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Abstract

We consider the cache-aided multiple-input single-output (MISO) broadcast channel, which consists

of a server with L antennas and K single-antenna users, where the server contains N files of equal

length and each user is equipped with a local cache of size M files. Each user requests an arbitrary

file from library. The objective is to design a coded caching scheme based on uncoded placement

and one-shot linear delivery, to achieve the maximum sum Degree-of-Freedom (sum-DoF) with low

subpacketization. It was shown in the literature that under the constraint of uncoded placement and

one-shot linear delivery, the optimal sum-DoF is L+ KM
N . However, previously proposed schemes for

this setting incurred either an exponential subpacketization order in K, or required specific conditions

in the system parameters L, K, M and N . In this paper, we propose a new combinatorial structure

called multiple-antenna placement delivery array (MAPDA). Based on MAPDA and Latin square, the

first proposed scheme achieves the optimal sum-DoF L + KM
N with the subpacketization of K when

KM
N +L = K. Subsequently, for the general case we propose a transformation approach to construct an

MAPDA from any g-regular PDA (a class of PDA where each integer in the array occurs g times) for

the original shared-link coded caching problem. When the original PDA corresponds to the Maddah-Ali

and Niesen coded caching scheme, the resulting scheme under the combinatorial structure of MAPDA

can achieve the optimal sum-DoF L+ KM
N with reduced subpacketization with respect to the existing

schemes. The work can be extended to the multiple independent single-antenna transmitters (servers)

corresponding to the cache-aided interference channel proposed by Naderializadeh et al. and the scenario

of transmitters equipped with multiple antennas.
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Index Terms

Coded caching, MISO, Multiple-antenna placement delivery array.

I. INTRODUCTION

Demands on wireless video are growing at an exponential rate in recent years, which causes

the traffic congestion over the wireless channels. Efficient video delivery over the air becomes a

very important problem. An efficient solution to alleviate networks from content-related traffic

is content caching, which pre-stores some library content at user devices during off-peak traffic

hour; thus the stored content will not be further transmitted. Coded caching was originally

proposed by Maddah-Ali and Niesen (MN) in [1] for the single-input single-output (SISO)

shared-link network model, where a central server with access to a library containing N files is

connected to K cache-aided users through an error-free shared-link and each user has a cache to

store at most M files. By the transmission of multicast messages and the use of cached content

in order to remove interference, coded caching leads to a coded caching gain in addition to

the conventional uncoded caching gain. A coded caching scenario contains two phases, namely

placement and delivery. In the placement phase, each user stores some packets of each file

without knowledge of users’ later demands. In the delivery phase, each user requests one file in

the library. According to users’ caches and demands, the server broadcasts coded packets to the

users such that all demands are satisfied. For each M = Nt
K

where t ∈ {0, 1, . . . , K − 1}, each

coded packet transmitted in the delivery phase is simultaneously useful to KM
N

+1 users, where
KM
N

+ 1 represents the achieved coded caching gain. The subpacketization of a coded caching

scheme refers to the number of subfiles per file. Although information theoretic achievability

and converse results are typically studied in the limit of very large file size, such that the

subpacketization does not represent a limitation, in practice for finite size files, it is important

to design schemes with low subpacketization. The subpacketization of the MN scheme grows

exponentially with K. To reduce the subpacketization, various combinatorial subfile assignments

have been proposed in the literature, such as the authors in [2] proposed a combination structure

referred to as placement delivery array (PDA). This is an array whose entries are integers and a

special symbol ∗ (star), where the positions of the stars indicate which subfiles are cached and

the integers indicate which subfiles are jointly encoded into the multicast messages (see later for

a formal definition). The MN coded caching scheme can also be represented as a PDA, referred
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to as MN PDA. Remarkably, various schemes based on PDA proposed in [3]–[6] have lower

subpacketization than the MN scheme. A PDA is called g-regular if each integer appears g times

in the array. In the literature the problem of reducing the subpacketization of coded caching has

been widely studied and several other combinatorial constructions have been proposed, such as

the linear block codes [7], the special (6, 3)-free hypergraphs [8], the (r, t) Ruzsa-Szeméredi

graphs [9], the strong edge coloring of bipartite graphs [10], the projective space [11] and other

combination design [12].

Following the seminal works of MN, coded caching was applied to a variety of network

topologies, such as Device-to-Device (D2D) networks [13], hierarchical networks [14], [15],

arbitrary multi-server linear networks [16], etc. Coded caching was extended to the wireless

interference channel with multiple single-antenna cache-aided transmitters and receivers [17],

[18], whose objective is to maximize the system sum Degree-of-Freedom (sum-DoF). If each

transmitter is able to cache the whole library, the problem reduces to the cache-aided multiple-

input single-output (MISO) broadcast channel (BC) with L antennas studied in [19]–[25]. With

one-shot linear coding schemes based on the joint design of coded caching and zero-forcing (ZF)

precoding, the sum-DoF L+ KM
N

was achieved in [17], [19], which yields the MN coded caching

gain for L = 1. It was proved in [26] that under the constraints of uncoded cache placement

and one-shot linear delivery, the sum-DoF L + KM
N

is optimal. A problem of the cache-aided

MISO BC schemes in [17], [19] is that it requires subpacketization
(

K
KM/N

)(
K−KM/N−1

L−1

)
, which

is even larger than the MN scheme. Various works have health with this subpacketization issue

[20]–[24]. For the case where K
L

and KM
N
/L are both integers, the scheme of [20] achieves the

sum-DoF L+ KM
N

with subpacketization
(

K/L
KM/(NL)

)
. Under the constraint L ≥ KM

N
, the authors

in [21] utilize a cyclic cache placement to achieve the sum-DoF L+ KM
N

with subpacketization

linear with K. A summary of the different schemes proposed in the literature, achieving the

sum-DoF L + KM
N

subject to conditions and the corresponding subpacketizations is given in

Table I. One should note that for the general case, no existing scheme can achieve the same

sum-DoF of [17], [19] with generally lower subpacketization.

Our Contributions: This paper considers the cache-aided MISO BC problem with one-shot

linear delivery in [17]. We extend the PDA structure for the shared-link model in [2] to the

MISO BC by using ZF, and propose a novel MISO BC coded caching structure, referred to

as multiple-antenna placement delivery array (MAPDA). The MAPDA which is a construction
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TABLE I: Existing schemes with the sum-DoF L + KM
N

, L antennas and memory ratio of t
K

,
for t ∈ [K].

Scheme Limitation Subpacketization

Scheme in [17] No limitations
(
K
t

) t!(K−t−1)!
(K−t−L)!

Scheme in [19] No limitations
(
K
t

)(
K−t−1
L−1

)
Scheme in [20] K

L
, t
L
∈ Z+

(
K/L
t/L

)
Scheme in [21] t ≤ L K(t+L)

(gcd(K,t,L))2

Scheme in [22] t+L
t+1
∈ Z+

(
K
t

)

structure for the cache-aided MISO BC problem based on uncoded cache placement and one-shot

linear delivery, generalizes the one-shot linear coding constructions in [17], [20]–[22], [24]. We

then propose two MAPDA constructions with lower subpacketization than the existing schemes

while achieving the maximum sum-DoF L+ KM
N

:

• For the case where KM
N

+ L = K, we propose an MAPDA construction based on the

cyclic cache placement and Latin square, which achieves the maximum sum-DoF with

subpacketization equals to K.

• We provide a non-trivial transformation approach to extend any given K1-user regular g-

PDA for shared-link caching model to an mK1-user MAPDA for the cache-aided MISO

BC problem, where m is any positive integer and m ≤ L. The achieved sum-DoF is

L + m(g − 1) and the needed subpacketization is linear with F1 which represents the

subpacketization of the original regular PDA. In addition, by setting the original PDA as

an MN PDA, the resulting scheme achieves the maximum sum-DoF L+ KM
N

with a much

lower subpacketization than [17], [19]. Interestingly, it can also cover the caching scheme

in [20] as a special case, i.e., when m = L.

