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Abstract—The Permuted Kernel Problem (PKP) asks to find
a permutation of a given vector belonging to the kernel of
a given matrix. The PKP is at the basis of PKP-DSS, a
post-quantum signature scheme deriving from the identification
scheme proposed by Shamir in 1989. The most efficient solver
for PKP is due to a recent paper by Koussa et al. In this paper
we propose an improvement of such an algorithm, which we
achieve by considering an additional collision search step applied
on kernel equations involving a small number of coordinates. We
study the conditions for such equations to exist from a coding
theory perspective, and we describe how to efficiently find them
with methods borrowed from coding theory, such as information
set decoding. We assess the complexity of the resulting algorithm
and show that it outperforms previous approaches in several
cases. We also show that, taking the new solver into account,
the security level of some instances of PKP-DSS turns out to be
slightly overestimated.

Index Terms—Digital signatures, information set decoding,
permuted kernel problem, post-quantum cryptography, PKP-
DSS.

I. INTRODUCTION

One of the oldest paradigms to achieve digital signatures

consists in converting a Zero-Knowledge Identification (ZK-

ID) scheme into a signature scheme through the Fiat-Shamir

approach [1]. In a ZK-ID protocol a prover, holding the secret

key, proves their identity through an interactive procedure, by

replying to random challenges provided by a verifier. Fiat-

Shamir makes the protocol non interactive; in the resulting

scheme, the signature corresponds to the transcript of the

protocol, i.e, to the list of exchanged messages. Usually, in a

ZK-ID scheme, the key pair is generated by choosing a random

instance of some hard problem: no trapdoor is involved and,

consequently, the security guarantees are rather strong.

However, with a straightforward application of Fiat-Shamir,

the resulting signatures are normally rather large. For this

reason, ZK-ID signatures have received little attention for

many years. It seems, however, that this trend is changing,

since several works describing modern ZK-ID signatures have

recently appeared [2]–[8]. These schemes make use of several

optimizations, ranging from simulating a multiparty compu-

tation phase [9] to using hash-based functions (e.g., PRNGs

and tree structures), which can lead to compact signatures

with essentially no impact on security. This renewed interest

is also motivated by the fact that devising secure and efficient

post-quantum digital signatures looks difficult, especially as

concerns the possibility to achieve the advisable diversity with

respect to the sole availability of schemes based on structured

lattices [10], [11]. ZK-ID signatures actually represent a

promising and concrete avenue in this direction.

In 1989, Shamir proposed a ZK-ID protocol based on the

Permuted Kernel Problem (PKP) [12]. This protocol is at the

core of PKP-DSS [6], a recently proposed signature scheme

with competitive performance (e.g., public keys of 57 bytes,

signatures of 20.5 kilobytes and constant time signing in 2.5

millions of cycles, for 128-bit security). The PKP, which has

been extensively studied along the years [13]–[17], is an NP-

hard problem [18] that asks to find the permutation of a given

vector which belongs to the kernel of a given matrix. The

state-of-the-art PKP solver analyzed in the recent paper [19],

in a nutshell, works by first reducing the problem to a smaller

instance of the same problem, which is then solved with a

meet-in-the-middle search strategy. The complexity of such

an algorithm has been considered to recommend parameters

for PKP-DSS.

In this paper we improve upon the state-of-the-art solver

for the PKP. Technically, our algorithm can be thought of

as an improvement of the one in [19], where we include a

filtering step to cut some of the elements in the initial lists.

To do this, we need to find kernel equations which bind a small

number of coordinates. A similar idea has already been briefly

discussed in [15], [19]; in both those works, however, the

authors conclude that such equations are extremely hard to find

and that, in practice, cannot be exploited. We adopt a coding

theory perspective and show that, instead, useful equations of

this type can be efficiently found by exploiting Information Set

Decoding (ISD) algorithms. The resulting solver runs in a time

which is lower than that of [19] and can attack some of the

instances recommended for PKP-DSS (namely, those for 128
and 192 bits of security) with a smaller complexity than that

claimed in [6]. The performance of the proposed algorithm has

been tested with a proof-of-concept software implementation,

which is publicly available1.

