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Abstract

Dataset obfuscation refers to techniques in which random noise is added to the entries of a given

dataset, prior to its public release, to protect against leakage of private information. In this work, dataset

obfuscation under two objectives is considered: i) rank-preservation: to preserve the row ordering in

the obfuscated dataset induced by a given rank function, and ii) anonymity: to protect user anonymity

under fingerprinting attacks. The first objective, rank-preservation, is of interest in applications such

as the design of search engines and recommendation systems, feature matching, and social network

analysis. Fingerprinting attacks, considered in evaluating the anonymity objective, are privacy attacks

where an attacker constructs a fingerprint of a victim based on its observed activities, such as online web

activities, and compares this fingerprint with information extracted from a publicly released obfuscated

dataset to identify the victim. By evaluating the performance limits of a class of obfuscation mechanisms

over asymptotically large datasets, a fundamental trade-off is quantified between rank-preservation and

user anonymity. Single-letter obfuscation mechanisms are considered, where each entry in the dataset

is perturbed by independent noise, and their fundamental performance limits are characterized by

leveraging large deviation techniques. The optimal obfuscating test-channel, optimizing the privacy-

utility tradeoff, is characterized in the form of a convex optimization problem which can be solved

efficiently. Numerical simulations of various scenarios are provided to verify the theoretical derivations.

This work was supported in part by NSF grants CCF-2241057.
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I. Introduction

Dataset privacy is a major concern due to the potential risks associated with the misuse of

personal and sensitive information included in various datasets. If the data to be released has no

immediate utility, then cryptographic methods suffice to preserve privacy [1], [2]. However, when

data is released publicly for a specific immediate utility — such as the release of anonymized

social network data to advertising companies — the necessarily unencrypted disclosure incurs a

privacy risk and may lead to unwanted inferences [3]–[8]. Obfuscation provides a mitigating

solution, by introducing noise in the dataset entries prior to their release. This leads to a

privacy-utility tradeoff, where increased perturbation of the dataset entries via random noise

leads to increased privacy at the expense of lost utility. In this work, we study this fundamental

privacy-utility tradeoff and characterize optimal obfuscation strategies, where privacy is evaluated

under fingerprinting attacks [5]–[8], and utility is measured via metrics associated with rank-

preservation [9]–[12].

Obfuscation mechanisms protect privacy via noisy perturbations of the dataset entries. A

widely studied class of obfuscation mechanisms is to perturb each dataset entry independently

by passing them through identical test-channels [5], [13]–[15]. We call these mechanisms single-

letter obfuscation mechanisms since their operations can be characterized using single-letter

conditional probability measures. Single-letter obfuscation mechanisms, as opposed to multi-

letter mechanisms, are amiable to analysis, and they have good performance under specific utility

metrics such as the variational distance and Euclidean distance metrics [16]–[19]. Furthermore,

perturbation via independent noise reduces information leakage among entries of the obfuscated

dataset. Consequently, in this work, we focus our study to single-letter obfuscation mechanisms

and their fundamental performance limits.

Rank-preservation is a utility metric of interest in dataset obfuscations [9]–[12], [20], [21].

In general, for a given dataset X with n ∈ N rows, a rank function R : [n] → [n] is a mapping

which assigns an ordering to the rows of the dataset. For instance, let us consider a social

network with n ∈ N users, and let X = [Xi, j]i, j∈[n] be the adjacency matrix capturing the user’s

connections in the social network, where Xi, j = 1 if the ith and jth users are connected, and
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Xi, j = 0 otherwise. The user-degree-based rank function induces an ordering of the users based

on number of connections, i.e. R(i) < R(i′) if
∑

j∈[n] Xi, j <
∑

j∈[n] Xi′, j. Rank functions are used

in the design of search engines, social network analysis, feature matching, and recommendation

systems [9], [22], [23]. Rank recovery algorithms reconstruct the rank function associated with

a given dataset based on noisy observations, e.g., by observing an obfuscated dataset. That is,

given an obfuscated dataset Y, a rank-recovery algorithm produces a reconstruction R̂(·) of the

rank function R(·) associated with the original dataset X. The performance of the rank recovery

algorithm is measured with respect to an underlying distortion metric, measuring the distance

between the original and recovered rank-functions. A widely used distortion metric, considered

in this work, is the Kendall’s rank correlation coefficient (KRCC) [9], [10], [16], [23]. The KRCC

distance d(R, R̂) counts the number of pairwise disagreements between the two rank functions,

i.e. d(R, R̂) ,
∑

i∈[n] 1(R(i) , R̂(i)).