Paper Organization: The rest of this paper is organized as follows. Section II describes

the system model. Section III reviews PDA and introduces the structure of MAPDA. Section IV

proposes two constructions of MAPDA and the gives analysis performance. Section VI concludes

the paper and some proofs can be found in Section V and Appendices.

Notations:

• [a : b] = {a, a+ 1, · · · , b} and [a] = {1, 2, · · · , a}.
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Fig. 1: Multiple-input-single-output broadcast channel (MISO) BC system of one server with L
antennas and K users with single antenna.

• For any array P composed of m rows and n columns, the P(i, j) denotes the entry in the

ith row and j th column. (i, j) is also referred to as the position of P(i, j) in P.

• Given an array P composed of the symbol “ ∗ ” and S integers, for any integer a, the new

array P+ a denotes integer a plus each entry in P, where ∗+ a = ∗.

• gcd(a, b) represents the greatest common divisor of integers a and b.

II. SYSTEM MODEL

This paper considers the (L,K,M,N) cache-aided multiple-input single-output (MISO) broad-

cast problem with one-shot linear delivery considered in [17], as illustrated in Fig. 1. A server

with L antennas has access to the library containing N files, denoted by W = {Wn | n ∈ [N ]}.

Each file Wn in the library consists of F packets Wn , {Wn,f | f ∈ [F ]}, where each packet

denoted by Wn,f ∈ FB2 contains B uniformly i.i.d. bits. Each user is equipped with one antenna

and a cache of MF packets, where 0 ≤M ≤ N .
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The communication process at time slot t between the server and users can be modelled as

Yk(t) =
L∑
i=1

hk,iXi(t) + εk(t), (1)

where Xi(t) ∈ C denotes the signal sent by antenna i ∈ [L] which satisfies the power constraint

E
[∑

i∈[L] |Xi(t)|2
]
≤ P . Yk(t) denotes the signal received by user k ∈ [K]. hk,i ∈ C denotes

the channel gain between antenna i and user k, which is assumed to remain unchanged in the

whole communication process and perfectly known to the server and all users. εk(t) ∼ CN (0, 1)

represents the noise of receiver k at time slot t.

A coded caching scenario contains two phases.

Placement phase: Each user k ∈ [K] is able to store MF packets from the library, denoted

by Zk, without knowledge of later demands.

Delivery phase: Each user k ∈ [K] requests an arbitrary file Wdk where dk ∈ [N ] from

the library. We define d , (d1, d2, . . . , dK) as the demand vector. According to the users’

demands and caches, the server transmits coded packets through L antennas. More precisely,

the server first uses a code for the Gaussian channel with rate B/B̃ = logP + o(logP ) (bit

per complex symbol), to encode each packet as W̃n,f , ψ(Wn,f ). By assuming P is large

enough, it can be seen that each coded packet carries one Degree-of-Freedom (DoF). The whole

communication process contains S blocks, each of which consists of B̃ complex symbols (i.e.,

B̃ time slots). For each block s ∈ [S], the server delivers a subset of requested packets, denoted

by Ds = {W̃dRs,1
,fRs,1

W̃dRs,2
,fRs,2

, . . . ,W̃dRs,rs
,fRs,rs

} to a subset of users denoted by Rs =

{Rs,1,Rs,2, . . . ,Rs,rs}, where |Rs| = rs. In this paper, we only consider linear coding schemes

in the delivery phase. Thus each antenna i ∈ [L] sends the following linear combination from

Ds to the users of Rs in block s, given by

xi(s) =
∑
k∈Rs

v
(s)
i,kW̃dk,fk , (2)

where each v(s)i,k is a scalar complex coefficient.
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The transmission by all antennas in block s could be written as

X(s) =


x1(s)

x2(s)
...

xL(s)

 := V(s)


W̃dRs,1

,fRs,1

W̃dRs,2
,fRs,2

...

W̃dRs,rs
,fRs,rs

 :=


v
(s)
1,1 v

(s)
1,2 · · · v

(s)
1,rs

v
(s)
2,1 v

(s)
2,2 · · · v

(s)
2,rs

...
...

. . .
...

v
(s)
L,1 v

(s)
L,2 · · · v

(s)
L,rs




W̃dRs,1

,fRs,1

W̃dRs,2
,fRs,2

...

W̃dRs,rs
,fRs,rs

 . (3)

The signal received by each user k ∈ Rs at block s is denoted by

yk(s) =
L∑
i=1

h
(s)
k,ixi(s) + εk(s) ∈ CB̃, (4)

where εk(s) denotes the random noise vector at user k in block s. Then from the (2) and (4),
the received signals by all users in block s can be written as

Y(s) =


yRs,1

(s)

yRs,2(s)
...

yRs,rs
(s)

 := H(s)


x1(s)

x2(s)
...

xL(s)

+


ε1(s)

ε2(s)
...

εrs(s)



:=


h
(s)
1,1 h

(s)
1,2 · · · h

(s)
1,L

h
(s)
2,1 h

(s)
2,2 · · · h

(s)
2,L

...
...

. . .
...

h
(s)
rs,1

h
(s)
rs,1

· · · h
(s)
rs,L




v
(s)
1,1 v

(s)
1,2 · · · v

(s)
1,rs

v
(s)
2,1 v

(s)
2,2 · · · v

(s)
2,rs

...
...

. . .
...

v
(s)
L,1 v

(s)
L,2 · · · v

(s)
L,rs




W̃dRs,1

,fRs,1

W̃dRs,2
,fRs,2

...

W̃dRs,rs
,fRs,rs

+


ε1(s)

ε2(s)
...

εrs(s)



:=


a
(s)
1,1 a

(s)
1,2 · · · a

(s)
1,rs

a
(s)
2,1 a

(s)
2,2 · · · a

(s)
2,rs

...
...

. . .
...

a
(s)
rs,1

a
(s)
rs,2

· · · a
(s)
rs,rs




W̃dRs,1

,fRs,1

W̃dRs,2
,fRs,2

...

W̃dRs,rs
,fRs,rs

+


ε1(s)

ε2(s)
...

εrs(s)



:= R(s)


W̃dRs,1

,fRs,1

W̃dRs,2
,fRs,2

...

W̃dRs,rs
,fRs,rs

+


ε1(s)

ε2(s)
...

εrs(s)

 ,

where H(s) is random interference channel matrix with dimension rs × L in block s, and

any submatrix of H(s) with dimension L × L is invertible with high probability. If each user

k ∈ Rs can utilize the cache content to subtract the interference from its received signal, in

correspondence of yk(s), it “sees” the output of an equivalent point-to-point Gaussian channel

given by (Z̃k denotes the coded packets cached by user k)
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Ls,k(yk(s), Z̃k) = W̃dk,fk + εk(s), (5)

for which the rate that scales as logP+o(logP ) for large P is achievable. Since W̃dk,fk is encoded

by a rate of logP + o(logP ), each packet can be decoded with vanishing error probability as B

increases. In order to make readers easily understand, we omit the encoding function ψ when

we focus on introducing our schemes.

The one-shot linear sum-DoF in block s is rs, i.e., the received rate (the sum of all served

users in block s). Therefore the sum-DoF of the whole system for the demand vector d is∑S
s=1 rs
S

. A sum-DoF d(L,N,M,K) is said achievable if there exists a two-phase coded caching

scheme with delivery rate logP + o(logP ) in each time slot, where the sum-DoF of the whole

system for each possible demand vector is at least d(L,N,M,K). Our objective is to find the

maximum (or supremum) of all achievable sum-DoFs. While achieving the maximum sum-DoF,

the subpacketization of the proposed scheme should be as low as possible.