The paper is organized as follows. In Section II we settle the

notation we use throughout the paper and provide some basic

notions about linear codes. In Section III we briefly recall

the definition of PKP and the algorithm in [19]. In Section

IV we describe how to find kernel equations with the desired

properties. In Section V we describe and analyze the new PKP

solver. In Section VI we draw some conclusive remarks.

1https://github.com/secomms/pkpattack/

http://arxiv.org/abs/2206.14547v2
https://github.com/secomms/pkpattack/


II. NOTATION AND PRELIMINARIES

In this section we define the notation we use throughout the

paper and recall some basic notions about linear codes.

A. Notation

We use Fq to denote the finite field with q elements. Bold

lowercase (resp., uppercase) letters indicate vectors (resp.,

matrices). Given a (resp., A), ai (resp., ai,j) denotes the entry

in position i (resp., the entry in the i-th row and j-th column).

GLm,n is the set of m × n matrices over Fq with full rank

min{m,n}. The identity matrix of size n is indicated as In,

while 0 denotes the all-zero vector. Given a set A, |A| denotes

its cardinality (i.e., the number of elements) and a
$
←− A

means that a is picked uniformly at random over A. Given

a matrix A and a set J , AJ is the matrix formed by the

columns of A that are indexed by J ; analogous notation is

used for vectors. We denote by RREF(A, J) the algorithm

that outputs A−1
J A if AJ is square and non singular, otherwise

returns a failure. We use Sn to denote the group of length-n
permutations. Given a = (a1, · · · , an) and π ∈ Sn, we write

π(a) =
(
aπ(1), · · · , aπ(n)

)
. Given a, b, we define a ∩ b as

the set of entries which appear in both a and b. For a vector

a ∈ F
n
q with no repeated entries, we defineS ℓ(a) as the set

of length-ℓ vectors with entries picked from those of a. Notice

that |S ℓ(c)| =
n!

(n−ℓ)! .

B. Linear codes

A linear codeC ⊆ F
n
q with dimension k and redundancy

r = n−k is a linear k-dimensional subspace of Fn
q . Any code

admits two equivalent representations: a generator matrix, that

is, any G ∈ GLk,n such thatC = {uG | u ∈ F
k
q}, or a parity-

check matrix, that is, any H ∈ GLr,n such thatC = {c ∈ F
n
q |

cH⊤ = 0} (where ⊤ denotes transposition). Given x ∈ F
n
q ,

its syndrome is s = xH⊤. The dual ofC , which we denote by

C
⊥

, is the space generated by H. For any codeword c ∈C
and any b ∈C

⊥
, we have cb⊤ = 0. By support of a code

we mean the set of indexes i such that there is at least one

codeword c with ci 6= 0. A subcodeB ⊆C , with dimension

k′, is a k′-dimensional linear subspace ofC . The number of

such subcodes is counted by
[

k
k′

]
q
=

∏k′−1
i=0

1−qk−i

1−qi+1 .

III. THE PERMUTED KERNEL PROBLEM

The Permuted Kernel Problem (PKP) reads as follows.

Problem III.1. Permuted Kernel Problem (PKP)

Given A ∈ F
m×n
q with 1 ≤ m < n and c ∈ F

n
q , find π ∈ Sn

such that π(c)A⊤ = 0.

The problem is notably known to be NP-hard, via reduction

from the Subset Sum Problem (SSP) [18]. In the following

sections we briefly recall the features of the hardest PKP

instances and recall the algorithm in [19], which is deemed

as the currently known best solver for PKP.

Remark 1. The PKP can be equivalently formulated as a

codeword finding problem. In fact, Problem III.1 asks to find

a codeword c̃ ∈C , whereC is the code having A as parity-

check matrix, such that c̃ ∈S n(c).

