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Abstract

List-decoding and list-recovery are important generalizations of unique decoding that

received considerable attention over the years. However, the optimal trade-off among list-

decoding (resp. list-recovery) radius, list size, and the code rate are not fully understood in

both problems. This paper takes a step towards this direction when the list size is a given

constant and the alphabet size is large (as a function of the code length). We prove a new

Singleton-type upper bound for list-decodable codes, which improves upon the previously

known bound by roughly a factor of 1/L, where L is the list size. We also prove a Singleton-

type upper bound for list-recoverable codes, which is to the best of our knowledge, the first

such bound for list-recovery. We apply these results to obtain new lower bounds that are

optimal up to a multiplicative constant on the list size for list-decodable and list-recoverable

codes with rates approaching capacity.

Moreover, we show that list-decodable nonlinear codes can strictly outperform list-

decodable linear codes. More precisely, we show that there is a gap for a wide range of

parameters, which grows fast with the alphabet size, between the size of the largest list-

decodable nonlinear code and the size of the largest list-decodable linear codes. This is

achieved by a novel connection between list-decoding and the notion of sparse hypergraphs

in extremal combinatorics. We remark that such a gap is not known to exist in the problem

of unique decoding.

Lastly, we show that list-decodability or recoverability of codes implies in some sense

good unique decodability.

1 Introduction

As a generalization of unique decoding, the notion of list-decoding was introduced independently

by Elias [Eli57] and Wozencraft [Woz58] in the 1950s. In list-decoding, given a corrupted code-

word, one can output a list of possible codewords, in contrast to unique decoding, where the
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output is at most one codeword. The advantage of list-decoding is that it can handle more ad-

versarial errors than unique decoding. List-recovery is a further generalization of list-decoding

and was initially used as an intermediate step in the study of list-decoding and unique decoding

(see [GI01, GI02, GI03, GI04] for example). Over the years, list-decoding and list-recovery have

found many applications in information theory (see [Ahl73, Bli86, Bli97, Eli06] for example) and

theoretical computer science (see [CPS99, GUV09, LP20, Siv99, STV01] for example).

Although extensively studied, many combinatorial properties of list-decoding and list-recovery

are still far from being well-understood. In particular, the optimal trade-off between the radius

of list-decoding/recovery, the list size, and the code rate are not known in both problems. In this

paper, we take a step in this direction and consider this trade-off when the list size is constant

and the alphabet size is large (as a function of the code length).

To move forward let us introduce some notations and definitions. For a positive integer q, let

[q] = {1, . . . , q}. The Hamming distance d(x, y) between two vectors x, y ∈ [q]n is the number of

coordinates where they differ, namely, for x, y ∈ [q]n, let d(x, y) = |{i ∈ [n] : xi 6= yi}|. For an

integer 1 ≤ t ≤ n and a vector v ∈ [q]n, let Bt(v) denote the Hamming ball of radius t centered

at v ∈ [q]n, which consists of all vectors in [q]n with Hamming distance at most t from v. A

code C of block length n over an alphabet of size q is a subset C ⊆ [q]n, whose vectors are called

codewords. The rate of C is defined to be R(C) := logq(|C|)/n, and the minimum distance d(C)

of C is defined to be the minimal Hamming distance between all pairs of distinct codewords in

C, that is, d(C) = min{d(x, y) : x, y ∈ C, x 6= y}. For simplicity, when C is understood from

the context, we will drop the dependencies of C in R(C) and d(C) and just write R and d.

Unique decoding. It is well-known and easy to see that for any code with minimum distance

d, a Hamming ball of radius ⌊d−1
2
⌋ centered at any vector in [q]n can contain at most one

codeword of the code. This implies that given a received codeword with at most ⌊d−1
2
⌋ corrupted

coordinates, it is possible to decode it and output the correct (transmitted) codeword, simply

by outputting the unique codeword in the Hamming ball of radius ⌊d−1
2
⌋ around it. In the other

direction, if one is requested to correct any fraction r of corrupted coordinates and output a

unique codeword, the code must have a minimum distance of at least 2rn + 1. The classical

Singleton bound provides a bound on the parameters of a code and shows that they must satisfy

d + Rn ≤ n + 1. Then, it follows that for unique decoding, one must have r ≤ (1 − R)/2 as n

tends to infinity. Codes such as Reed-Solomon (RS) codes that attain this bound with equality

are called MDS codes.

List-decoding and list-recovery. Next, we will give the formal definitions of list-decoding

and list-recovery, which are both a generalization of unique decoding.

Definition 1.1. A code C ⊆ [q]n is an (r, L) list-decodable for r ∈ (0, 1), L ∈ N if |Brn(v)∩C| ≤

L for all v ∈ [q]n, where r and L are called the list-decoding radius and the list size of the code,

respectively.
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For positive integers ℓ ad q let
(

[q]
≤ℓ

)

be the family of subsets of [q] of size at most ℓ, i.e.,
(

[q]
≤ℓ

)

= {S ⊆ [q] : |S| ≤ ℓ}.

Definition 1.2. A code C ⊆ [q]n is an (r, ℓ, L) list-recoverable for r ∈ (0, 1), and ℓ, L ∈ N if for

any sequence of lists S1, . . . , Sn ∈
(

[q]
≤ℓ

)

the size of the set {c ∈ C : ci /∈ Si for at most rn coordinates}

is at most L. Similarly, r and L are called the list-recovery radius and the list size, respectively.

Clearly, one can easily see that unique decoding is a special case of list-decoding for L = 1,

and list-decoding is a special case of list-recovery for ℓ = 1.

Given parameters q and r, the list-decoding capacity capLD is the supremum over all rates

of q−ary (r, L) list-decodable codes with L that is at most polynomial in n. Similarly, given

q, r and ℓ, the list-recovery capacity capLR is the supremum over all rates of q−ary (r, ℓ, L) list-

recoverable codes with L that is at most polynomial in n. By the list-decoding and list-recovery

capacity theorems it is known that capLD = 1 − hq(r) for r ∈ [0, 1 − 1
q
] (see, e.g., [GRS19,

Theorem 7.4.1]) and capLR = 1 − hq/ℓ(r) − logq(ℓ) for r ∈ [0, 1 − ℓ
q
] (see, e.g., [RW17]), where

hq(x) is the q-ary entropy function defined in (1). Moreover, with high probability, a random

code with rate capLR −ǫ for ǫ > 0 is list-recoverable with list size L = O(ℓ/ǫ), and a similar

result holds for list-decoding, simply by setting ℓ = 1.

Next, we describe our main results and compare them to the previously known results.

1.1 Summary of main results

In the results reported below, we primarily consider the case of constant list size L, independent

of n. Moreover, similar to the classical Singleton bound, our bounds (results) behave well, only

when q is sufficiently large as a function of n. We begin with the first set of results that improve

the Singleton-type bounds for list-decoding and recovery.

Singleton-type upper bounds for list-decoding and list-recovery. Shangguan and Tamo

[ST20a] proved the following generalization of the Singleton bound to list-decoding.