III. MULTIPLE-ANTENNA PLACEMENT DELIVERY ARRAY

A. Placement delivery array and Latin square

Definition 1: ( [2]) For positive integers K, F , Z and S, an F×K array Q = (Q(f, k))f∈[F ],k∈[K],

composed of a specific symbol “ ∗ ” and S positive integers 1, 2, · · · , S, is called a (K,F, Z, S)

placement delivery array (PDA) if it satisfies the following conditions:

C1. The symbol “ ∗ ” appears Z times in each column;

C2. Each integer occurs at least once in the array;

C3. For any two distinct entries Q(f1, k1) = Q(f2, k2) = s is an integer only if

a. f1 6= f2, k1 6= k2, i.e., they lie in distinct rows and distinct columns; and

b. Q(f1, k2) = Q(f2, k1) = ∗, i.e., the corresponding 2 × 2 subarray formed by rows

f1, f2 and columns k1, k2 must be of the following form s ∗

∗ s

 or

 ∗ s

s ∗

 .

�
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Based on a (K,F, Z, S) PDA, an F -division coded caching scheme for the (K,M,N) caching

system, where M/N = Z/F , can be obtained by using Algorithm 1.

Lemma 1: ( [2]) Given any (K,F, Z, S) PDA, there exists an F -division caching scheme

for the (K,M,N) caching system with memory ratio M
N

= Z
F

, load S
F

, and subpacketization F .

�

Algorithm 1 Caching scheme based on PDA in [2]
1: procedure PLACEMENT(Q, W)
2: Split each file Wn ∈ W into F packets, i.e., Wn = {Wn,f | f = 1, 2, · · · , F}.
3: for k ∈ [K] do
4: Zk ← {Wn,f | P(f, k) = ∗, n = [N ], f = [F ]}
5: end for
6: end procedure
7: procedure DELIVERY(Q,W ,d)
8: for s = 1, 2, · · · , S do
9: Server sends

⊕
Q(f,k)=s,f∈[F ],k∈[K]Wdk,f .

10: end for
11: end procedure

Remark 1: From Algorithm 1, the relationships between a (K,F, Z, S) PDA Q and its

realizing coded caching scheme as follows.

• The K columns and F rows denote the users and packets of each file, respectively. The

entry Q(f, k) = ∗ represents that the f th packet of all files is cached by user k. Each user

caches M = ZN
F

files by Condition C1 of Definition 1.

• The server will broadcast the multicast messages to users in block s, i.e., the XOR of all

the requested packets which are indicated by s are sent to users. Each user can obtain the

demanded packet in block s from Condition C3 of Definition 1.

• Condition C2 of Definition 1 implies that the number of each integer s appears rs times,

i.e., the coded caching gain is rs in block s.

�

Specially, if each integer appears g times in the array, the PDA is a g-regular PDA, denoted by

g-(K,F, Z, S) PDA. The following lemma shows that the MN scheme corresponds to a specific

PDA, referred to as MN PDA.

Lemma 2: ( [1] MN PDA) For any positive integers K and t with t < K, there exists a
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(t+ 1)-
(
K,
(
K
t

)
,
(
K−1
t−1

)
,
(
K
t+1

))
PDA. �

Definition 2: ( [27]) A Latin square is an n× n squared array in which there are exactly n

different elements, each of which appears exactly once in each row and column, where n is a

positive integer. �

It is well known that for any positive integer n there always exists a Latin square of order n.

For example, when n = 5 the following square L is a Latin square.

L =



1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4


. (6)

It can be seen that each integer s ∈ [5] occurs in each row and column exactly once.

B. Multiple-antenna Placement Delivery Array

In this section, we propose a novel placement delivery array to characterize the multiple anten-

nas coded caching scheme, referred to as multiple-antenna placement delivery array (MAPDA),

which combines the concept of PDA with zero-forcing.

Definition 3: For any positive integers L, K, F , Z and S, an F ×K array P composed of

“ ∗ ” and [S] is called (L,K, F, Z, S) multiple-antenna placement delivery array (MAPDA) if it

satisfies Conditions C1, C2 in Definition 1 and

C3. Each integer s appears at most once in each column;

C4. For any integer s ∈ [S], define P(s) to be the subarray of P including the rows and columns

containing s, and let r′s × rs denote the dimensions of P(s). The number of integer entries

in each row of P(s) is less than or equal to L, i.e.,

∣∣{k1 ∈ [rs]| P(s)(f1, k1) ∈ [S]}
∣∣ ≤ L, ∀f1 ∈ [r′s]. (7)

�

If each integer appears g times in the P, then P is a g-regular MAPDA, denoted by g-

(L,K, F, Z, S) MAPDA.
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Example 1: The following array P is a 4-(3, 4, 4, 1, 3) MAPDA,

P =


∗ 1 2 3

1 ∗ 3 2

2 3 ∗ 1

3 2 1 ∗

 . (8)

Notice that each integer appears once in each column, so that C3 is satisfied. To see that also

C4 holds, consider for example s = 1. It can be seen that P(1) = P and that each row of P(1)

contains L = 3 integer entries and one star. The same happens for s = 2, 3. Hence also C4 is

satisfied. �

Similar to the coded caching scheme realized by a PDA, we can use an MAPDA to generate

a multiple antennas coded caching scheme. Specifically given a (L,K, F, Z, S) MAPDA P, we

obtain an F -division (L,K,M,N) multiple antennas coded caching scheme with memory size

M = ZN
F

as follows.

• Placement phase: Employing the placement strategy in Algorithm 1, each file Wn is

divided into F packets with equal size, i.e., Wn = (Wn,f | f ∈ [F ]), and each user k

caches the following packets by Line 4 of Algorithm 1.

Zk = {Wn,f | P(f, k) = ∗, f ∈ [F ], n ∈ [N ]}. (9)

Then each user caches M = ZN
F

files;

• Delivery phase: For any request vector d, similar to the delivery strategy in Algorithm

1, each integer s ∈ [S] also indicates the multicast messages sent by the server with L

antennas in block s through the MISO broadcast channel according to the channel matrix

H(s) with dimension rs×L. Assume that there are rs entries P(fRs,1 ,Rs,1), P(fRs,2 ,Rs,1),

. . . , P(fRs,rs
,Rs,1) equal to s, where fRs,i

∈ [F ] and Rs,i ∈ [K] for each i ∈ [rs]. From

Condition C3 in Definition 3, we have that the column indices Rs,i are distinct, and we can

assume without off of generality that Rs,1 < Rs,2 < · · · < Rs,rs . From (9) each user Rs,i

where i ∈ [rs] does not cache its requiring packet WdRs,i
,fRs,i

, since P(fRs,i
,Rs,i) 6= ∗. The

vector of packets to be transmitted in block s and the user set to recover these packets are
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denoted by

W(s) =


WdRs,1

,fRs,1

WdRs,2
,fRs,2

...

WdRs,rs
,fRs,rs

 , Rs = {Rs,1,Rs,2, . . . ,Rs,rs}, (10)

respectively. For each Rs,i ∈ Rs, assume that there are l(s)i columns with indices in Rs,

which contains integers at the row fRs,i
of P. The column index set is denoted by

P(s)
i = {Rs,i′ ∈ Rs | P(fRs,i

,Rs,i′) ∈ [S], i′ ∈ [rs]}. (11)

By (9) and (11), the demanded packet WdRs,i
,fRs,i

required by user Rs,i is not cached by

user Rs,i′ iff Rs,i′ ∈ P(s)
i . In the following we will take the column indices in Rs and row

indices fRs,1 , fRs,2 , . . ., fRs,rs
as the columns indices and row indices of the subarray P(s).