A. Considerations for practical hardness

As in all previous works [13]–[17], [19], we study the PKP

under the conditions leading to the hardest instances. Namely,

we consider A such that rank(A) = m, c with all distinct

entries and consider parameters q, n,m so that, on average, the

problem has exactly one solution. To this end, we assume that

the PKP instance is generated by first picking A
$
←− GLm,n

and then by choosing a random vector c̃ ∈ F
n
q with distinct

entries and such that c̃A⊤ = 0. Then, we set c = π(c̃), with

π
$
←− Sn. Since A and c̃ are picked at random, on average

we expect to have
|S n(c)|

qm
= n!

qm
solutions. Consequently, we

consider q, n,m such that n!q−m < 1.

Basically any solver for the PKP considers that it is always

possible to craft additional constraints binding the entries of

c̃. Namely, we can exploit any relation of the form

n∑

i=1

c̃ u
i =

n∑

i=1

c u
i , u ∈ {1, · · · , q − 1}. (1)

However, for u ≥ 2 the above expression is not linear in the

unknowns c̃i, so that only the case of u = 1 is employed.

Taking into account all the previous considerations, the PKP

formulation in Problem III.1 can be slightly modified. Indeed,

let H =

(
A

1 · · · 1

)
∈ F

r×n
q , with r = m + 1. Then,

solving the PKP corresponds to finding c̃ ∈S n(c) such that

c̃H⊤ =
(
0, · · · , 0,

n∑

i=1

ci
)
= s. (2)

With overwhelming probability (approximately 1− q−m), the

all-ones vector is not a linear combination of the rows of A,

so that we can safely assume that H has full rank r.

Finally, we consider that to solve the PKP we can restrict

our attention to a subset of the entries of c̃. Indeed, for any

B ∈ GLℓ,r with ℓ ≤ r, it must be

c̃(BH)⊤ = c̃H̃⊤ = sB⊤ = s̃. (3)

Let J ⊂ {1, . . . , n} of size n − r such that H{1,··· ,n}\J

is non singular, and B = H−1
{1,··· ,n}\J . Then, H̃ = BH =

RREF(H, {1, · · · , n} \ J), from which

c̃iu = s̃i −
∑

j∈J

c̃j h̃j,u, {i1, · · · , ir} = {1, · · · , n} \ J. (4)

Hence, it is enough to find the entries of c̃ in the positions

indexed by J to retrieve the whole solution c̃.

Remark 2. Adopting again a coding theory formulation, one

can see the PKP as a syndrome decoding problem: given a

parity-check matrix H and a syndrome s as in (2), find a

vector c̃ ∈S n(c) whose syndrome is s.

B. State-of-the-art solver for PKP

The currently known best solver for the PKP is Algorithm 1

in [19]. The algorithm works with three parameters ℓ, ℓ1, ℓ2 ∈
N, such that 1 ≤ ℓ ≤ r, ℓ1, ℓ2 ≥ 1 and ℓ1+ℓ2 = n−r+ℓ. The

procedure is initialized by choosing a matrix B ∈ GLℓ,r so



that H̃ = BH has support size n− r+ ℓ. To do this, we first

compute H′ = RREF(H, {n − r + 1, · · · , n}) and then sets

H̃ as the sub-matrix formed by the entries of H′ in the first

ℓ rows and the columns in positions {1, · · · , n− r + ℓ}. The

same transformation is applied to s, obtaining s̃ = sB⊤ ∈ F
ℓ
q.

Then, we partition H̃ as (H̃1, H̃2), where H̃1 ∈ F
ℓ×ℓ1
q and

H̃2 ∈ F
ℓ×ℓ2
q , and construct two lists

L1 =
{
(x,xH̃⊤

1 )
∣∣∣x ∈S ℓ1(c)

}
,

L2 =
{
(y, s̃ − yH̃⊤

2 )
∣∣∣y ∈S ℓ2(c)

}
.

