly
increasing. Therefore, the inverse C−1(z) : R>0 7→ R<0 is
well defined. We have

R′(z) =
1

z2
− 1

C′(C−1(−z))
, z < 0.

For any z < 0, let t > 0 s.t. z = −C(t) (t exists by monotony
of C). Then

R′(−C(t)) =
C′(t)− C2(t)

C′(t)C2(t)
=

Var((λ− t)−1)

C′(t)C2(t)
> 0.

We have proved (i), and now consider (ii). Recall that ρ =
(1 − α)δ0 + αρsupp, where ρsupp is the asymptotic law of the
positive eigenvalues of B−1AᵀA, and that the power constraint
requires

∫
λρsupp(λ)dλ = 1. From C’s definition we have

− z =
α− 1

C−1(−z)
+ α

∫
ρsupp(λ)

λ− C−1(−z)
dλ. (2)



Fig. 4. Algorithmic RVAMP and information-theoretic RIT thresholds as a
function of the section size B when snr = 15. The top dashed line is the
channel capacity C and the second top dashed line represents Rdiscrete

IT (B =
∞). The information-theoretic threshold for the row-orthogonal ensembles
approaches C faster than the gaussian ensemble which is interesting in
practice (despite that when B → +∞ they both converge to C), while
the discrete spectrum ensemble does not saturate Shannon’s limit, even
as B → ∞ (in which case R

gauss
VAMP(∞) = Rortho

VAMP(∞) ≈ 0.67 and
Rdiscrete

VAMP (∞) ≈ 0.61). Thus, in the large section size limit, row-orthogonal
matrices are not better than Gaussian ones; already at B = 256 their
thresholds are very similar. However, there may be other benefits to using
row-orthogonal matrices, e.g., rate of convergence of VAMP decoding and
convergence to lower error (see Fig. 1).

Let ρ0 (whose domain is R>0) be the α → 0 limit of ρsupp,
and 0 < λ0 ∼ ρ0. Note that ρ0 also satisfies the power
constraint Eλ0 = 1. Recall C−1(−z) = z−1 + Ψ(z)α+ o(α),
so by multiplying both sides of (2) by C−1(−z)/α followed
by letting α→ 0 yields (we exchange limit and integration by
dominated convergence)

Ψ(z)z = E
( 1

1− zλ0

)
− 1. (3)

By Cauchy-Schwarz we have

1 ≤ E
( 1

1− zλ0

)
E(1− zλ0) = E

( 1− z
1− zλ0

)
,

where the equality holds if and only if ρ0 = δ1. Combining
this inequality with (3) proves Ψ(z) ≤ 1

1−z for z < 0, with
equality if and only if ρsupp → δ1 as α→ 0.

We are in position to derive our main Result 1.

Derivation of Result 1. We consider various scenarios for the
extrema of potential Φ̃(E) in order to locate the two thresholds
of interest (recall the caption of Fig. 2 for locating the
transitions from ΦB , or from Φ̃ at infinite B). Very similar
analyses were performed in [4], [14] so we will be brief. Start
by noticing that Σ̃(E)−2 := limα→0 snrR(−snrE)/(αR ln 2)
is a decreasing function from Lemma 1, so E = 1 is its
minimum (as E ∈ [0, 1]).

• Case 1: (2Σ̃(1)2)−1 > 1. Recall R(z) = αΨ(z) + o(α).
We have (and using Lemma 1 for the inequality)

Φ̃′(E) = − lim
α→0

snr2E
2αR ln 2

R′(− snrE) < 0. (4)

There is a stable unique maximum at E = 0.
• Case 2: (2Σ̃(1)2)−1 ≤ 1. There exists E1 ∈ [0, 1] s.t.

(2Σ̃(E1)2)−1 = 1. The derivative of Φ̃(E) is (4) if 0 <
E < E1. When E1 < E < 1 it is instead

Φ̃′(E) = lim
α→0

snr2

2αR ln 2
(1− E)R′(− snrE) > 0. (5)

There are thus two maxima at E = 0 and E = 1.
Solving 2Σ̃(1)2 = 1 for R thus gives the algorithmic threshold
in the large section limit:

RVAMP(∞) = lim
α→0

snrR(−snr)
2α ln 2

=
snrΨ(−snr)

2 ln 2
. (6)

Under case 2, the free entropy takes the following values at
its maxima:

Φ̃(0) = 0, Φ̃(1) = 1− lim
α→0

1

2αR ln 2

∫ snr

0

R(−u)du,

Then setting Φ̃(0) = Φ̃(1) gives the information-theoretic
threshold in the large section limit:

RIT(∞) = lim
α→0

∫ snr

0
R(−u)du

2α ln 2
=

∫ snr

0
Ψ(−u)du

2 ln 2
. (7)

With Lemma 1 and (6), (7), we can easily derive an spectrum-
independent upper bound on both thresholds:

RVAMP(∞) ≤ snr
2(1 + snr) ln 2

,

RIT(∞) ≤ 1

2
log2(1 + snr) = C.

Both equalities hold if and only if ρsupp → δ1 as α → 0
as claimed. In this case the scheme is capacity-achieving and
VAMP’s algorithmic threshold is as good as it can be.

IV. PERSPECTIVES

There are a number of natural extensions of the present
work, in the spirit of recent developments in (generalized)
regression with design matrices beyond i.i.d. gaussian [16],
[28], [29], [30]. For practical purposes, further studies should
concentrate on the influence of the spectra of coding matrices
for finite section size SS codes (while our analysis mainly
focused on large B). It is also interesting to investigate whether
a similar criterion as Result 1 may be extended to SS codes for
more generic memoryless channels [14], [6]. Another natural
direction to explore concerns the comparison of the “spectral
design” we proposed with different types of structures for the
coding matrices, in particular power allocation and spatial-
coupling [4], [7]. Or to analyze what happens when these
structures are combined, e.g., when the blocks of the spatially-
coupled matrices are themselves drawn from a rotational
invariant ensemble [31], and see whether threshold saturation
[14], [5] (i.e., the “closing” of the computational-statistical gap
of AMP-based decoders) occurs in that setting.
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