Then the integer l(s)i is exactly the number of integer entries at row fRs,i
of P(s). From

Condition C4 of Definition 3, we have l(s)i ≤ L. Recall that any l(s)i rows of H(s) are linear

independent with high probability. We take the column indices in Rs and row indices fRs,1 ,

fRs,2 , . . ., fRs,rs
as the column and row indices of H(s), respectively. From linear algebra,

for each i ∈ [rs] we can get a column vector v(s)
i such that

H(s)(Rs,i)v
(s)
i = 1, H(s)(Rs,i′)v

(s)
i = 0, ∀i′ ∈ P(s)

i \ {i}, (12)

where H(s)(Rs,i) and H(s)(Rs,i′) are the rows with indices Rs,i and Rs,i′ of H(s), re-

spectively. We define that the precoding matrix is V(s) =
(
v
(s)
1 ,v

(s)
2 , . . . ,v

(s)
rs

)
. Thus the

transmitted messages in block s by the server are

X(s) = V(s)W(s).

The received messages by the users in Rs over the multiple antennas broadcast channel in
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block s are

Ys = H(s)X(s) = H(s)V(s)W(s)

= H(s)
(
v
(s)
1 ,v

(s)
2 , . . . ,v(s)

rs

)
W(s)

=
(
H(s)v

(s)
1 ,H(s)v

(s)
2 , . . . ,H(s)v(s)

rs

)
W(s)

:= R(s)W(s).

By (12), each column of R(s) has at least l(s)i − 1 zero entries. Furthermore, we have

R(s)(Rs,i, i) = 1 and R(s)(Rs,i, i
′) = 0 for each i′ ∈ P(s)

i \ {i}. This implies that for any

required packet WdRs,i′
,fRs,i′

is not cached by user Rs,i, we have R(s)(Rs,i, i
′) = 0 if i′ 6= i

and R(s)(Rs,i, i
′) = 1 if i = i′. Thus in the received message of user Rs,i, there only exist

its required packet and cached packets (i.e., the interference packets are zero forced), and

thus it can decode the required packet.

Since the number of uncached packets of each file by each user is the same which is equal

to F − Z, we have
∑S

s=1 rs = K(F − Z). Hence, the sum-DoF in the whole procedure is∑S
s=1 rs
S

= K(F−Z)
S

.

We then continue Example 1 to illustrate the resulting scheme of the MAPDA in (8).

Example 2: Using the (3, 4, 4, 1, 3) MAPDA P in (8), we can obtain a multiple antennas

coded caching scheme as follows.

• Placement phase: Divide each file into 4 packets with equal size, i.e., Wn = {Wn,1, Wn,2,

Wn,3, Wn,4), n ∈ [4]. By (9), the caches of users are

Z1 = {Wn,1 | n ∈ [4]}, Z2 = {Wn,2 | n ∈ [4]},

Z3 = {Wn,3 | n ∈ [4]}, Z4 = {Wn,4 | n ∈ [4]}.

• Delivery phase: Assume that the request vector is d = (1, 2, 3, 4). From (10), all the

required packet to be transmitted in the 3 blocks are

W(1) =


W1,2

W2,1

W3,4

W4,3

 , W(2) =


W1,3

W2,4

W3,1

W4,2

 , W(3) =


W1,4

W2,3

W3,2

W4,1

 ,
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while the sets of users who are involved in the 3 blocks are R1 = R2 = R3 = {1, 2, 3, 4},

respectively. Next we consider block 1, where we have r1 = 4 and

P(1)
1 = {1, 3, 4}, P(1)

2 = {2, 3, 4}, P(1)
3 = {1, 2, 3}, P(1)

4 = {1, 2, 4}.

Let the precoding matrix be V(1) = (v
(1)
1 ,v

(1)
2 ,v

(1)
3 ,v

(1)
4 ), where each v

(1)
i satisfies (12) for

i ∈ [4], i.e., the server sends the messages X(1) = V(1)W(1) and the users in R1 receive

Y1 = H(1)X(1) = H(1)V(1)W(1)

=


1 a

(1)
1,2 0 0

a
(1)
2,1 1 0 0

0 0 1 a
(1)
3,4

0 0 a
(1)
4,3 1




W1,2

W2,1

W3,4

W4,3

 =


W1,2 + a

(1)
1,2W2,1

a
(1)
2,1W1,2 +W2,1

W3,4 + a
(1)
3,4W4,3

a
(1)
4,3W3,4 +W4,3

 .

In the above transmission, all the users can get their required packets by using their caches.

For example, user 1 can obtain W1,2 from the first component of Y1 by subtracting W2,1,

which is contained in user 1 cache.

Since 4 packets are transmitted by the server to satisfy 4 users in each block, the sum-DoF is

4 = 1 + 3 = KM
N

+ L.

�

From the above analysis, we can obtain the following result.

Theorem 1: For a given (L,K, F, Z, S) MAPDA P, there exists an F -division scheme for

the (L,K,M,N) multiple antennas coded caching problem with memory ratio M
N

= Z
F

, sum-DoF
K(F−Z)

S
and subpacketization F . �

In the literature, the schemes in [17], [20]–[22], [24] can be represented by MAPDAs.

Under the constraints of uncoded cache placement and one-shot linear delivery, the maximum

sum-DoF is upper bounded than KM
N

+ L [26], which is also an upper bound on the sum-DoF

achieved by the caching schemes from MAPDA.

Theorem 2 ( [26]): The sum-DoF of an (L,K,M,N) multiple antennas coded caching

scheme with memory ratio M
N

= Z
F

realized by any (L,K, F, Z, S) MAPDA is no more than
KZ
F

+ L = KM
N

+ L. �
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In Appendix A, we provide an alternative proof for Theorem 2, based on the combinatorial

structure of MAPDA.

IV. TWO NOVEL CONSTRUCTIONS OF MAPDA

A. Main results and performance analysis

In this section, we propose two classes of MAPDAs which lead to coded caching schemes

with the maximum sum-DoF in Theorem 2 and significantly reduce subpacketization compared

to the state-of-the-art schemes.

We first consider the case where KM
N

+ L = K, and propose the following MAPDA.

Theorem 3: For any positive integers L, K, M and N with KM
N

+ L = K, there exists a

(KM
N

+L)-(L,K,K, KM
N
, K(1−M

N
)) MAPDA which leads to an (L,K,M,N) multiple antennas

coded caching scheme with sum-DoF KM
N

+ L = K and subpacketization F = K. �

Proof. Consider a K×K Latin square L, with elements in [K]. Replace the integers [L+1 : K]

in L by stars. The resulting array P is an MAPDA with parameters (KM
N

+ L)-(L,K, F =

K,Z = KM
N
, S = K(1 − M

N
)). This is proved by showing that Conditions C1-C4 of Definition

3 are satisfied with these parameters. In particular, there are S = K − KM
N

different integers,

each of which appears exactly K times. In addition, Z = KM
N

stars appear in each row and

each column. Thus P satisfies Conditions C1 and C2 of Definition 3. Since each integer appears

once in each column of Latin square, P satisfies Condition C3 of Definition 3. For each integer

s ∈ [S], we have P(s) = P always holds. So by the structure of Latin square, Condition C4 of

Definition 3 is also satisfied. Thus P is a (KM
N

+ L)-(K,K,L, KM
N
, K − KM

N
) MAPDA.

For instance, we can obtain the following 5-(2, 5, 5, 3, 3) MAPDA P by replacing the integers

3, 4 and 5 of Latin square L in (6) by stars, after some rows permutations in order to evidence

the cyclic nature of the placement.

P =



1 2 ∗ ∗ ∗

∗ 1 2 ∗ ∗

∗ ∗ 1 2 ∗

∗ ∗ ∗ 1 2

2 ∗ ∗ ∗ 1


5×5

.



16

Note that our scheme in Theorem 3 achieves the same sum-DoF and subpacketization level

as the scheme in [21] but with the constraint KM
N

+ L = K, instead of the constraint L ≥ KM
N

in [21].

We turn now to the general case of K, M , N and L and given our second main result, which

consists of a non-trivial transformation of a g-regular PDA into an MAPDA, as stated in the

following theorem, the proof of which is provided in Section V.