We study the privacy-utility tradeoff in database obfuscation, where the utility objective is

rank-preservation discussed in the prequel, and privacy is evaluated under fingerprinting attacks.

Fingerprinting attacks are a major threat to users’ privacy in social networks, mobility networks,

and wireless networks, among others [24]–[26]. In these attacks, given an obfuscated dataset, the

attacker’s objective is to identify the row in the dataset corresponding to a victim by acquiring

a partial fingerprint of the victim’s real-world activities, comparing it with each of the rows

in the obfuscated dataset, and detecting the row with correlated entries (Figure 1). To provide

an example, let us consider online fingerprinting attacks which rely on social network group

memberships [6]–[8]. In such scenarios, an attacker controls a malicious website, the victim is

a visitor to the website, and the attacker uses browser history sniffing techniques to extract a

partial list of social network groups visited by the victim [4], [8]. The extracted information can

be represented by a binary vector Fq = (F1, F2, · · · , Fq), q ∈ N, where Fi = 1 if the victim has

visited the ith social network group’s website, and Fi = 0, otherwise. The vector Fq is called the

fingerprint of the victim. To identify the victim’s social network account, the attacker scans the

social network and acquires a (obfuscated) dataset Y capturing the public group memberships in

the social network. It then compares the fingerprint Fq and the dataset Y to find the closest match
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Fig. 1. X represents the original dataset. Y represents the obfuscated dataset. The attacker acquires the fingerprint vector Fq by
querying the victim’s activities and attempts to identify the victim by comparing Fq and Y.

and identify the victim. In practice, the attacker acquires each fingerprint element by querying

the user’s activities, and there is a cost associated with each query. For instance, in social network

fingerprinting attacks described above, the state-of-the-art browser history sniffing techniques can

make between tens to several thousand queries per second depending on the victim’s device and

web browser [27], [28]. So, the cost associated with each fingerprint element is the time spent

to query the value of that element using browser history sniffing. As a result, the length of the

partial fingerprint is determined by the attacker’s resources. In this work, the privacy objective

under consideration is to minimize the information leakage about the victim’s identity given a

partial fingerprint Fq with a fixed length q ∈ N.

The following is a summary of our contributions:

• To formulate the dataset obfuscation problem under the rank-preservation and anonymity

constraints.

• To evaluate the fundamental performance limits of single-letter obfuscation mechanisms and

quantify a tradeoff between the two objectives. This allows the system designer to choose

the appropriate amount of obfuscation through the choice of a single-letter test-channel by

optimizing the aforementioned trade-off.

• To characterize the optimal obfuscating test-channel, optimizing the privacy-utility tradeoff, in

the form of a convex optimization problem.

• To provide numerical simulations under various statistical scenarios.

Notation: The random variable 1E is the indicator of the event E. The set {n, n+1, · · · ,m}, n,m ∈
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N is represented by [n,m], and for the interval [1,m], we use the shorthand notation [m]. For a

given n ∈ N, the n-length vector (x1, x2, . . . , xn) is written as xn, x, and (xi)i∈[n], interchangably.

The notation [xi, j]i∈[n], j[m] denotes an n × m matrix, where xi, j is the element on the ith row and

jth column. We use sans-serif letter such as X and x to represent matrices.

II. Problem formulation

In this section, we describe the mathematical formulation of the dataset obfuscation problem

shown in Figure 2.

Random Dataset: A dataset is a matrix X = [xi, j]i∈[n], j∈[m], where xi, j ∈ X, the set X is finite, and

n,m ∈ N. Each row xm
i = (xi,1, xi,2, xi,3, · · · xi,m), i ∈ [n] is called an entry of the dataset, m ∈ N is

the length of the entries, n ∈ N is the size of the dataset. The dataset is said to have n members.

We consider stochastically generated datasets with independent and identically distributed (IID)

elements, where given a distribution PX defined on alphabet X, we have:

P(X = [xi, j]i∈[n], j∈[m]) =
∏

i∈[n], j∈[m]

PX(xi, j)

A random dataset is parameterized by (n,m,X, PX).