Let L = L1 ⊲⊳ L2, where ⊲⊳ is computed as follows:

1) use an efficient search algorithm (e.g., permutation plus

binary search) to find collisions, i.e., pairs (x, t) ∈ L1
and (y,v) ∈ L2 such that t = v;

2) keep only the collisions for which x ∩ y = ∅.

By construction,L =
{
(x,y) ∈S ℓ1+ℓ2(c) | (x,y)H̃

⊤ = s̃
}

.

Then, we find J of size n− r so that J ⊆ {1, · · · , n− r+ ℓ}
and H{1,··· ,n}\J is non singular, compute H̃ =
RREF(H, {1, · · · , n} \ J) and use (4) to test each element in

L. Namely, for each p ∈ L, we use the entries of pJ as c̃J
and see if the resulting c̃ belongs toS n(c).

According to [19], the time complexity of the algorithm is

given by

T (ℓ1, ℓ2) =
n!

(n− ℓ1)!
+

n!

(n− ℓ2)!
+

(n!)2qn−r−ℓ1−ℓ2

(n− ℓ1)!(n− ℓ2)!
. (5)

IV. FINDING SUBCODES WITH SMALL SUPPORT

Next we show that, differently from the claims in [6], [15],

we can efficiently find kernel equations which involve a small

number of coordinates. We first substantiate the existence

of such equations with coding theory arguments, and then

describe how to efficiently find them.

A. Number of subcodes with small support

As shown above, we can see the matrix H of a given PKP

instance as the parity-check matrix of some linear codeC

with redundancy r. The space generated by the rows of H

corresponds toC
⊥

, and a set of d ≤ r independent equations

from this space, involving w coordinates, is a basis for a

subcodeB ⊆C
⊥

with dimension d and support size w. For

a random code, the number of such subcodes can be estimated

as follows.

Theorem IV.1. For a codeC ⊆ F
n
q , we define Aw,d(C ) as

the set of subcodes ofC with dimension d and support size

w. Let Nw,d be the average value of |Aw,d(C )|, whenC is

picked at random among all codes with dimension k. Then

N

∧

w,d ≤ Nw,d ≤ N
∧

w,d, with

N

∧

w,d =

(
n

w

)
(qd − 1)w−d

[
k
d

]
q

[ nd ]q
,

N
∧

w,d =

(
n

w

)
(qd − 1)w

∏d−1
i=0 (q

d − qi)

[
k
d

]
q

[ nd ]q
.

Proof: Let Uk be the set of all linear codes over Fq with

length n and dimension k. We observe that

Nw,d =

∑
C ∈Uk

|Aw,d(C )|

|Uk|

=

∑
C ∈Uk

∑
B ∈Aw,d(Fn

q )
p(B ,C )

[ nk ]q
,

where p(B ,C ) = 1 ifB ⊆C , and 0 otherwise. With a

simple rewriting, we obtain

Nw,d =

∑
B ∈Aw,d(Fn

q )

∑
C ∈Uk

p(B ,C )

[ nk ]q

=

∑
B ∈Aw,d(Fn

q )

[
n−d
k−d

]
q

[ nk ]q
,

where the r.h.s. term is justified by the observation that∑
C ∈Uk

p(B ,C ) is equal to the number of k-dimensional

codes havingB as a subcode; this quantity is given by
[
n−d
k−d

]
q

(that is, the number of (k − d)-dimensional subspaces of

F
n
q \B , which has dimension n−d). With simple algebra, we

find that
[
n−d
k−d

]
q
/ [ nk ]q =

[
k
d

]
q
/ [ nd ]q . So, we further obtain

Nw,d = |Aw,d(F
n
q )|

[
k
d

]
q

[ nd ]q
.

If the support of a subcode is J , then any of its generator

matrices must be such that the columns indexed by J are non-

null. For a fixed J , the number of such matrices is (qd− 1)w:

to consider that any code has multiple generator matrices, we

divide this quantity by the number of changes of basis, that

is,
∏d−1

i=0 (q
d − qi). This way we obtain an upper bound on

the size of |Aw,d(F
n
q )|: indeed, some of the matrices we are

considering may have rank < d. Considering that we have
(
n

w

)

choices for J , we obtain an upper bound since

|Aw,d(F
n
q )| ≤

(
n

w

)
(qd − 1)w

∏d−1
i=0 (q

d − qi)
.