Theorem 4: Given any g-(K1, F1, Z1, S1) PDA, there exists an (L,mK1, αF1, αZ1, sgn(g)lS1)

MAPDA where m ≤ L, which leads to an (L,K = mK1,M,N) multiple antennas coded caching

scheme with memory ratio M
N

= Z1

F1
, sum-DoF m(g − 1) + L and subpacketization F = αF1,

where α = (sgn(g) + L−m
m

)l, l = m
gcd(m,L−m)

, and

sgn(g) :=

 1, if L = m;

g, otherwise.
(13)

�

From Theorem 4, in order to obtain an MAPDA, we only need to construct an appropriate

PDA. For instance, starting from the (t1 + 1)-(K1,
(
K1

t1

)
,
(
K1−1
t1−1

)
,
(
K1

t1+1

)
) MN PDA and applying

the construction of Theorem 4, we obtain the following result:

Theorem 5: For any positive integers m, L, K1 and t1 with t1 < K1 and m ≤ L, there

exists an (L, mK1, α
(
K1

t1

)
, α
(
K1−1
t1−1

)
, sgn(t1 + 1)l

(
K1

t1+1

)
) MAPDA which leads to an (L,K =

mK1,M,N) multiple antennas coded caching scheme with the memory ratio M
N

= t1
K1

, sum-DoF
KM
N

+L, and subpacketization F = α
(
K1

t1

)
, where α = (sgn(t1+1)+ L−m

m
)l and l = m

gcd(m,L−m)
.

�

Remark 2 (Two extreme cases in Theorem 5): When m = L, we have sgn (t1 + 1) = 1,

l = 1, and α = 1 in Theorem 5. Then we can obtain a (L,K,M,N) multiple antennas coded

caching scheme with the number of users K = mK1, the memory ratio M
N

= t1
K1

, subpacketization

F =
(
K1

t1

)
, and sum-DoF KM

N
+ L. In other words, under the same constraint as in [20] (i.e., L

divides K and KM
N

), our scheme is exactly the scheme in [20].

When m = 1, we obtain an (L,K,M,N) multiple antennas coded caching scheme without

any constraints, whose subpacketization has the same exponential order as
(

K
KM/N

)
in terms of K.

Note that the coded caching scheme in [22] achieves the sum-DoF KM
N

+L with subpacketization
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(
K

KM/N

)
under the constraint that KM

N
+ 1 divides KM

N
+ L. �

Note that when L ≥ KM
N

, the scheme in [21] achieves the maximum sum-DoF in Theorem 2

with linear subpacketization with K, which is hard to be further reduced. The main contribution

of Theorem 5 is to reduce the subpacketzation for the case L < KM
N

, while achieving the

maximum sum-DoF. In the following, we compare the performance of Theorem 5 with the

schemes in [17], [19], since the comparison to schemes in [20], [22] has been discussed in

Remark 2. Furthermore, it can be seen from Table I, the subpacketization of scheme in [19] is

the less than that of [17], and thus we only need to compare the subpacketization of our scheme

in Theorem 5 (denoted by FTh5) with the scheme in [19] (denoted by FSCH). The ratio of the

subpacketizations FSCH and FTh5 is

FSCH

FTh5
=

(
K
t

)(
K−t−1
L−1

)
α
(
K/m
t/m

) ≈ 1

α
· 2

KH( t
K
)2(K−t−1)H( L−1

K−t−1
)

2
K
m
H( t

K
)

(K →∞)

=
1

α
· 2

(m−1)
m

KH( t
K
)+(K−t−1)H( L−1

K−t−1
).

We then provide some numerical evaluations to compare the proposed scheme in Theorem

5 with the schemes in [19], [22]. In Fig. 2, we consider the multiple antennas coded caching

problem with K = 100 and L = 7. In this case, we have m = 5 for our scheme in Theorem 5.

In Fig. 2, We do not plot the scheme in [22] since it can only work when t+L
t+1

is an integer, i.e.,

only when t = 5. In this case, the subpacketization of the scheme in [22] is 7.53 × 107, while

our scheme in Theorem 5 is 240. In addition, as illustrated in Fig. 2, compared with the scheme

in [19] our scheme in Theorem 5 has a significant reduction in subpacketization.

Remark 3 (Extension to multiple cache-aided transmitters wireless channels): The coded

caching problem for multi-transmitter wireless interference networks was considered in [17],

where KT cache-aided single-antenna transmitters (with memory size MT ) are connected to

K cache-aided users (with memory size M ) through a wireless interference network. It can

be seen that when MT = N , it reduces to the cache-aided MISO broadcast problem in our

paper. In addition, it was shown in [20] that when KTMT ≥ 1, any cache-aided MISO scheme

could be extended to the multi-transmitter wireless interference networks by using a cyclic cache

placement at the transmitters. By the same approach as in [20], we can also extend the proposed

schemes in Theorems 3 and 5 to achieve the sum-DoF KTMT

N
+ KM

N
, while the subpacketizations

are with a linear order of those in Theorems 3 and 5. �



18

Fig. 2: The subpacketization versus memory ratio for schemes in Theorem 5 and in [19], when
K = 100 and L = 7.

Remark 4: As already noted in [16], analogous results in term of the network load (number

of equivalent file transmissions to satisfy all users’ requests [1]) are immediately obtained for

a noiseless linear network over a sufficiently large finite field, as induced by end-to-end linear

network coding. Consider a network of general topology, connecting L servers and K users. If

routing in the intermediate notes is replaced by linear network coding (e.g., each intermediate

node forwards random linear combinations of the incoming packets [28]), for sufficiently large

finite field size the resulting L-input K-output network can be represented as a K×L matrix of

rank min{K,L}. Then, the very same ideas can be applied by replacing linear combinations over

the complex field with linear combinations over the appropriate finite field. This represents an

attractive and general “separation” approach between caching and networking, when the routing

layer is replaced by linear network coding. �
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B. Sketch of the proposed scheme in Theorem 5

Given a (t1+1)-(K1, F1, Z1, S1) MN PDA Q, for any positive integers m and L with m ≤ L

and t1 < K1, we will construct an (L + mt1)-(L,mK1, αF1, αZ1, sgn(t1 + 1)lS1) MAPDA

P. The main idea of construction is replicating an K1-user MN PDA m times, such that each

integer appears m(t1+1) times. If m(t1+1) < L+mt1, i.e, the achieved sum-DoF is less than

L+mt1 (which is the task sum-DoF we want to achieve), we then replicate Q and adjust some

integers such that each integer appears L +mt1 times and all Conditions of Definition 3 hold.

Then we will propose an example to illustrate the detail steps.

Example 3: We focus on the base array Q, which is a (t1+1)-(K1, F1, Z1, S1) = 3-(4, 6, 3, 4)

PDA with 4 users, memory ratio M1

N1
= Z1

F1
= 1

2
and subpacketization F1 = 6, where t1 = 2. We

will transform Q to an (mt1 + L)-(L,mK1, F, Z, S) = 7-(3, 8, 42, 21, 24) MAPDA P through

the following three steps where m = 2, as illustrated in Fig. 3.

• Step 1. Construction of P1 from Q.

– Step 1.1. We first get a 6× 8 array Q0 by replicating Q m = 2 times horizontally.

– Step 1.2. We then get a 36 × 8 array P1 by listing Q0 + 4j for each 0 ≤ j <

m(t1 + 1) = 6. We can see that there are S = S1m(t1 + 1) = 24 different integers in

P1; each integer s ∈ [24] appears m(t1 + 1) = 6 times and in distinct columns; each

column has m(t1 + 1)Z1 = 18 stars; each row has mt1 = 4 stars. Furthermore, the

number of integer entries in each row of P
(s)
1 , where s ∈ [24], is equal to 2 < L = 3.

Thu all Conditions of Definition 3 are satisfied; P1 is an MAPDA.

However, we aim to achieve the maximum sum-DoF L +mt1 = 7 > m(t1 + 1) = 6, i.e.,

each integer should appear 7 times in the MAPDA, which motivates the following steps.

• Step 2. Construction of P2 from Q.