Theorem 1.3 (Theorem 1.2 in [ST20a]). For integers q ≥ 2, L ≥ 1 and r ∈ [0, L
L+1

] with

rn ∈ N, every (r, L) list-decodable code C ⊆ [q]n has size at most Lqn−⌊L+1
L

rn⌋.

It was also observed that one could prove a tighter upper bound for linear codes, as follows.

Proposition 1.4 ([ST20a]). For integers q > L ≥ 1, if q is a prime power and C ⊆ Fn
q is a

linear (r, L) list-decodable code, then |C| ≤ qn−⌊L+1
L

rn⌋.

[ST20a] also showed that the bound of Proposition 1.4 is tight by showing that certain RS

codes attain it with equality, when L = 2, 3, L | rn, and q is sufficiently large as a function

of n. Hence, for this set of parameters the largest size of an (r, L) list-decodable code C (not

necessarily linear) satisfies

qn−⌊L+1
L

rn⌋ ≤ |C| ≤ Lqn−⌊L+1
L

rn⌋,
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and the construction in [ST20a] is optimal up to a constant factor for L = 2, 3. We conjecture

that the lower bound also holds for any L, r and n such that L | rn, and that it can be achieved

by RS codes, see [ST20a]. Narrowing and even closing the gap between the conjectured lower

bound and the upper bound is an interesting open question.

We improve the upper bounds in both Theorem 1.3 and Proposition 1.4, as detailed below.

• In Section 3.1 we show that the factor L in the upper bound of Theorem 1.3 can be

replaced by (1 + o(1)), where o(1) tends to zero as n tends to infinity. Thus, the new

bound has the form (1 + o(1))qn−⌊L+1
L

rn⌋, which implies that that the constructions given

by [ST20a] is asymptotically optimal for L = 2, 3 and L | rn, even among nonlinear codes.

See Corollary 3.2 for the formal statement.

• As already mentioned, Proposition 1.4 is tight if L divides rn and L = 2, 3, and it is

believed to be tight for any L as long as L divides rn. In Section 3.2, we improve the

upper bound exactly when this does not hold. More precisely, we show that for sufficiently

large n compared to r and L, every linear (r, L) list-decodable code has dimension at most

n−⌈L+1
L
rn⌉ (see Proposition 3.6 for the formal statement). Hence, if L ∤ rn, the bound on

the dimension is improved by one, compared to Proposition 1.4. This improvement later

enables us to separate linear and nonlinear codes by showing that there are nonlinear (r, L)

list-decodable codes whose size exceeds the size of any linear (r, L) list-decodable code.

It is known that (r, L) list-decodable codes with alphabet size q and rates approaching 1 −

hq(r)(1 +
1
L
) exist (see Theorem 5.5 in [Gur04] and [Eli91]). This implies that for alphabet of

size at least q ≥ 2Ω(1/ǫ), there exist (r, L) list-decodable codes with rates approaching 1 − L+1
L
r,

as hq(r) approaches r when q is sufficiently large. This in turn implies that the Singleton-type

bound for list decoding (Theorem 1.3) and its improvements obtained in this paper provide an

asymptotically tight bound on the rate as n tends to infinity. However, for a fixed n, it was

unclear whether these Singleton-type bounds are tight. In Section 4 we show that this is indeed

true, by showing the existence of nonlinear codes with “dimension” n− L+1
L
rn−o(1), where the

o(1) term tends to zero for a fixed n and q tends to infinity (see Section 4 for more details).

Remark 1.5. Recently, Roth [Rot21, Theorems 4,5] independently proved the same bound as in

Proposition 3.6, but under different assumptions. Furthermore, the bounds in [Rot21] are stated

as bounds on the list-decoding radius; however, the bounds are equivalent.

The last result in this set of results is a new Singleton-type bound for (r, ℓ, L) list-recoverable

codes, which reduces to Theorem 1.3 for ℓ = 1. The reader is referred to Section 5 for details.

Lower bounds on the list size. The following is a typical question in the study of list-

decoding and list-recovery [Bli86, Bli05, GN14, GLM+20, GV10] for examples). It is stated for

list-recovery, and the corresponding question for list-decoding is obtained by setting ℓ = 1. .
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Question 1.6. Given q, r, ℓ and ǫ > 0 that measures the gap between the code rate and the

list-recovery capacity, what is the growth rate of the list size L?

Previously, Question 1.6 has been studied by several works (mainly for list-decoding), as

discussed below. Blinovsky [Bli86, Bli05] showed that any (r, L) list-decodable code with rate

capLD −ǫ must have L = Ω(log(1
ǫ
)). Guruswami and Narayanan [GN14] studied that problem

for average-radius list-decoding, which is a strengthening of list-decoding, and showed that the

list size must be Ω( 1√
ǫ
). Guruswami and Vadhan [GV10] studied the regime of codes with list

decoding radius of r = (1− 1/q)(1− ǫ), approaching the upper limit of 1− 1/q, and proved that

in this regime the list size must be L = Ω(1/ǫ2). Lower bounds on the list size for list-decoding

and list-recovery of random codes were also studied in [GN14] and [GLM+20]. Guruswami and

Narayanan [GN14] proved that both for random codes and random linear codes of rate capLD−ǫ

has list size L = Ω(1/ǫ), where the hidden leading constant tends to zero as r tends to 1 − 1/q.

Recently, Guruswami et al. [GLM+20] improved the leading constant for random linear codes

and showed that L ≥ ⌊hq(r)/ǫ + 0.99⌋. For the binary case they proved this lower bound is

tight up to an additive constant, pinning down the list size for random binary linear codes to a

range of three values. Additionally for list recovery [GLM+20] showed that for a random linear

(0, ℓ, L) list-recoverable code of rate 1− logq(ℓ)− ǫ, it holds that L = ℓΩ(1/ǫ).

It is known that if one allows the alphabet size q to grow, then there exist random codes

with rate 1 − r − ǫ that are list-decodable (resp. list-recoverable) from radius r and list size

L = O(1/ǫ) (resp. L = O(ℓ/ǫ)). In fact, it is sufficient that q ≥ 2Ω(1/ǫ). Hence, in this case the

two capacities coincides, and we have capLD = capLR = 1 − r. In Proposition 5.4 we partially

answer Question 1.6 by showing that an (r, ℓ, L) list-recoverable code of length n and rate at

least 1− r− ǫ must satisfy L ≥ ℓr
ǫ
+ ℓ− 1 + o(1) = Ωr(ℓ/ǫ), where o(1) tends to zero as n tends

to infinity. The special case of list decoding is proved in Proposition 3.4.

Nonlinear codes outperform linear codes in list-decoding. A fundamental problem in

combinatorial coding theory is to obtain an optimal trade-off between the rate of a code and its

relative distance δ. However, this problem is far from being solved despite decades of research.

Moreover, even the more modest problem of understanding the power of nonlinear codes is

unknown. More precisely, it is unknown whether nonlinear codes perform better than linear

codes under unique decoding or linear codes perform as well as their nonlinear counterpart.