Original and Obfuscated Datasets: An agent, Alice, has access to an original dataset X

parameterized by (n,m,X, PX). Alice wishes to disclose an obfuscated dataset Y = f (X) to Bob,

where f (·) is a possibly stochastic function captured by PY|X. Bob’s objective is to recover the

row-ordering of the original dataset, with respect to a given rank function R(·), by leveraging the

obfuscated dataset. The rank function and privacy constraints under consideration are described

in more detail in the sequel.

Privacy Objective: An attacker, Eve, gains access to the disclosed dataset Y. Eve’s objective is

to identify the dataset entry corresponding to a specific victim. To elaborate, we let U represent

the row index corresponding to the victim of interest. The random variable U is assumed

to be uniformly distributed on [n]. Eve acquires a partial fingerprint Fq of the row elements

(XU,i1 , XU,i2 , · · · , XU,iq) corresponding to the victim, where

P(Fq = f q|(XU,i j) j∈[q] = xq) =

q∏
i=1

PF|X( fi|xi j), f q, xq ∈ F q × Xq,
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and PF|X is a collection of |X| probability measures defined on a finite set F . The fingerprint

vector and obfuscated dataset are conditionally independent of each other given the original

dataset, i.e., the Markov chain Fi↔XU,i j↔YU,i j , i j ∈ [m], j ∈ [q] holds. One of the objectives

in the dataset obfuscation problem is to minimize the information leakage between the victim’s

row index and Eve’s observations (Y, Fq). That is to minimize I(U; Y, Fq). We assume that the

fingerprinting process is unsupervised in the sense that Eve does not have a choice on which

indices i j, j ∈ [q] are queried to extract the fingerprint.

Rank-Preservation Objective: In general, given a dataset X a rank function is a mapping

R : [n]→ [n] which induces an ordering on the rows in the dataset, i.e., R(i) indicates the rank

of the ith row of X induced by the rank function R(·). In this work, we consider the degree-

based rank function defined in the following. The degree-based rank function and its variants are

used in applications such as social network analysis, search engine design, and recommendation

systems [29]–[31].

Definition 1 (Degree-Based Rank Function). Given a dataset X = [xi, j]i∈[n], j∈[m], the degree of

the ith row is defined as D(i) ,
∑m

j=1 xi, j. The degree-based rank function Rd : [n] → [n] is

characterized by the following relation:

∀i, i′ ∈ [n], i < i′ : Rd(i) ≤ Rd(i′) ⇐⇒ D(i) ≤ D(i′).

Remark 1. In this work, we have considered a degree-based rank function which does not

discriminate between different elements of each row in calculating the degree. The analysis can

potentially be extended to weighted-degree-based rank functions, where the degree is computed

as a weighted sum of the row elements, i.e, D(i) ,
∑m

j=1 w jxi, j,w j ∈ R, i ∈ [n].

Bob receives the obfuscated dataset Y, and wishes to reconstruct the rank function R(·)

associated with X. We consider the conventionally used KRCC (e.g., see [32]) as the distortion

criterion measuring the quality of Bob’s reconstructed rank function R̂(·).

Definition 2 (Kendall Rank Correlation Coefficient). For two rank functions Rd(·) and R̂d(·),
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X1,1 X1,2 X1,m

X2,1 X2,2 X2,m

Xn,1 Xn,2 Xn,m

Victim’s Entry

1
2

n

Entry labels Dataset Elements

F1 F2 Fq

Fingerprint

Alice - Original Dataset Leaked/Disclosed Data

Y1,1 Y1,2 Y1,m

Y2,1 Y2,2 Y2,m

Yn,1 Yn,2 Yn,m

Obfuscated Dataset

Queries

Obfuscation

Eve

Victim’s label (Û)

Rank Reconstruction

R̂(X) = R(Y)

Bob

Original Rank: R(X) = Π([n])

Fig. 2. The dataset obfuscation setup.

their KRCC distance is defined as1

dKRCC(Rd, R̂d) ,
1

n(n − 1)

∑
(i, j)∈[n]

1

(
Rd(i) > Rd( j) & R̂d(i)< R̂d( j)