– Step 2.1. We replicate Q, L+mt1−m(t1+1) = L−m time(s) in this step, such that

together with the above step we can achieve the sum-DoF L +mt1. In this example,

since L − m = 1, we only need to replicate Q once in this step. For each row of

Q, we cyclically right-shift the integer entries by one position, while the stars remain

unchanged. The resulting array (denoted by U) has the same dimension as Q. For

example in the first row, integer 1 is shifted into the last column, while integer 2 is

shifted into the 3th column (which is the original column of integer 1). It will be clear

that this step is used to guarantee Condition C3 of Definition 3.
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Step 2.1 Right-shifting cyclically. 

Step 2.2    Replicating horizontally.Step 1.1    Replicating horizontally.

Step 3 Combining

Step 2.3     Replacing s [4] by s+4j, j [0:5]

from left     to right and top to bottom. 

 

 

jStep 1.2    Listing Q ,j [0:5],vertically.

Fig. 3: The transformation from Q to P in Theorem 5.

– Step 2.2. U0 is obtained by replicating U m = 2 times horizontally. Each integer

s ∈ [4] appears (t1 + 1) = 3 times in U, and thus appears 2(t1 + 1) = 6 in U0.

– Step 2.3. By replacing the six integer s ∈ [4] by s, s+4, s+2×4, s+3×4, s+4×4,

s+ 5× 4, respectively from left to right and top to bottom, we get a new 6× 8 array

P2. For example, the 6 integer 1’s in U0 are replaced by integers 1, 1+4, 1+8, 1+12,

1 + 16, 1 + 20, respectively. There are 24 different integers and each integer appears

once. Thus P2 is also an MAPDA.

• Step 3. Construction of P from P1 and P2. We obtain the P with F = 7F1 = 42 rows and

K = 2K1 = 8 columns by concatenating P1 and P2 vertically. Next we will show that P
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is an MAPDA.

From the above steps, P1 and P2 both are MAPDA; thus P satisfies Conditions C1 and C2

of Definition 1. The column indices where each integer s ∈ [24] lies in of P2 are different

from that of P1 by the constructions in Steps 2.1 and 2.3; thus P satisfies Conditions C3

of Definition 3. Finally we focus on the P(s) and verify Condition C4 of Definition 3. Let

us take P(1) as an example,

P(1) =


∗ ∗ 1 2 ∗ ∗ 1

∗ 1 ∗ 3 ∗ 1 ∗

1 ∗ ∗ 4 1 ∗ ∗

∗ ∗ 2 1 ∗ ∗ 6


4×7

.

By the construction, each row of P(1) has m integer 1’s and L−m other integer(s), totally

L integers. Thus Condition C4 of Definition 3 is satisfied.

In conclusion, P is a 7-(3, 8, 42, 21, 24) MAPDA, which leads to a (L,mK1,M,N) = (3, 8, 4, 8)

multiple antennas coded caching scheme with mK1 = 8 users, memory ratio M
N

= 1
2
, sum-DoF

mt1 +L = 7, and subpacketization F = 42. In this example, the schemes in [17], [19] achieve

the sum-DoF mt1 + L = 7 with subpacketizations 10080 and 210 respectively. �

V. PROOF OF THEOREM 4

Given a g-(K1, F1, Z1, S1) PDA Q, we will construct an (m(g−1)+L)-(L,K = mK1, F, Z, S)

MAPDA P for any positive integers m ≤ L such that Z/F = Z1/F1. We first obtain an F1×mK1

array Q0 by replicating Q m times horizontally, i.e.,

Q0 =

Q, . . . ,Q︸ ︷︷ ︸
m

 .

It is straightforward to see that Q0 satisfies Conditions C1, C2, C3 of Definition 3. We then

focus on Condition C4 of Definition 3. By Condition C3 of Definition 1, in the subarray of

Q including the rows and columns containing s, each row only contains one s while the other

elements in this row is ∗. So in the subarray of Q0 including the rows and columns containing s,

the number of s in each row is m while the other elements in this row is ∗. Hence, Q0 satisfies

Condition C4 of Definition 3; i.e., Q0 is an mg-(L,mK1, F1, Z1, S1) MAPDA. When m = L,
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the sum-DoF of Q0 is mg = L+m(g − 1), which is the maximum sum-DoF in Theorem 1. In

the rest of this section, we only need to consider the case m < L.

When m < L, we have mg < L+m(g−1), i.e., the achieved sum-DoF mg of Q0 is less than

our task sum-DoF L+m(g−1). In order to increase the sum-DoF by L+m(g−1)−mg = L−m,

further steps are taken. In short, we first generate an mg-(L,mK1, glF1, glZ1, glS1) MAPDA

P1 by replicating Q0 gl times vertically, where l = m
gcd(L−m,m)

, and adjusting some integers

appropriately. Then we generate another (L−m)-(L, mK1,
(L−m)l
m

F1,
(L−m)l
m

Z1, glS1) MAPDA

P2 based on Q. The set of integers in P2 is the same as that in P1. Finally P is obtained by

concatenating P1 and P2 vertically.

In the following, we introduce the constructions of P1, P2 and P in details.

A. Construction of an MAPDA P1

In order to make the set of integers in P1 the same as that in P2 constructed in the following

subsection, we construct P1 by replicating Q0 gl times vertically and then increasing the integers

in Q0 by the occurrence orders (from up to down) of Q0; in other words, the glF1×mK1 array

P1 is defined as

P1 =


Q0

Q0 + S1

...

Q0 + (gl − 1)S1

 (14)

where l = m
gcd(L−m,m)

.1 P1 contains totally glS1 different integers, and each column of P1 has

glZ1 stars. This is because, each array Q0 + jS1 where j ∈ [0 : gl − 1] contains S1 different

integers and each of its columns has Z1 stars. Thus Conditions C1 and C2 of Definition 3 hold.

Furthermore, Conditions C3 and C4 of Definition 3 hold since each array Q0 + jS1 satisfies C3

and C4. So P1 is an mg-(L,mK1, glF1, glZ1, glS1) MAPDA, with the set of integers equal to

[glF1] where each integer occurs mg times.

When L = 3 and m = 2, we have L−m = 1 and l = m
gcd(L−m,m)

= 2
gcd(1,2) = 2. By replicating

the m-(K1, F1, Z1, S1) = 3-(4, 6, 3, 4) PDA Q listed in Fig. 3 twice horizontally, we have the

1 By selecting this value of l, the vertical replication step in the construction of P2 contains a replication of integer times.
More details will be explained later.
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6× 8 array Q0. Since gl = 6, we obtain

P1 =



Q0

Q0 + 4

Q0 + 8

Q0 + 12

Q0 + 16

Q0 + 20


,

as shown in Fig. 3.

B. Construction of an MAPDA P2

In the following we will construct another MAPDA P2 with the set of integers [glS1], where

each integer appears exactly L−m times. Hence, if we concatenate P1 and P2 vertically, each

integer occurs mg + L −m = L +m(g − 1) times, coinciding with the achieved sum-DoF in

Theorem 4. The main idea of constructing P2 is that we first replicate Q vertically with integer

right-shifting to obtain a new array U, then replicate it horizontally to obtain a new array U0,

and finally increase some integers in U0 to obtain P2.

1) Vertical replication with integer right-shifting: With the choice l = m
gcd(L−m,m)

, we have

that l(L−m)
m

is an integer. Assume that

Q =


q1

q2

...

qF1

 ,

where qj represents the j th row of Q, for each j ∈ [F1]. We replicate qj ,
l(L−m)
m

times vertically,

to obtain

A′j =


qj

qj
...

qj

 ,
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with dimension l(L−m)
m
× K1. Then we obtain an l(L−m)

m
F1 × K1 array U′ by concatenating

A′1,A
′
2, . . . ,A

′
F1

vertically; i.e.,

U′ =


A′1

A′2
...

A′F1

 .