Indeed, for binary codes with relative distance 0 < δ < 1/2, the currently best known lower and

upper bounds are the GV [Gil52, Var57] and MRRW [MRRW77] bounds, respectively. It is well

known that linear code can achieve the GV bound, and there is no better upper bound for linear

codes that is tighter than the MRRW bound. Although some stronger lower bounds are known

for nonlinear codes (see [JV04, VW05]), it is not known whether there is a gap between the size

of the largest linear code and nonlinear code for a given distance.

Surprisingly, considering the current state of the art for unique decoding, in Section 4 we show

that such a separation between linear and nonlinear codes exists for list-decoding. In particular,

we show that nonlinear codes can considerably outperform linear codes for sufficiently large q
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as a function of n, L. Roughly speaking, we show that for given r, L with rn ∈ N and L ∤ rn,

there is a constant θ ∈ [ 1
L
, 1) so that the size of the largest linear (r, L) list-decodable code is at

most a q−θ-fraction of the size of the largest nonlinear (r, L) list-decodable code. In particular,

for L = 2, one can take θ = 1 − ǫ with any ǫ > 0 arbitrarily close to zero, provided that q

is sufficiently large as a function of n, ǫ. The precise statement of this result can be found in

Proposition 4.6 and Remark 4.7. We provide new constructions of list-decodable codes via a

correspondence between codes and multi-partite hypergraphs to derive this result. In particular,

the constructions are based on a notion of sparse-hypergraphs from extremal combinatorics. We

use several known constructions of such sparse hypergraphs in the literature to construct the

codes.

We note that results of similar flavor, i.e., that nonlinear codes perform better than linear

codes, are known to exist; however, they are scarce. In particular, for the problem of erasure

list-decoding, it is known that there exist nonlinear codes whose list size is exponentially smaller

than the list size guaranteed for linear code (see [Gur04, Theorem 10.17]). Another example of

this phenomenon is the recent result by [GLM+20] that showed that in the problem of zero-error

list-recovery, random codes also have significantly smaller list sizes than random linear codes.

Large list-decoding radius implies large minimum Hamming distance. We study the

relation between list-decodability and unique decodability of a code. In particular, whether a

code with good list-decoding properties necessarily imply unique decoding properties. We divide

the analysis into two cases, depending on whether the code is linear or nonlinear (see Section 6).

• For a general list-decodable code, i.e., not necessarily linear, we prove that it must contain

a large subcode with a large minimum Hamming distance (see Theorem 6.1). As a corollary

of this theorem, we obtain that a list-decodable code with a rate approaching the maximal

rate given by Theorem 1.3 (and whose existence is guaranteed by Proposition 4.6) must

contain a very large near MDS subcode (see Corollary6.2).

• For a linear code that is list-decodable or recoverable, we show that it must have a large

Hamming distance. This result can be viewed as a generalization of the fact that an (r, 1)

list-decodable code (uniquely decodable) has Hamming distance of at least 2rn + 1, to

list-decoding and recovery. For details, see Theorem 6.4 and its derivatives Proposition

6.5 and Corollary 6.6.

As a final remark, we note that [Rot21] independently proved a result regarding the unique

decodability of list-decodable linear codes (see [Rot21, Theorem 3]), which is equivalent to

Corollary 6.6 when L divides rn. Moreover, it can be verified from the proof of [Rot21, Theorem

3] that Roth also proved Proposition 6.5. The proof argument of Roth is very similar to ours,

though it is formulated differently.
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1.2 Organization

The rest of this paper is organized as follows. In Section 2 we introduce some necessary notations

and definitions. In Sections 3 and 5 we present the Singleton-type upper bounds for list-decoding

and list-recovery, respectively. In Section 4 we introduce the notion of sparse hypergraphs and

use them to show that for a wide range of parameters, the largest generic list-decodable codes

must have much more codewords than the largest linear list-decodable codes. In Section 6 we

show that if a linear code has a very large list-decoding or list-recovery radius, then it must also

have a very large minimum Hamming distance.

2 Preliminaries and notations

We will use of the following notations. For positive integers m ≤ n, we write [n] = {1, . . . , n},

[m,n] = {m, . . . , n},
(

[n]
m

)

= {A ⊆ [n] : |A| = m}, and
(

[n]
≤m

)

= {A ⊆ [n] : |A| ≤ m}. We number

vectors by superscripts, i.e., x1, x2, . . ., and use subscripts to refer to their coordinates, e.g., xji is

the ith coordinate of xj . For a subset I ⊆ [n] and a vector x of length n, let xI be the restriction

of x to its coordinates with indices in I. For x, y ∈ [q]n let I(x, y) = {i : xi = yi} be the set of

indices for which x and y are equal, then it is clear that d(x, y) + |I(x, y)| = n, where d(x, y) is

the hamming distance between x and y. We will use hq(x) to denote the q-ary entropy,

hq(x) := x logq(q − 1)− x logq(x)− (1− x) logq(1− x). (1)

For n subsets S1, . . . , Sn ⊆ [q], let S1×· · ·×Sn be the set of vectors v ∈ [q]n with vi ∈ Si for all

i ∈ [n]. For a set of vectors D ⊆ [q]n and a vector v ∈ [q]n, let d(v,D) := min{d(v, u) : u ∈ D}.

Using the above notation, it is not hard to check by definition that a code C is (r, ℓ, L) list-

recovery if and only if for every D ∈
(

[q]
≤ℓ

)n
,

|{c ∈ C : d(c,D) ≤ rn}| ≤ L

where we define
(

[q]
≤ℓ

)n
= {S1 × · · · × Sn : Si ∈

(

[q]
≤ℓ

)

for all i ∈ [n]}.

For a prime power q, let Fq be the finite field of q elements. A code C ⊆ Fn
q is linear if and

only if it is a subspace of Fn
q . RS codes [RS60] is an important family of linear codes, which is

defined as follows: for integers k ≤ n ≤ q and a vector α ∈ Fn
q with distinct entries, the RS code

with evaluation vector α is the k-dimensional subspace

{(f(α1), . . . , f(αn) : f ∈ Fq[x], deg(f) ≤ k − 1}.

Since for every r′ ≤ r an (r, L) list-decodable code is also (r′, L) list-decodable, by Theorem

1.3 we see that an (r, L) list-decodable code with r ≥ L
L+1

has size at most L, which is obviously

tight. So in order to avoid trivial cases, throughout the paper we assume that r ∈ [0, L
L+1

).
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3 Singleton-type bounds for list-decoding

3.1 Upper bounds for arbitrary codes

Below we will present several upper bounds that improve upon Theorem 1.3. We begin with

the following theorem, which provides an improved upper bound on the cardinality of any list-

decodable codes.

Theorem 3.1. Let C ⊆ [q]n be an (r, L) list-decodable code with r ∈ [0, L
L+1

) and rn ∈ N, then

for large enough n (as a function of r and L) the size of C satisfies

|C| ≤ max{q(1 + or,L(1)), L} · q
n−(⌊L+1

L
rn⌋+1),

where or,L(1) is a function that tends to zero for fixed r, L and n→ ∞.

Note that by inspecting the precise function or,L(1) to be given in the proof of the theorem,

one can verify that Theorem 3.1 reduces to the classical Singleton bound for L = 1. Moreover,

the theorem holds for any n ≥ L2/r.