To prove the lower bound, we fix again a set J and, among all

the matrices with support J , consider only those for which the

leftmost d× d submatrix is the identity matrix. This way, we

avoid multiple counting of the same code: any two matrices

(Id,V) and (Id,V
′) (restricting to the columns indexed by

J) such that V 6= V′ will generate different codes. Note

that a matrix (Id,V) can generate a code with support size

w if and only if V ∈ F
d×(w−d)
q has no null column: the

number of such matrices is (qd − 1)w−d. This way we obtain

a lower bound, since there exist also codes that do not admit

a generator matrix in the form (Id,V). Considering again the

number of choices for J , we set a lower bound as

|Aw,d(F
n
q )| ≥

(
n

w

)
(qd − 1)w−d.



Remark 3. When d = 1, a subcode corresponds to the orbit

of a codeword under scalar multiplication by the elements of

Fq. The bounds in Theorem IV.1 coincide, so that

Nw,1 =

(
n

w

)
(q − 1)w−1 q

k − 1

qn − 1
≈

(
n

w

)
(q − 1)w−1qk−n.

B. Using ISD to find subcodes with small support

The result in Theorem IV.1 can be used to set values for w
and d such that, given a random codeC , Aw,d(C ) is non

empty with high probability. As a rule of thumb, we consider

that whenever N

∧

w,d > 1, the code contains at least one

subcode with the desired properties. When w is much smaller

than n, then such subcodes can be efficiently found using ISD

algorithms. If d = 1, finding subcodes with small support is

equivalent to find codewords with small Hamming weight: we

consider the algorithm in [20] and denote its time complexity

as T
(1)
ISD(n, k, w). When d > 1, we can apply minor tweaks

to ISD algorithms and use them to find subcodes. To the best

of our knowledge, this idea has been considered only in [21],

for the case of 2-dimensional codes and adapting Prange’s

simple ISD [22]. We consider a generalization of this method,

where subcodes can have any dimension d; the corresponding

procedure is detailed in Algorithm 1.

Algorithm 1: One iteration of ISD for d > 1

Input: generator matrix G ∈ GLk,n forC , w, d ∈ N

Output: failure, or generator matrix forB ⊆C with
dimension d and support size w

1 σ
$
←− Sn;

2 if RREF
(
σ(G), {1, · · · , k}

)
fails then

3 Report failure;
4 else

5 (Id,V)← RREF
(
σ(G), {1, · · · , k}

)

6 for U ⊆ {1, · · · , k} with size d do
7 B← matrix formed by rows of V indexed by U ;
8 if B has support size w − d then

9 Return σ−1
(
(Id,B)

)

10 Report failure;

For the algorithm to work, it must be w ≤ n+ d− k. The

probability that the computation of RREF does not fail can be

estimated as
∏d−1

i=0
qd−qi

qd
2 and, for large q, it can be assumed to

be equal to 1. LetB ⊆ Aw,d(C ); then, the probability that

one iteration findsB is given by p(n, k, d, w) =
(wd)(

n−w

k−d)
(nk)

.

When we have |Aw,d(C )| subcodes and we are simply

interested in finding one of them, the success probability can

be estimated as 1 − (1− p(n, k, d, w))|Aw,d(C )|
. By using

the lower bound in Theorem IV.1, we conservatively set this

probability as 1− (1− p(n, k, d, w))N

∧

w,d . Computing RREF

comes with a broad cost of O(k3), while the number of sets

U that are tested is
(
k
d

)
. Consequently, we assess the cost of

finding a subcode of Aw,d(C ) as

T
(d)
ISD(n, k, w) = O



 k3 +
(
k
d

)

1− (1− p(n, k, d, w))N

∧

w,d



 . (6)

V. NEW PKP SOLVER

In this section we describe and analyze the algorithm we

propose to solve the PKP. The method we propose is described

in Algorithm 2 and represented in Figure 1.