We can see that in U′ each integer occurs g l(L−m)
m

times. In addition, each integer in each column

of U′ occurs l(L−m)
m

times, which violates Condition C3 of Definition 3. So we need to adjust

the integers in U′ to meet Condition C3 of Definition 3.

We then generate a new array Aj with dimension l(L−m)
m
× K1, by cyclically right-shifting

the integers in ith row of Aj by i positions while the stars in this row remain unchanged, for all

i ∈
[
l(L−m)
m

]
.

Since for any two different rows of A′j , we right-shift the same integer by different positions,

then the following property is obtained.

Property 1: Each integer in Aj must occur in l(L−m)
m

different columns of Aj . �

Next we generate an array U by vertically concatenating A1,A2, . . . ,AF1 , whose dimension

is l(L−m)
m

F1 ×K1; i.e.,

U =


A1

A2

...

AF1

 .

Since U is obtained from U′ by some right-shifting steps, each integer in U occurs the same

times (i.e., g l(L−m)
m

times) as in U′.

Let us return to Example 3. Recall that Q is a 3-(4, 6, 3, 4) PDA and L = 3, m = 2 and l = 2.

We have l(L−m)
m

= 2×1
2

= 1. So in this example, we have U′ = Q. Let us take A′1 = (∗ ∗ 1 2),

which is the first row of U′, to show our shifting method. We cyclically right-shift integers 1 and

2 to the next integer positions (1, 4) and (1, 3) respectively, to obtain the subarray A1 = (∗ ∗ 2 1).
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Similarly we shift all the integers in other rows and obtain

U =



∗ ∗ 2 1

∗ 3 ∗ 1

∗ 3 2 ∗

4 ∗ ∗ 1

4 ∗ 2 ∗

4 3 ∗ ∗


=


A1

A2

...

A6

 , (15)

as shown in Fig. 3. It can be seen that each integer appears once and in one column in Aj where

j ∈ [6].

2) Horizontal replication: We then replicate Um times horizontally to get an array U0, whose

dimension is l(L−m)
m

F1×mK1. It can be checked that each integer occurs mg l(L−m)
m

= gl(L−m)

times in U0. For each j ∈ [F1], we define Bj as a subarray of U0, which is composed of the

rows indexed by (j − 1) l(L−m)
m

+ 1, (j − 1) l(L−m)
m

+ 2, . . . , j l(L−m)
m

in U0. Thus Bj is with the

form,

Bj =

Aj, . . . ,Aj︸ ︷︷ ︸
m

 ,

and U0 is with the form,

U0 =


B1

B2

...

BF1

 .

By Property 1 the following property can be obtained directly.

Property 2: Each integer in Bj occurs in m l(L−m)
m

= l(L−m) distinct columns of Bj . �
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Let us go back to Example 3. From (15), we have

U0 =



∗ ∗ 2 1 ∗ ∗ 2 1

∗ 3 ∗ 1 ∗ 3 ∗ 1

∗ 3 2 ∗ ∗ 3 2 ∗

4 ∗ ∗ 1 4 ∗ ∗ 1

4 ∗ 2 ∗ 4 ∗ 2 ∗

4 3 ∗ ∗ 4 3 ∗ ∗


=


B1

B2

...

B6

 =


A1 A1

A2 A2

...
...

A6 A6

 , (16)

as shown in U0 of Fig. 3. The subarray B1 = ( ∗ ∗ 2 1 ∗ ∗ 2 1 ) is the first row of

U0, can be regraded as replicating A1 = ( ∗ ∗ 2 1 ) twice horizontally, and each integer

appears l(L−m) = 2 distinct columns in B1.

3) Increase of the integers in U0: In U0, the set of integers is [S1], while each integer occurs

gl(L −m) times. The objective of this step is to increase the integers in U0, such that the set

of integers becomes [glS1] and each integer occurs L−m times.

For each integer s ∈ [S1] in U0, we sort its gl(L−m) replicas from left to right and top to

bottom in U0. We increase the ith replica where i ∈ [gl(L−m)] by b i−1
L−mcS1; i.e., the ith replica

now becomes s+b i−1
L−mcS1. Hence, all the replicas with the order in [(j−1)(L−m)+1 : j(L−m)]

are replaced by integer s+ (j − 1)S1, where j ∈ [gl]. Thus we introduce gl integers to replace

the replicas of s in U0, where each integer occurs L−m times.

After considering all integers s ∈ [S1] and increasing the replicas of the integers as described

above, the resulting array is P2, which totally contains glS1 different integers. In other words,

the set of integers in P2 is [glS1], which is the same as that in P1. Thus Condition C2 of

Definition 3 holds. Furthermore, recall that in our vertical replication step the number of times

to replicate Q is (L−m)l
m

, and that the right-shifting step does not change the positions of stars.

Hence, there are (L−m)l
m

Z1 stars in each column of P2. Then Condition C1 of Definition 3 holds.

Now let us consider Condition C3 of Definition 3. Let Dj be the row-wise subarray of P2,

which is composed of the rows indexed by (j − 1) l(L−m)
m

+ 1, (j − 1) l(L−m)
m

+ 2, . . . , j l(L−m)
m

.
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Then P2 can be represented as

P2 =


D1

D2

...

DF1

 .

For each j ∈ [F1], since Dj is obtained by increasing the integers in Bj , and each integer in

Bj occurs l(L −m) times in Bj , then each integer in Dj occurs L −m times in Dj . This is

because, to obtain Dj from Bj , we replace the l(L − m) replicas of each integer in Bj by l

different integers in Dj; in other words, each consecutive L−m replicas from left to right and

top to bottom of each integer in Bj are replaced by the same integer in Dj .

Recall that each integer in P2 occurs L−m times in P2. Hence, each integer in Dj does not

occur in Dj1 where j1 ∈ [F1] \ {j}. Together with Property 2, it can be seen that each integer

in Dj occurs in L−m distinct columns of Dj . Then Condition C3 of Definition 3 holds.

Finally let us consider Condition C4 of Definition 3. Since the subarray P
(s)
2 of P2 including

the rows and columns containing s ∈ [glS1] has L−m columns which is less than L, then C4

holds. Thus P2 is an (L−m)-(L, mK1,
(L−m)l
m

F1,
(L−m)l
m

Z1, glS1) MAPDA.

Let us see Example 3 again. From (16), each integer appears gl(L − m) = 6 times in U0.

Since L−m = 1 we replace integer s = 1 in positions (1, 4), (1, 8), (2, 4), (2, 8), (4, 4), (4, 8)

of U0 by

1 +
⌊
1−1
1

⌋
× 4 = 1 + 0× 4 = 1, 1 +

⌊
2−1
1

⌋
× 4 = 1 + 1× 4 = 5,

1 +
⌊
3−1
1

⌋
× 4 = 1 + 2× 4 = 9, 1 +

⌊
4−1
1

⌋
× 4 = 1 + 3× 4 = 13,

1 +
⌊
5−1
1

⌋
× 4 = 1 + 4× 4 = 17, 1 +

⌊
6−1
1

⌋
× 4 = 1 + 4× 4 = 21.

respectively. Then we have

P2(1, 4) = 1, P2(1, 8) = 5, P2(2, 4) = 9,

P2(2, 8) = 13, P2(4, 4) = 17, P2(4, 8) = 21.
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Similarly after replacing all the other integers s = 2, 3 and 4, we get

P2 =



∗ ∗ 2 1 ∗ ∗ 6 5

∗ 3 ∗ 9 ∗ 7 ∗ 13

∗ 11 10 ∗ ∗ 15 14 ∗

4 ∗ ∗ 17 8 ∗ ∗ 21

12 ∗ 18 ∗ 16 ∗ 22 ∗

20 19 ∗ ∗ 24 23 ∗ ∗


=


D1

D2

...

D6

 (17)

which is shown in Fig. 3. The subarray D1 = ( ∗ ∗ 2 1 ∗ ∗ 6 5 ) is the first row of

P2, can be regraded as increasing the integers in B1 = ( ∗ ∗ 2 1 ∗ ∗ 2 1 ), and each

integer only appears in one column of D1.We can see that each integer occurs exactly once in

P2.