Proof. We will need the following observation. Let C ⊆ [q]n be an (r, L) list-decodable code,

then for I ⊆ [n] and w ∈ [q]|I| the set of vectors {cI : c ∈ C, cI = w} ⊆ [q]|I| is ( rn
n−|I| , L)

list-decodable.

Let m :=
⌊

L+1
L
rn

⌋

+ 1 and note that m ≤ n, since r < L
L+1

, and let b ∈ [0, L − 1] such

that b ≡ rn (mod L). We claim that for any vector w ∈ [q]n−m there are less than M :=

1 + max{q + ⌊f(n)q⌋, L}, where f(n) = (L−b−1)

2(⌊L+1
L

rn⌋+1)−(L−b−1)
codewords c ∈ C with c[m+1,n] = w,

then the result will follow since

|C| =
∑

w∈[q]n−m

|{c ∈ C : c[m+1,n] = w}| ≤ max{q + ⌊f(n)q⌋, L} · qn−m

= max{q(1 + or,L(1)), L} · q
n−(⌊L+1

L
rn⌋+1).

Assume towards a contradiction that the claim is false, then C contains M codewords whose

last n−m coordinates are all identical. Let v1, . . . , vM ∈ [q]m be the restriction of these codewords

to their first m coordinates. The contradiction will follow by showing that the set of vectors

{vi : i ∈ [M ]} ⊆ [q]m is not ( rn
m
, L) list-decodable, together with the observation above.

Towards this end, let us construct a multi-graph whose vertices are the vectors vi, i ∈ [M ],

and draw an edge between distinct vi and vj for every coordinate they agree on. It is not hard

to verify that each coordinate i ∈ [m] contributes at least M − q ≥ 0 edges to the multi-graph.

Therefore, the multi-graph has average degree at least 2(M−q)m
M

> L− b−1, where the inequality

follows since M > q + f(n)q. As the degree of a vertex must be an integer, there exists a vertex

(vector) v ∈ {vi : i ∈ [M ]} of degree at least L− b. Equivalently,

∑

u∈U
|I(u, v)| ≥ L− b, (2)
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where U = {vi : i ∈ [M ]} \ {v}. By the value of M , |U | ≥ L, then it is possible to remove

vertices from U to make it the set of vertices {vi : i ∈ [L]} (possibly by changing the indices

of the vertices), while still maintaining (2). Suppose next, that n is sufficiently large so that

⌊ rn
L
⌋ + 1 ≥ L, then there exists a subset of coordinates A ⊆ [m] be of size ⌊ rn

L
⌋ + 1 with

∑

u∈U |A ∩ I(v, u)| ≥ L− b.

Partition the set [m]\A arbitrarily to L sets P i, i = 1, . . . , L, each of size at least ⌊ rn
L
⌋+ 1−

|A ∩ I(vi, v)|. This is possible since

L
∑

i=1

⌊rn

L

⌋

+ 1− |A ∩ I(vi, v)| ≤ L
(⌊rn

L

⌋

+ 1
)

− (L− b) = rn = m− |A|.

To complete the proof it suffices to construct a vector y ∈ [q]m such that the ball Brn(y) contains

the vectors v, v1, . . . , vL. Define the vector y by

yA = vA, and yP i = viP i for i ∈ [L].

It is clear that d(y, v) ≤ m − |A| = rn. Furthermore, since y and v agree on the coordinates

in A, then vi agrees with y on |I(v, vi) ∩ A| coordinates in A (which is possibly zero), and by

construction on at least ⌊ rn
L
⌋ + 1− |I(v, vi) ∩ A| coordinates in [m]\A. Therefore

d(y, vi) ≤ m− |I(v, vi) ∩ A| −
(⌊rn

L

⌋

+ 1− |I(v, vi) ∩A|
)

= rn,

and we have arrived at the desired contradiction which completes the proof of the theorem.

The following corollary, which is an easy consequence of Theorem 3.1, shows that for suffi-

ciently large n (as a function of r, L), the factor L in the upper bound in Theorem 1.3 can be

replaced by 1 + o(1), where o(1) tends to zero as n tends to infinity.

Corollary 3.2. For integers q ≥ 2, 1 ≤ L ≤ q and r ∈ [0, L
L+1

) with rn ∈ N, if n is sufficiently

large with respect to r, L, then every (r, L) list-decodable code in [q]n has size at most

(1 + o(1))qn−⌊L+1
L

rn⌋,

where o(1) tends to zero as n tends to infinity.

Proof. Apply Theorem 3.1 and note that for L ≤ q, one has max{q+⌊(f(n)q⌋, L} ≤ (1+(f(n))q

and f(n) = o(1).

Corollary 3.2, which is an improvement over Theorem 1.3, is of interest since it provides an

asymptotically optimal bound on the size of such codes. Indeed, the last two authors showed in

[ST20a] that over sufficiently large finite fields, L = 2, 3 and L | rn, there exist RS codes of size

qn−
L+1
L

rn.

With an additional condition, one can remove the o(1) term in the statement of Corollary 3.2,

and obtain a cleaner bound, as follows.
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Corollary 3.3. For integers q ≥ 2, 1 ≤ L ≤ q and r ∈ [0, L
L+1

) with rn ∈ N, rn ≡ L − 1

(mod L), if n is sufficiently large with respect to r, L, then every (r, L) list-decodable code in [q]n

has size at most qn−⌊L+1
L

rn⌋.

Proof. Apply Theorem 3.1 and note that f(n) = 0 if rn ≡ L− 1 (mod L).

The next result, which can be deduced from either Theorem 1.3 or Theorem 3.1, gives a

lower bound on the list size of list-decodable codes. Moreover, it partially answers Question 1.6.

Proposition 3.4. Any q-ary (r, L) list-decodable code of length n and rate at least 1 − r − ǫ

satisfies L ≥ r
ǫ
+ o(1), where o(1) tends to zero as n tends to infinity.

Proof. Let C be a code that satisfies the assumption of the proposition, then by Theorem 1.3

q(1−r−ǫ)n = |C| ≤ Lqn−⌊L+1
L

rn⌋.

Equivalently, (1− r − ǫ)n ≤ n− ⌊L+1
L
rn⌋ + logq L and the result follows by rearranging.

3.2 Improved upper bounds for linear codes

This section shows that the upper bounds obtained in Section 3.1 can be further improved when

restricted to linear codes. We begin with the following lemma.

Lemma 3.5. For a prime power q, positive integers n, L ≥ 2, and r ∈ [0, L
L+1

) satisfying rn ∈ N,

and n− ⌈L+1
L
rn⌉+ 1 > (L− 1) q

q−1
, any [n, n− ⌈L+1

L
rn⌉+ 1]q is not (r, L) list-decodable.

As (L− 1) q
q−1

is decreasing with q, the lemma in fact holds for all large enough n satisfying

n + 1 − ⌈L+1
L
rn⌉ > 2(L − 1), where we set q = 2. In [Rot21] Roth gives examples of two

[n, n − ⌈L+1
L
rn⌉ + 1]q codes that are (r, L) list-decodable, seemingly contradicting Lemma 3.5.