Algorithm 2: New algorithm to solve PKP

Data: w,w1, w2, d, ℓ ∈ N, such that w ≤ n, w = w1 + w2,
d ≤ r, ℓ ≤ n− r.

Input: H ∈ GLr,n, s ∈ F
r
q , c ∈ F

n
q

Output: c̃ ∈S n(c) such that c̃H⊤ = s

1 Use ISD to find H
∧

, generator matrix ofB ⊆C
⊥

, with
dimension d and support size w;

2 Compute S ∈ GLd,r such that H
∧

= SH, σ ∈ Sn such that

Supp
(
σ(H
∧

)
)
= {n− r + ℓ− w + 1, · · · , n− r + ℓ};

3 s
∧

← sS⊤, Z← σ(H
∧

);
4 Set K1 = {n− r + ℓ− w + 1, · · · , n− r + ℓ−w2},

K2 = {n− r + ℓ− w2, · · · , n− r + ℓ};

5 Prepare K1 =
{(

y1,y1Z
⊤

K1

)∣∣y1 ∈S w1
(c)

}
,

K2 =
{(

y2, s
∧

− y2Z
⊤

K2

)∣∣y2 ∈S w2
(c)

}
;

6 K ← K1 ⊲⊳ K2;
7 Compute M ∈ GLr,r such that Mσ(H) = (U, Ir);
8 s

∧

← sM⊤;

9 H̃← matrix formed by rows and columns of (U, Ir) at
positions {d + 1, · · · , ℓ} and {1, · · · , n− r + ℓ};

10 Set L1 = {1, · · · , n− r + ℓ−w} and
L2 = {n− r + ℓ−w + 1, · · · , n− r + ℓ};

11 Prepare L1 =
{(

x1,x1H̃
⊤

L1

)∣∣∣x1 ∈S n−r+ℓ−w(c)
}

,

L2 =
{(

x2, s
∧

− x2H̃
⊤

L2

)∣∣∣x2 ∈ K
}

;

12 L ← L1 ⊲⊳ L2;
13 for x ∈ L do
14 Plug x into (4) to get c̃;

15 if c̃ ∈S n(c) then

16 Return σ−1(c̃);

n− r + ℓ− w w

ℓ− d

d

H̃L1
H̃L2=Mσ(H)

=σ(H
∧

) ZK1
ZK2d

n− r + ℓ

n− r + ℓ− w ℓw1ℓ ℓw2ℓ

K1 K2

L1 L2

Fig. 1. Representation of the operations of Algorithm 2.

The correctness of the algorithm can be easily proven by

considering that it essentially corresponds to the Algorithm



1 of [19], plus an additional filtering stage in which we cut

some of the candidates for L2. To do this, we first find a d-

dimensional subcode ofC
⊥

, generated by H
∧

, with support

size w. We then find S ∈ GLd,r such that H
∧

= SH and

compute s
∧

= sS⊤. Recalling (3), we use H
∧

to produce

candidates for the entries of c̃ in the positions indexed by the

support of σ(H
∧

), that is, {n− r+ ℓ−w+1, · · · , n− r+ ℓ}.
To do this, we use a meet-in-the-middle approach (lines 4–6).

We then apply another transformation (lines 7–9) to both H

and s, employing the systematic form of H to obtain ℓ − d
new kernel equations involving exactly n− r + ℓ entries. We

then have another round of lists merging, corresponding to

the same procedure employed in Algorithm 1 of [19], with

the only difference that to build L2 we use the elements of K,

instead of those inS w(c). This difference is crucial since the

gain of our method lies in this step: we expect |K| < |S w(c)|,
which yields a final list L with less elements.

In the following Proposition we derive the time complexity

of the proposed algorithm.