)
(1)

k-Letter Obfuscation Strategy: As mentioned in the introduction, a widely used obfuscation

method is to perturb each dataset entry independently by passing them through identical test-

channels [5], [13]–[15]. We call such mechanisms single-letter obfuscation mechanisms. One

justification for their use is that in applications such as search engines and recommendation

systems, standard ranking algorithms such as PageRank [29] require both an accurate estimation

of the degree-based rank function and a small `1 distance between the original dataset and

the obfuscated dataset for reliable performance. Single-letter obfuscation mechanisms facilitate

analyzing and controlling the `1 distance between the two datasets by appropriate choice of the

underlying obfuscating test-channel. A k-letter obfuscation strategy is a generalization of single-

letter strategies, where randomly partitioned subsets of size k of elements of each entry are

passed through k-letter test-channels for obfuscation. The following formally defines a k-letter

obfuscation strategy.

Definition 3 (k-letter Obfuscation Strategy). For a random dataset X = [Xi, j]i∈[n], j∈[m] parametrized

by (n,m,X, PX), a k-letter obfuscation strategy is parametrized by the conditional distribution

1In some texts KRCC is defined as d′KRCC(Rd, R̂d) , 2
n(n−1)

∑
i< j sign(Rd(i) − Rd( j))sign(R̂d(i) − R̂d( j)). It can be observed that

d′KRCC(·, ·) = 1 − n
(n−1) dKRCC(·, ·). We adapt the formulation in Definition 2 as it allows for more concise arguments.
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PYk |Xk . The obfuscated dataset Y = [Yi, j]i∈[n], j∈[m] is produced as follows:2

PY|X(y|x) =
∏
i∈[n]

∏
`∈[ m

k ]

PYk |Xk((yi, j) j∈P` |(xi, j) j∈P`),

where x = [xi, j]i∈[n], j∈[m], y = [yi, j]i∈[n], j∈[m] and (P`)`∈[ m
k ] is a randomly and uniformly chosen

partition of [m] into m
k subsets of size equal to k.

The dataset obfuscation problem is formally defined in the following.

Definition 4 (k-Letter Dataset Obfuscation Problem). Given a random dataset parametrized

by (n,m,X, PX), fingerprint length q ∈ N, query noise distribution PF|X, and ε > 0, the k-letter

dataset obfuscation problem is to characterize the ε-optimal k-letter strategy P∗Yk |Xk , defined as

P∗Yk |Xk , arg min
PYk |Xk : 1

q I(U;Fq,Y)<ε
E(dKRCC(Rd, R̂d)),

where R and R̂ are the degree-based rank functions associated with X and Y, respectively, and

U is uniformly distributed over [n]. The set of all pairs (ε, δ) for which there exists PYk |Xk such

that E(dKRCC(R, R̂)) < δ and 1
q I(U; Fq,Y) < ε is called the achievable privacy-utility set and is

denoted by R(k, n,m, q,X, PX, PF|X).

In the rest of the paper, for brevity, we denote the achievable privacy-utility region by

R(n,m, PX, PF|X) when the values of k, q and X are clear from the context.

III. Characterizing the Privacy-Utility Tradeoff

In this section, we consider single-letter obfuscation mechanisms and evaluate their fundamen-

tal performance limits, in terms of the utility-privacy tradeoff measured with respect to KRCC

utility metric and information leakage privacy metric described in the previous section. The

analysis can also be extended to finite-letter obfuscation mechanism using similar techniques.

For ease of explanation, the main theorems are provided for binary alphabet datasets.

Recall that given a dataset X, parametrized by (n,m,X, PX), and a conditional distribution

PY |X, a single-letter obfuscation mechanism produces the obfuscated dataset Y conditioned on

2For ease of notation, we have assumed that m is divisible by k.
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X by passing each element of X through independent and statistically identical test-channels

characterized by PY |X. In order to provide our main results, we first introduce the following

notation. Given joint distribution PX,Y = PXPY |X on pairs of binary variables (X,Y), we define

Q(PX, PY |X) , FN1,N2(0, 0), where FN1,N2(·, ·) is the cumulative distribution function (CDF) of

zero-mean jointly Gaussian variables N1 and N2 with covariance matrix Σ , [σi, j]i, j∈{1,2} given

by

σ1,1 , 2PX(0)PX(1), σ2,2 , 2PY(0)PY(1), σ2,1 = σ1,2 , 2PX(1)(PY(1) − PY |X(1|1)). (2)

The following provides one of the main results of the paper.