The codes are the [n, n−1]q parity code, which is (1/n, n) list-decodable and its dual, the [n, 1]q
repetition code for n = (L+ 1)u− 1 for some u, L ∈ N, which is ( Ln−1

(L+1)n
, L) list-decodable. One

can easily verify that the parameters of these two codes do not satisfy the assumptions of Lemma

3.5.

Proof. Since rn ∈ N we can write rn = La+ b for integers a, b with b ∈ [0, L− 1]. The following

can be easily verified

⌈L+ 1

L
rn

⌉

− 1 =

{

(L+ 1)a+ b = rn+ a if L ∤ rn

(L+ 1)(a− 1) + L = rn+ a− 1 if L | rn

Let C ⊆ Fn
q be an [n, k]-linear code with k = n − (⌈L+1

L
rn⌉ − 1). As before, to prove the

lemma it suffices to show that there exist L+ 1 distinct codewords that are contained in a ball

of radius rn.

Towards this end, assume without loss of generality that the first k coordinates of the code

form an information set, and consider the k(q − 1) codewords of the code whose restriction

10



to this information set is a vector of weight one, i.e., it has only one nonzero coordinate. As

k(q − 1) > (L − 1)q, by the pigeonhole principle, among these k(q − 1) codewords there are L

codewords, say c1, ..., cL ∈ C, agree on their k + 1 coordinate, i.e., cik+1 = cjk+1 for i, j ∈ [L].

We will consider two cases, L ∤ rn and L | rn and notice that |[k + 2, n]| = n − k − 1 =

⌈L+1
L
rn⌉−2. In the first case n−k−1 = (L+1)a+b−1 ≥ (L+1)a, hence there is a partition of

[k+2, n] into L+1 pairwise disjoint subsets, say P1, . . . , PL+1, with |Pj| ≥ a for each j ∈ [L+1].

Next, let y ∈ Fn
q be the vector satisfying

y[k] = 0, yk+1 = c2k+1, yPj
= cjPj

for each j ∈ [L], and yPL+1
= 0.

It is routine to check that d(y, 0), d(y, cj) ≤ rn for each j ∈ [L + 1], and we have obtained the

desired contradiction.

Similarly, if L|rn then |[k + 2, n]| = ⌈L+1
L
rn⌉ − 2 = (L+ 1)(a− 1) + L − 2, hence there is a

partition of [k + 2, n] into L+ 1 pairwise disjoint subsets, with |Pj| ≥ a− 1 for each j ∈ [L+ 1].

Let y ∈ Fn
q be the vector satisfying

y[k] = 0, yk+1 = c2k+1, yPj
= cjPj

for each j ∈ [L], and .

As before d(y, 0), d(y, cj) ≤ rn for each j ∈ [L + 1], which contradicts the assumptions of list-

decodability.

The reformulation of Lemma 3.5 gives the following proposition.

Proposition 3.6. For a prime power q, an integer 2 ≤ L, and r ∈ [0, L
L+1

) with rn ∈ N, there

exists an integer n(r, L) such that for all n ≥ n(r, L) any [n, k]q code that is (r, L) list-decodable

satisfies k ≤ n− ⌈L+1
L
rn⌉.

During the work on this paper, we became aware of a recent paper by Roth [Rot21] who

proved a result similar to Proposition 3.6 in Theorems 4,5 of [Rot21]. These theorems provide

the same bound on the dimension of the code as Proposition 3.6 does; however, they assume a

bit stronger assumptions. More precisely,

• Theorem 4 assumes that the code is MDS with rate greater than 1− 2
L
− (n−k) mod (L+1)

n
.

• Theorem 5 assumes that the code is MDS, alphabet q >
(

n
k+1

)

and list size n − k − 1 ≤

L <
(

n
k

)

.

Proposition 3.6 almost subsumes Theorem 4, except for a small number of cases for which

Theorem 4 holds and Proposition3.6 does not hold. However, it does not subsume Theorem 5

since Proposition 3.6 assumes that n is large enough compared to L, so it does not hold for L

too large, for example, when L ≈
(

n
k

)

.

Proof. This is just the contrapositive of Lemma 3.5, since linear codes have integer dimensions.
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We note that the method of [ST20a] also gives the following result, whose proof is omitted.

Proposition 3.7. For any sufficiently large q and any real r ∈ [0, 2
3
) with 2 ∤ rn there exist

[n, n− 3rn+1
2

]-RS codes that are also (r, 2) list-decodable.

Proposition 3.6 implies that any linear code that satisfies the parameters of Proposition 3.7

has dimension at most n − ⌈3rn
2
⌉ = n − 3rn+1

2
, and hence shows that the construction given by

Proposition 3.7 is also optimal among all linear codes (in the corresponding parameter regime).

4 Nonlinear codes outperform linear codes in list-decoding

In this section, we show that there exist nonlinear codes whose list-decodability outperform any

other linear code, i.e., they strictly outperform their linear counterpart. Our method will exploit

some known results in the area of extremal (hyper)-graph theory and equivalence between certain

“sparse hypergraphs” and codes with “good” list-decodability properties. We begin first by the

equivalence.

4.1 An equivalence between codes and multi-partite hypergraphs

Let us begin with some needed definitions. A hypergraph H is an ordered pair H = (V,E),

where the vertex set V is a finite set and the edge set E is a family of distinct subsets of V .

A hypergraph is called n-uniform if all of its edges are of size n. An n-uniform hypergraph is

further called n-partite if its vertex set V admits a partition V = ∪n
i=1Vi such that every edge

intersects each vertex set Vi in exactly one vertex.

We will define a natural bijection between the family of n-uniform n-partite hypergraphs

with equal part size q (i.e., |Vi| = q for all i ∈ [n]) and the family of q-ary codes of length n,

as follows. For i ∈ [n], let Vi = {(i, a) : a ∈ [q]} and V = ∪n
i=1Vi. For an n-uniform n-partite

hypergraph H = (V,E) (with equal part size q) we associate a code of size |E| in the following

way: for each edge e = {(i, xi) : i ∈ [n], xi ∈ [q]} ∈ E define the codeword

ψ(e) := (x1, . . . , xn) ∈ [q]n,

and the code

CH := {ψ(e) : e ∈ E} ⊆ [q]n.

Clearly, the mapping ψ is a bijection, and for a vector x ∈ [q]n define ψ−1(x) = {(i, xi) : i ∈

[n], xi ∈ [q]}. Then, one can easily verify that the Hamming distance between any two vectors

x, y ∈ [q]n satisfies

|ψ−1(x) ∩ ψ−1(y)|+ d(x, y) = n. (3)

Next, we will introduce the notion of sparse hypergraphs, which will later be used to construct

nonlinear list-decodable codes, using the mapping ψ defined above.
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For positive integers v ≥ 2, e ≥ 2, an n-uniform hypergraph H is called (v, e)-sparse if for

any e distinct edges A1, . . . , Ae ∈ H , it holds that | ∪e
i=1 Ai| > v. Let gn(q, v, e) denote the

maximum number of edges in any (v, e)-sparse n-uniform n-partite hypergraph with equal part

size q. In what follows, we will list some known lower bounds on gn(q, v, e).