C. Construction of an MAPDA P

The last step is to obtain an array P by concatenating P1 and P2 vertically, i.e., P = [P1;P2].

The set of integers in P is [glS1]. The numbers of rows and columns in P are F = (g+L−m
m

)lF1 =

αF1 and K = mK1, respectively, where α = (g + L−m
m

)l as defined in Theorem 4.

Next we will show that P is an (L +m(g − 1))-(L,mK1, αF1, αZ1, glS1) MAPDA. Since

there are glZ1 and l(L−m)
m

Z1 stars in each column of P1 and P2 respectively, then the number of

stars in each column of P is Z = (g+ L−m
m

)lZ1 = αZ1. Thus Condition C1 of Definition 3 holds.

In other words, each user caches ZN
F

= αZ1N
αF1

= Z1N
F1

= M files, which satisfies the memory

size constraint. Furthermore, since each integer s ∈ [glS1] appears mg times and L −m times

in P1 and P2 respectively, then each integer occurs in P exactly mg + L−m = m(g − 1) + L

times. So Condition C2 of Definition 3 holds.

In order to verify the Conditions C3 and C4 of Definition 3, the following Lemma 3 is useful,

whose proof is included in Appendix B.

Lemma 3: By our construction, the following statements hold:

• Each integer s ∈ [glS1] occurs in mg + L−m = m(g − 1) + L distinct columns in P.

• In P
(s)
1 , which is the subarray of P1 including the rows and columns containing s, each

row has exactly m(g − 1) stars.
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• For any row of P2 containing s, there must exist a row of P1 containing s, where the stars

are located at the same positions in these two rows.

�

From the first statement of Lemma 3, P satisfies Condition C3 of Definition 3.

Finally, let us consider Condition C4 of Definition 3. Denote the column index sets of columns

containing s of P, P1 and P2 by K(s), K(s)
1 and, K(s)

2 respectively. By the first statement of

Lemma 3, the subarray P(s) including the rows and columns of P containing s has m(g−1)+L

columns. This implies that K(s) = K(s)
1 ∪ K

(s)
2 and K(s)

1 ∩ K
(s)
2 = ∅. By the second and third

statements of Lemma 3, the number of stars in each row of P(s) is at least m(g − 1). So the

number of integer entries in each row of P(s) is at most L +m(g − 1)−m(g − 1) = L. Then

Condition C4 of Definition 3 holds.

From the above discussions, when m < L, P is an (m(g−1)+L)-(L,K = mK1, αF1, αZ1, glS1)

MAPDA and sgn(g) = g. In conclusion, the proof of Theorem 4 is completed.

VI. CONCLUSION

In this paper, we studied the cache-aided MISO broadcast channel problem with one-shot linear

delivery. We first presented a new design construction, referred to as MAPDA, to characterize

the placement and delivery phases. For the system with parameters satisfying KM/N +L = K,

we proposed a scheme under MAPDA to achieve the maximum sum-DoF with subpacketization

equals to K. For the general case, we proposed another scheme by a non-trivial transformation

approach from any regular PDA for the original caching problem. If the original PDA is the MN

PDA, the resulting scheme can achieve maximum sum-DoF with lower subpacketization than

the existing schemes.

APPENDIX A

PROOF OF THEOREM 2

Proof. Assume that each integer s ∈ [S] occurs rs times in P, denoted by P(f1, k1), P(f2, k2),

. . ., P(frs , krs). We can obtain the subarray P(s) with rs columns from Condition C3 of Definition

3, i.e., each integer occurs in each column at most once, and let fi and ki, i ∈ [rs] represent

the row indices and column indices of P(s), respectively. For each subarray P(s), s ∈ [S], we



30

assume that there are rs,i integer entries in the row fi. Then the number of stars used by all

the integer s’s in P(s) is exactly
∑rs

i=1(rs − rs,i), and the total number of stars used in all P(s),

s ∈ [S], is

M =
S∑
s=1

rs∑
i=1

(rs − rs,i) =
S∑
s=1

r2s −
S∑
s=1

rs∑
i=1

rs,i.

Next, we consider the array P and assume that each row j ∈ [F ] has r′j integer entries, then the

times of all stars used by the integer entries in j th row is at most r′j(K − r′j). So the total times

of all stars used in P is at most M ′ =
∑F

j=1 r
′
j(K − r′j). Clearly, M ≤M ′, i.e.,

S∑
s=1

r2s −
S∑
s=1

rs∑
i=1

rs,i ≤
F∑
j=1

r′j(K − r′j). (18)

Since n = (F − Z)K is the total number of integers in P, we have n =
∑S

s=1 rs =
∑F

i=j r
′
j .

From (18), we get

S∑
s=1

(rs)
2 +

F∑
j=1

(r′j)
2 ≤

S∑
s=1

rs∑
i=1

rs,i +
F∑
j=1

Kr′j.

In addition, by the convexity and
∑rs

i=1 rs,i ≤ rsL from Condition C4 of Definition 3, we can

obtain
S∑
s=1

(rs)
2 ≥ 1

S
(
S∑
s=1

rs)
2 =

n2

S
,

F∑
s=1

(r′j)
2 ≥ 1

F
(
S∑
s=1

r′j)
2 =

n2

F
.

Then

n2

S
+
n2

F
≤

S∑
s=1

rsL+Kn = nL+Kn,

i.e., S ≥ nF
FL+KF−n . Thus we get the sum-DoF of K(F−Z)

S
≤ FL+KZ

F
= KZ

F
+ L, where the

equation holds if and only if rs,i = L, r1 = r2 = · · · = rS = n
S

and r′1 = r′2 = · · · = r′F . Then

the proof is completed.

APPENDIX B

PROOF OF LEMMA 3

Let us consider the second statement first. From (14), the rows of P1 containing s are exactly

the rows of the array Q0 + jS1 for some integer j ∈ [0 : gl − 1]. Since Q0 + jS1 is an mg-
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(L,mK1, F1, Z1, S1) MAPDA, each row of P
(s)
1 which is generated by the rows and columns

of P1 containing s has exactly m(g− 1) stars. So the second statement holds. Furthermore P
(s)
1

has the following form

P
(s)
1 =


s ∗ · · · ∗ · · · s ∗ · · · ∗

∗ s · · · ∗ · · · ∗ s · · · ∗
...

... . . . ... · · · ...
... . . . ...

∗ ∗ · · · s · · · ∗ ∗ · · · s


mg×g

(19)

with the row and column permutations.

Now let us consider the third statement. For any integer s ∈ [glS1], from the construction of

P1 in Section V-A and the construction of P2 in Section V-B, the integer s at row p1,j1 of P1 and

at row p2,j2 of P2 can be written as follows respectively where j1 ∈ [glF1] and j2 ∈ [ l(L−m)
m

F1].

s = s′ + (h− 1)S1, s = s′′ +

⌊
i− 1

L−m

⌋
S1, h ∈ [gl], i ∈ [(L−m)gl], s′, s′′ ∈ [S1].

Without loss of generality, we assume that s′ ≥ s′′. Then we have

S1 > s′ − s′′ =
⌊
i− 1

L−m

⌋
S1 − (h− 1)S1 =

(⌊
i− 1

L−m

⌋
− (h− 1)

)
S1.

The above equality holds if and only if s′ = s′′ and
⌊
i−1
L−m

⌋
= h− 1 hold. This implies that the

row p2,j2 have the same star positions as that of some rows p1,j1 . Then the second statement

holds.

Finally let us consider the first statement. Recall that P2 is generated through the step of

cyclically-right-shifting the integers into the other integer positions and remaining the star

positions in each row of Q. From (19) and second statement, the indices of the columns

containing s of P2 must different from the indices of the columns containing s of P1. Then the

first statement holds.
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