Theorem 1. Let q, n,m ∈ N,X = F = {0, 1}, PX be a probability measure on X, and PF|X a

collection of probability measures on F . Then, there exists b > 0 such that:

Rin(n,m, PX, PF|X) ⊆ R(n,m, PX, PF|X) ⊆ Rout(n,m, PX, PF|X),

where

Rin(n,m, PX, PF|X) ,
⋃
PY |X

{
(ε, δ)|ε ≥ I(PY ; PY |F) +ζ+ b

log
3
2 m
√

m
, δ ≥ Q(PX, PY |X) +

(42 4√2 + 16)
√

m
θγ

}
,

Rout(n,m, PX, PF|X) ,
⋃
PY |X

{
(ε, δ)|ε ≥ I(PY ; PY |F), δ ≥ Q(PX, PY |X) −

(42 4√2 + 16)
√

m
θγ

}
,

θ ,
4
√
λ∗
, λ∗ , min{σ1,1 − |σ1,2|, σ2,2 − |σ2,1|},

γ , 2P(X = Y)P(X , Y) + 2
5
2 (PX,Y(0, 0)PX,Y(1, 1) + PX,Y(0, 1)PX,Y(1, 0)),

ζ , max(max
PY

(I(PY ; PY |F) −
log n

q
), 0),

the mutual information I(PY ; PY |F) is evaluated with respect to PY,F induced by the Markov

chain Y ↔ X ↔ F, and the union is over all probability distributions PY |X. Particularly, for

asymptotically large datasets, we have:

lim
m→∞
R(n,m,PX,PF|X)=

⋃
PY |X

{(ε, δ)|ε≥ I(PY ; PY |F), δ≥Q(PX, PY |X)}.
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Proof. Please refer to Appendix A. �

Theorem 1 provides the achievable utility-privacy region as a union of achievable regions

for each obfuscating test-channel PY |X. A relevant problem of interest is to find the optimal

test channel Pε
Y |X minimizing the utility cost δ given a privacy cost ε. The following theorem

provides a characterization of Pε
Y |X in the form of a computable convex optimization problem

for asymptotically large datasets, i.e., for m→ ∞.

Theorem 2. Let q, n,m ∈N,X = F = {0, 1}, PX be a probability measure on X, and PF|X be a

collection of probability measures on F , such that maxPY I(PY ; PY |F) ≤ log n
q . Define:

Pε
Y |X , arg min

PY |X :I(PY ;PY |F )≤ε
{δ|(ε, δ) ∈ lim

m→∞
R(n,m, PX, PF|X)}, ε > 0.

Then,

Pε
Y |X = arg min

PY |X :I(PY ,PY |F )=ε

Cov(N1,N2)
√

Var(N1)Var(N2)
, (3)

where N1 and N2 are zero-mean jointly Gaussian variables with covariance matrix given in

Equation (2).

Proof. Please refer to Appendix B. �

The following follows from the proof of Theorem 2.

Corollary 1. The optimal obfuscating test-channel in Equation (3) can be computed through the

following optimization:

Pε
Y |X = arg max

p1,p2:I(PY ,PY |F )=ε
p1+p2≤1

(p1 + p2 − 1)2

(p1PX(0)+p2PX(1))(p1PX(0)+p2PX(1))
, (4)

where pi , 1 − pi, i = 1, 2, and PY |X(1|0) = p1, PY |X(0|1) = p2.

We show that the objective function in the optimization in Equation (4) is convex. To see this,

let us define a , p1 + p2 and b , 2PX(0)p1 − 2PX(1)p2 + 1− 2PX(0). Then, the objective function
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can be written as

g(a, b) ,
4(a − 1)2

(1 − b)(1 + b)
=

4(a − 1)2

1 − b2 , a ∈ [0, 1], b ∈ [−1, 1].

The Hessian matrix of second partial derivatives of 1
4g(a, b) is given as:

H =


∂2

∂a2
1
4g(a, b) ∂2

∂a∂b
1
4g(a, b)

∂2

∂a∂b
1
4g(a, b) ∂2

∂b2
1
4g(a, b)

 =


2

1−b2
4(a−1)b
(1−b2)2

4(a−1)b
(1−b2)2

2(a−1)2(1+3b2)
(1−b2)3


We have:

det(H) =
4(a − 1)2(1 − b2)

(1 − b2)4 ≥ 0.