Lemma 4.1 (Section 4, Brown, Erdős, Sós [BES73]). Given positive integers q, n, e, there is a

µ1 > 0 depending only on n, e such that gn(q, v, e) ≥ µ1q
en−v
e−1 .

Lemma 4.2 (Theorem 3, Shangguan, Tamo [ST20b]). Given positive integers q, n, e with gcd(en−

v, e− 1) = 1, there is µ2 > 0 depending only on n, e such that gn(q, v, e) ≥ µ2q
en−v
e−1 · log

1
e−1 q.

Lemma 4.3 (Theorem 1, Alon, Shapira [AS06]). Given integers s, n with 2 ≤ s < n and ǫ > 0,

there is an integer q(n, ǫ) such that for all q ≥ q(n, ǫ) it holds that gn(q, 3n− 2s+ 1, 3) ≥ qs−ǫ.

We remark that although all of the lower bounds in Lemmas 4.1, 4.2 and 4.3 were initially

proved for arbitrary n-uniform hypergraph, which is not necessarily n-partite, one can easily

convert them to lower bounds on n-uniform n-partite hypergraphs by the following variant of

the Erdős-Kleitman lemma (see Theorem 1, [EK68]).

Lemma 4.4. Any n-uniform hypergraph H with m edges has an n-uniform n-partite subhyper-

graph with equal part size and at least n!
nn ·m edges.

Proof. Let H = (V,E). To prove the lemma, we can assume without loss of generality that

n | |V |, as if n ∤ |V |, by adding to H n− |V | (mod n) isolated vertices, the following proof still

works. Take a uniformly chosen random partition of V , such that every subset in the partition

has equal size q := |V |
n
. Let F be the n-uniform n-partite hypergraph given by such a random

partition. It is clear that F has equal part size q, and moreover, every n-subset of V lies in

F with equal probability qn

(nq

n )
> n!

nn . Therefore, by the linearity of expectation, the expected

number of edges contained in F is at least n!
nn ·m, as needed.

4.2 Constructions of list-decodable codes via sparse hypergraphs

The following lemma shows that one can construct “good” list-decodable codes from sparse

hypergraphs.

Lemma 4.5. If H = (V,E) is an (n+ (L+ 1)rn, L+ 1)-sparse n-uniform n-partite hypergraph,

then the code CH = {ψ(e) : e ∈ E} ⊆ [q]n is (r, L) list-decodable.

Proof. Suppose for the sake of contradiction that CH is not (r, L) list-decodable. Then there

exist L + 1 distinct codewords c1, . . . , cL+1 ∈ CH and a vector y ∈ [q]n such that d(ci, y) ≤ rn

for 1 ≤ i ≤ L+ 1. It therefore follows that |ψ−1(ci) \ ψ−1(y)| ≤ rn, and moreover

|
L+1
⋃

i=1

ψ−1(ci)| ≤ |ψ−1(y)|+
L+1
∑

i=1

|ψ−1(ci) \ ψ−1(y)| ≤ n + (L+ 1)rn,

which contradicts the assumption that H is (n+ (L+ 1)rn, L+ 1)-sparse.
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Applying Lemma 4.5 in concert with the lower bounds of gn(q, v, e) listed in Lemmas 4.1, 4.2,

4.3 and 4.5 gives the main result of this section, whose proof is omitted as it follows straightfor-

wardly.

Proposition 4.6. 1. For integers q ≥ 2, L ≥ 1 and a real r ∈ [0, L
L+1

) with rn ∈ N there

exists an (r, L) list-decodable code C ⊆ [q]n with |C| ≥ µ1q
n− rn(L+1)

L , where µ1 > 0 depends

only on n, L;

2. For integers q ≥ 2, L ≥ 1 and a real r ∈ [0, L
L+1

) with rn ∈ N and gcd(L, rn) = 1, there

exists an (r, L) list-decodable code C ⊆ [q]n with |C| ≥ µ2q
n− rn(L+1)

L · log
1
L q, where µ2 > 0

depends only on n, L;

3. For positive integer n and a real r ∈ [0, 2
3
) with rn ∈ N odd and ǫ > 0, there is an integer

q(n, ǫ) such that for all q ≥ q(n, ǫ) there exist an (r, 2) list-decodable code C ⊆ [q]n with

|C| > qn−
3rn−1

2
−ǫ.

Remark 4.7. Proposition 4.6 shows the existence of nonlinear codes that are better list-decodable

than all other linear codes with the same parameters. Indeed, it shows that for L ≥ 2, rn not

divisible by L and sufficiently large q (as a function of n, L), there are (r, L) list-decodable codes

of size Ωn,L(q
n− rn(L+1)

L ). However, Proposition 3.6 shows that for sufficiently large n ≥ n(r, L),

every linear (r, L) list-decodable code over Fq has dimension at most n − ⌈L+1
L
rn⌉, equivalently

it is of size at most qn−⌈L+1
L

rn⌉. Hence, the upper bound given in Proposition 3.6 does not hold

in general.

We find this phenomenon quite surprising; although other instances of nonlinear codes out-

perform all other linear codes are known in coding theory, they are few and far between.

5 Singleton-type bound for list-recovery

In this section, we prove the following Singleton-type bound for list-recovery.

Theorem 5.1. For integers q ≥ 2, ℓ ≥ 1, L ≥ ℓ and r ∈ [0, 1− ℓ
L+1

) with rn ∈ N, every (r, ℓ, L)

list-recoverable code C ⊆ [q]n satisfies

|C| ≤ L
(q

ℓ

)n−⌊ L+1
L+1−ℓ

rn⌋
.

Note that when ℓ = 1 Theorem 5.1 recovers Theorem 1.3, hence it is can be seen as a gen-

eralization of the Singleton bound. Additionally, this bound recovers the list-recovery capacity

bound on the rate R ≤ 1− logq(ℓ), for zero error ( i.e., r = 0) and constant list size L.

Proof. Let t := ⌊ ℓ
L+1−ℓ

rn⌋ and m := rn + t. The proof of the theorem will follow from the

following two claims.

Claim 5.2. For every B ∈
(

[q]
≤ℓ

)n−m
there are at most L codewords c ∈ C with c[m+1,n] ∈ B.
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Proof. Recall that for a positive integer n,
(

[q]
≤ℓ

)n
= {S1 × · · · × Sn : Si ∈

(

[q]
≤ℓ

)

for all i ∈ [n]},

where
(

[q]
≤ℓ

)

is the family of subsets of [q] of size at most ℓ. Suppose towards a contradiction

that there exist B ∈
(

[q]
≤ℓ

)n−m
and L + 1 codewords c1, . . . , cL+1 ∈ C such that ci[m+1,n] ∈ B, for

all i ∈ [L + 1]. To obtain the desired contradiction, it is enough to show that there exist sets

S1, . . . , Sm ∈
(

[q]
≤ℓ

)

such that d(ci, S1 × · · · × Sm × B) ≤ rn for all i ∈ [L+ 1]. Since m = rn+ t

and ci[m+1,n] ∈ B, it suffices to construct sets Si such that d(ci[m], S1 × · · · × Sm) ≤ rn. In other

words, for each i there exists at least t indices j ∈ [m] such that cij ∈ Sj. The sets Sj be can be

easily constructed since the number of constraints they have to satisfy is (L+1)t, whereas there

are m sets Si, each of size ℓ, and the choice of the parameters (L+ 1)t ≤ ℓm. Table 1 shows an

example of a selection of such sets for certain values of the parameters.