Proposition V.1. Let d, w1, w2 such that N

∧

w1+w2,d > 1. Then,

Algorithm 2 runs in time

T
(d)
ISD(n, r, w1, w2) + TK + TL +

n!q−ℓ

(r − ℓ)!
,

with w = w1 + w2 and

TK =
n!

(n− w1)!
+

n!

(n− w2)!
+

(n!)2q−d

(n− w1)!(n− w2)!
,

TL =
n!

(r + w − ℓ)!
+

n!q−d

(n− w)!

+
(n!)2q−ℓ

(n− w)!(r + w − ℓ)!
.

Proof: Since N

∧

w,d > 1, we expectC
⊥

to contain at least

a subcode with dimension d and support size w. To find such

a subcode, we have a cost given by T
(d)
ISD(n, r, w). Steps 2–4

come with a negligible cost, so we omit them. The cost of

building and merging the lists (using a smart binary search

algorithm to determine the collisions) is given by K1 and K2

and results in n!
(n−w1)!

+ n!
(n−w2)!

operations. The number of

collisions, on average, is given by |K1| · |K2| · q
−d, so that the

cost to produce K is

n!

(n− w1)!
+

n!

(n− w2)!
+

(n!)2q−d

(n− w1)!(n− w2)!
.

After the collisions are checked, K contains n!
(n−w)!q

−d el-

ements, on average. The cost of steps 7–9 can be neglected

while, to execute steps 11-12, we repeat the previous reasoning

and hence their cost is given by |L1|+|L2|+|L1|·|L2|·q
−(ℓ−d),

which, on average, is equal to

n!

(r + w − ℓ)!
+

n!q−d

(n− w)!
+

(n!)2q−ℓ

(n− w)!(r + w − ℓ)!
.

Notice that, in the above formula, we have considered that

|L2| = |K|. Finally, we also take into account the cost of
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Fig. 2. Comparison of the time complexity of [19, Algorithm 1] (dotted lines)
with that of our algorithm (full lines), for q = 251. The circles highlight the
cases in which our algorithm is optimized with d ≥ 2.

TABLE I
TIME COMPLEXITY OF OUR ATTACK FOR THE PKP-DSS PARAMETERS

RECOMMENDED IN [6], [19].

(n,m, q) Claimed cost (d, w,w1, w2, ℓ) Cost of Algorithm 2

(69, 41, 251) 2130 (1, 22, 2, 20, 16) 2125.47

(94, 54, 509) 2193 (1, 31, 2, 29, 22) 2189.77

iterating steps 13-16, whose number can be considered equal

to the size of L, and so, on average, is equal to n!q−ℓ

(r−ℓ)! .

In Figure 2 we compare the performance of Algorithm 2

with that of [19, Algorithm 1], for the case of q = 251 and

several pairs of values (m,n), chosen such that n!q−m < 1.

As we can see, unless m is close to n, our algorithm is faster

than the one in [19]; in particular, the speed-up increases when

our algorithm is optimized with d ≥ 1.

To assess the impact of our algorithm on the cryptanalysis

of schemes relying on the PKP, in Table I we consider

the PKP-DSS instances which have been recommended in

[6] for the security levels of 128 and 192 bits. For these

instances, the claimed cost of [19, Algorithm 1] is 2130 and

2193, respectively. As we can see, our attack is faster and,

furthermore, has a cost which is slightly lower than the claimed

security levels. For the 256-bit security instance, we found

instead that our attack does not improve upon [19].

VI. CONCLUSION

We have described a novel attack to the PKP which makes

use of small support subspaces of kernel equations. Our

proposed algorithm is based on techniques borrowed from

the code-based cryptography context and is faster than state-

of-the-art attacks for several cases. To consider a situation

of practical interest, we have shown that the security of

some PKP-DSS instances is slightly overestimated. Despite

the moderate gain in complexity with respect to the state-of-

the-art, our work shows that the PKP can be solved exploiting

coding theory techniques and this may lead to new, possibly

even more efficient, attack avenues in the future.
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