S1 S2 S3 S4

c11 c12 c13 c24

c21 c22 c33 c34

c31 c42 c43 c44

Table 1: An example of the sets Si for rn = 1, L = 3, ℓ = 3, hence m = 4, t = 3. The sets are

S1 = {c11, c
2
1, c

3
1}, S2 = {c12, c

2
2, c

4
2}, S3 = {c13, c

3
3, c

4
3} and S4 = {c24, c

3
4, c

4
4}.

Claim 5.3. For any t ≤ n−m, and any S1, . . . , Sn−m−t ∈
(

[q]
≤ℓ

)

, there are at most L( q
ℓ
)t codewords

c ∈ C with ci ∈ Si.

Proof. Let us apply induction on t. For the base case t = 0, the statement follows from Claim 5.2.

Now in order to prove the claim for t ≤ n −m, let us assume that we have proved it for t − 1.

Fix S1, . . . , Sn−m−t ∈
(

[q]
≤ℓ

)

. For j ∈ [q] let aj be the number of codewords c ∈ C with ci ∈ Si for

all i ∈ [n−m− t] and cn−m−t+1 = j. It is easy to see that

{c ∈ C : ci ∈ Si for all i ∈ [n−m− t]} =
∑

j∈[q]
aj ,

so to prove the claim it suffices to show
∑

j∈[q] aj ≤ L( q
ℓ
)t. By induction hypothesis for t− 1, for

any A ∈
(

[q]
ℓ

)

,
∑

j∈A aj ≤ L( q
ℓ
)t−1. Therefore, by averaging over all such sets A ∈

(

[q]
ℓ

)

it can be

easily seen that
∑

j∈[q] aj ≤ L( q
ℓ
)t, completing the proof of the claim.

Returning to the proof of Theorem 5.1, one can see that it follows directly from Claim 5.3

with t = n−m.

The following corollary, which can be deduced easily from Theorem 5.1, gives a lower bound

on the list size of list-recoverable codes. It also provides a partial answer to Question 1.6, as

explained in the introduction.
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Corollary 5.4. Any q-ary (r, ℓ, L) list-recoverable code of length n and rate at least 1 − r − ǫ

satisfies L ≥ ℓr
ǫ
+ ℓ− 1 + o(1), where o(1) tends to zero as n tends to infinity.

Proof. By Theorem 5.1 the size of any such code C satisfies

q(1−r−ǫ)n ≤ |C| ≤ L
(q

ℓ

)n−⌊ (L+1)rn
L+1−ℓ

⌋
≤ Lqn−⌊ (L+1)rn

L+1−ℓ
⌋.

Hence, ℓ
L+1−ℓ

rn ≤ ǫn+ logq(L) + 1+ L+1
L+1−ℓ

, and as
(

logq(L) + 1+ L+1
L+1−ℓ

)/

n tends to zero as n

tends to infinity, the result follows.

6 Large list-decoding radius implies a large minimum dis-

tance

In this section, we show that good list-decoding property would imply in some sense good unique

decoding property, i.e., large minimum distance. We divide our analysis into two cases; first, for

general codes (not necessarily linear), we show that such a statement can not hold in general,

but it is undoubtedly true for a large subcode of the code. Then, we proceed to consider the

case of linear codes, where we are able to prove that even for the general problem of list-recovery,

the code itself (and not its subcode) must have a large minimum distance.

General codes: It is clear that for general codes, one can not hope that good list-decodability

would imply a large minimum distance. Indeed, given an (r, L− 1) list-decodable code, one can

“ruin” the minimum distance by adding a new codeword that is of distance one from one of

its codewords (and thereby possibly making it a nonlinear code). The new code is (r, L) list-

decodable code and thus retains its good list-decoding property; however, it has a poor minimum

distance. On the other hand, one needs only to remove the newly added codeword to obtain back

the (possibly) large minimum distance of the code. In other words, a small number of codewords

needs to be removed to have also a large minimum distance (and, of course, retain the good

list-decoding property). The following theorem shows that this is the only case in general, i.e.,

any large enough code with good list-decoding property must contain a large subcode with a

large minimum distance. The formal details follow.

Theorem 6.1. Let L ≥ 1 be an integer, γ ∈ (0, 1), r ∈ [0, L
L+1

), n ∈ N with rn ∈ N, and

q ≥ q(n, r, L, γ), then every (r, L) list-decodable code C ⊆ [q]n with |C| = qn−⌊L+1
L

rn⌋−ǫ, where

ǫ := ǫ(n) ≥ 0 is an integer valued function such that (L−1)(ǫ+1) ≤ ⌊rn/L⌋, contains a subcode

of size at least γ|C| and minimum distance at least ⌊L+1
L
rn⌋ − (L− 1)(ǫ+ 1) + 1.

We note that in the more general case where ǫ is not necessarily an integer, a slightly weaker

result holds, where one can show that the subcode distance is weakened to be at least ⌊L+1
L
rn⌋−

(L− 1)(⌊ǫ⌋ + 2) + 1, if (L− 1)(⌊ǫ⌋ + 2) ≤ ⌊rn/L⌋. We omit the details.

Applying Theorem 6.1 to a sequence of codes with ǫ(n) = o(n) and a fixed L gives the

following corollary.
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Corollary 6.2. Let L ≥ 1 be an integer, γ ∈ (0, 1), r ∈ [0, L
L+1

), n ∈ N with rn ∈ N, and

q ≥ q(n, r, L, γ), then every (r, L) list-decodable code C ⊆ [q]n with |C| = qn−⌊L+1
L

rn⌋−o(n) contains

a subcode of size at least γ|C| and minimum distance at least ⌊L+1
L
rn⌋ − o(n).

Notice that the guaranteed subcode by Corollary 6.2 has near optimal rate-distance tradeoff.

Indeed, the rate is at least 1 − δ + 1
n
− o(1), whereas the rate of an MDS code is 1 − δ + 1

n
.

Moreover, Proposition 4.6 shows the existence of such sequence of codes with ǫ < 1 and large

enough q.

We proceed with the proof Theorem 6.1.

Proof. Let C ⊆ [q]n be a code that satisfies the assumptions of the theorem. The required

subcode will be constructed by identifying and removing a small subset of codewords from the

code that cause its minimum distance to be relatively small. Therefore, the remained codewords,

i.e., the subcode, will have a large minimum distance. We proceed with the formal proof.

Let m := ⌊L+1
L
rn⌋+ǫ+1, and say that a vector w ∈ [q]n−m is bad for the subset I ⊆ [n], |I| =

n − m if there exist two codewords c1, c2 ∈ C such that c1I = c2I = w, and c1j = c2j for at least

L(ǫ + 1) additional coordinates j /∈ I, and note that by the assumption on ǫ, L(ǫ + 1) ≤ m.

Next, we get a bound on the number of codewords whose projection on a fixed set I is a bad

vector for I.

Claim 6.3. If w ∈ [q]n−m is bad for the set I, then there are at most L codewords c ∈ C with

cI = w.

Now we can proceed to construct the desired subcode C ′ with large size and distance, as

follows. C ′ is obtained from C by removing from it all codewords c such that there exists a

subset I ⊆ [n] of size n − m, and a vector w ∈ qn−m that is bad for I and cI = w. We claim

that C ′ has distance at least ⌊L+1
L
rn⌋ − (L− 1)(ǫ+ 1) + 1, and size at least γ|C|.

Size: As there are
(

n
n−m

)

sets I ⊆ [n] of size n − m, and for each such set I, there are at

most qn−m bad vectors w for it. By Claim 6.3 there are at most L codewords c ∈ C such that

cI = w. Hence at most
(

n

n−m

)

qn−mL,

codewords were removed and the size of C ′ is a least

qn−m+1 − L

(

n

n−m

)

qn−m =
(

1−
L
(

n
n−m

)

q

)

|C| ≥ γ|C|,

for large enough q ≥ q(n, r, L, γ).

Minimum distance: By construction, any two codewords of C that agreed on at least

n−m+ L(ǫ+ 1) coordinates were removed, thus the minimum distance is at least

m− L(ǫ+ 1) + 1 =
⌊L+ 1

L
rn

⌋

− (L− 1)(ǫ+ 1) + 1,

as needed.
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It remains to prove Claim 6.3

Proof of Claim 6.3. Let w be a bad vector for I, where we assume without loss of generality

that I = [n − m + 1, n], and assume towards contradiction that there are L + 1 codewords cj

such that cjI = w. Further, assume that c1, c2 ∈ C c1[(Lǫ+1)] = c2[(Lǫ+1)].

As before, write rn = La+ b with integers a, and 0 ≤ b < L. Thus, m = (L+1)a+ b+ ǫ+1,

and since we assumed that (L− 1)(ǫ+ 1) ≤ ⌊rn/L⌋, then L(ǫ+ 1) ≤ a+ ǫ+ 1. Next, partition

that set [2(a+ ǫ+ 1)− L(ǫ+ 1) + 1, m] into L− 1 disjoint sets Ij for j ∈ [3, L+ 1], each of size

at least a+ ǫ+ 1, which is possible since

|[2(a+ ǫ+ 1)− L(ǫ+ 1) + 1, m]|

= m−
(

2a− (L− 2)(ǫ+ 1) + 1
)

+ 1

= (L+ 1)a+ b+ ǫ+ 1−
(

2a− (L− 2)(ǫ+ 1) + 1
)

+ 1

= (L− 1)a+ b+ (L− 1)(ǫ+ 1) = (L− 1)(a+ ǫ+ 1) + b

Next, we show that C is not (r, L) list-decodable. To obtain the desired contradiction we consider

the following vector y ∈ [q]n

yi =























c1i i ∈ [a+ ǫ+ 1]

c2i i ∈ [a+ ǫ+ 2, 2(a+ ǫ+ 1)− L(ǫ+ 1)]

cji i ∈ Ij and j ∈ [3, L+ 1]

wi−m i ∈ [m+ 1, n].

It is fairly straightforward to check that c1, . . . , cL+1 ∈ Brn(y), and we arrive at the desired

contradiction.

Linear codes: By utilizing the additional structure of linear codes which general codes

might not possess, we can prove that any linear code that is list-recoverable must have good

unique decoding properties, i.e., large minimum distance. Furthermore, for ℓ = 1, L = 1, this

result can also be seen as a generalization of the fact that codes that are unique decodable from

relative radius r, have a Hamming distance greater than 2rn .

Theorem 6.4. For a prime power q, integers 1 ≤ ℓ ≤ q, ℓ ≤ L < ℓq and r ∈ [0, 1 − ℓ
L+1

)

with rn ∈ N, if C ⊆ Fn
q is a linear (r, ℓ, L) list-recoverable code of dimension at least 2, then

d(C) > rn+ ⌊ ℓ
L+1−ℓ

rn⌋.

Note that it is easy to prove that an (r, ℓ, L) list-recoverable linear code has minimum distance

d(C) > rn if L < q. Otherwise, all the q multiples of a minimum weight codeword would violate

the list-recoverability of the code. Theorem 6.4 improves on this observation by utilizing the

list-recovery property even further.
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Proof. Assume towards contradiction that d(C) ≤ rn+⌊ ℓ
L+1−ℓ

rn⌋, and let m := rn+⌊ ℓ
L+1−ℓ

rn⌋.

Since C is a linear code, there exists a nonzero codeword c ∈ C with weight at most m, and

assume without loss of generality that c[m+1,n] = 0. By the dimension of the code, let c1 . . . , cℓ−1 ∈

C be ℓ distinct codewords which are scalar multiples of each other, but not a scalar multiple of

c, and let cℓ = 0. Next, note that any of the ℓq > L distinct codewords of the form v = λc+ cj

for λ ∈ F, j ∈ [ℓ] satisfy vi ∈ Si := {cji : j ∈ [ℓ]} for i ∈ [m + 1, n], where clearly |Si| ≤ ℓ. This

contradicts Claim 5.2 with B = Sm+1 × · · · × Sn.

The following proposition is a similar result to that of Theorem 6.4 but specialized for list-

decodable codes and without the constraint on the code’s dimension to be at least 2. We omit

its proof, as it is very similar to that of Theorem 6.4.

Proposition 6.5. For a prime power q, an integer 1 ≤ L < q and r ∈ [0, L
L+1

) with rn ∈ N, if

C ⊆ Fn
q is a linear (r, L) list-decodable code, then d(C) > rn+ ⌊ rn

L
⌋.

We want to emphasize that the lower bound on the minimum distance given by Proposi-

tion 6.5 is tight for certain parameters. Indeed, in [ST20a] it was shown that over sufficiently

large finite fields, a positive integer rn, L = 2, 3 and L | rn there exist an [n, n − L+1
L
rn]-RS

codes, which are (r, L) list-decodable, and whose minimum distance is rn+ rn
L
+1, which attains

the lower bound of Proposition 6.5.

Proposition 6.5 was also implicitly proved by Roth recently (See [Rot21, Theorem 3]). Specif-

ically, he shows that an (r, L) list-decodable code of dimension n − ⌊L+1
L
rn⌋ is an MDS code.

This result follows directly from Proposition 6.5, as shown in the next Corollary, which shows

that a linear code that attains with equality the bound on the dimension given in Proposition 3.6

has to be a near MDS or an MDS code.

Corollary 6.6. For a prime power q, an integer 1 ≤ L < q and r ∈ [0, L
L+1

) satisfying rn ∈ N,

any [n, k] linear (r, L) list-decodable code whose dimension attains the bound in Proposition 3.6

with equality, i.e., k = n−⌈L+1
L
rn⌉, has distance at least n−k. Furthermore, if L|rn the distance

is at least n− k + 1, hence it is an MDS code.

Proof. This is a direct consequence of Proposition 6.5.
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