So, g(a, b) is a convex function, and since (a, b) are a linear transformation of (p1, p2), the

objective function in Equation (4) is convex in (p1, p2). This optimization problem can in general

be solved efficiently using numerical methods. There are special cases where exact analytical

solution can be derived. For instance, the following corollary characterizes the optimal test-

channel if the query noise PF|X is a binary symmetric channel with transition probability q

(BSC(q)), and the choice of the obfuscating test-channel is restricted to BSC test-channels, i.e.

PY |X(0|1) = PX|Y(1|0) = p, p ∈ [0, 1].

Corollary 2. Assume that PF|Y is a BSC(q) channel, where q ∈ [0, 1
2 ], and the choice of

obfuscating test-channel PY |X is restricted to BSC test channels. Then, given ε > 0 the optimizing

obfuscating test-channel, minimizing the KRCC cost is the BSC parametrized by

p =
h−1

b (1 − ε) − q
1 − 2q

,

where h−1
b (·) is the inverse of the binary entropy function defined as hb(x) = −x log2(x) − (1 −

x) log2(1 − x), x ∈ [0, 1
2 ].

IV. Numerical Simulations

This section provides numerical simulations to illustrate some of the theoretical derivations

provided in the prior sections.
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Fig. 3. Comparison of analytical derivation of KRCC with empirical observations through numerical simulation.

A. Analytical and Empirical Simulation of KRCC

In the proof of Theorem 1, we show that the resulting KRCC from obfuscating a dataset

X parametrized by (n,m,X, PX) using a single-letter obfuscation mechanism PY |X is given by

Q(PX, PY |X). To verify this, we have simulated the obfuscation mechanism when the obfuscating

test-channel is BS C(p), p ∈ [0, 1
2 ] is applied to a dataset with PX(0) = PX(1) = 1

2 , n = 200, and

m ∈ {10, 40, 100}. To ensure accuracy, we have performed numerical simulations for each value

of m by generating the dataset 40 times, performing obfuscation and calculating the resulting

KRCC. Figure 3 shows the resulting analytical and empirically observed KRCCs. As can be

observed the analytical result is close to the empirical performance and the empirical KRCC

converges to the analytical derivation as m becomes larger.

B. Asymmetric Obfuscating Test-Channels

In Section III, we argue that the objective function of Equation (4) is convex which implies

the KRCC is concave as a function of p1 = PY |X(1|0) and p2 = PY |X(0|1). Figure 4 shows the

KRCC when PX(0) = PX(1) = 1
2 and m → ∞ for p1, p2 ∈ [0, 1

2 ]. It can be observed that KRCC

is convex in (p1, p2) as predicted.

C. Privacy-Utility Tradeoff

In Figure 5, we have shown the privacy-utility tradeoff for the scenario where a symmetric

dataset (PX(1) = 1
2 ) is obfuscated using an optimal symmetric test-channel (PY |X(0|1) = PY |X(1|0)),
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Fig. 4. KRCC values for asymmetric obfuscation mechanisms.

and the query noise is modeled by a BSC(0.1). The resulting achievable privacy-utility region

R(n,m, PX, PF|X) is shown as the blue shaded region in the figure. The optimal symmetric test-

channel used in the simulation is derived using Corollary 2 in the previous section.

Fig. 5. Privacy-Utility Tradeoff. The shaded region indicates the achievable privacy-utility set.
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V. Conclusion

We have considered the privacy-utility tradeoff in dataset obfuscation, where utility is measured

with respect to KRCC metric and privacy is measured as privacy leakage under fingerprinting at-

tacks. We have quantified a fundamental trade-off between rank-preservation and user anonymity.

We have considered single-letter obfuscation mechanisms and their fundamental performance

limits were characterized. We have characterized the optimal obfuscating test-channel, optimizing

the privacy-utility tradeoff in the form of a convex optimization problem which can be solved

efficiently.
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Appendix A

Proof of Theorem 1

Consider a fixed n,m, q ∈ N, a distribution PX, conditional distributions PF|X and PY |X. We

first evaluate the resulting KRCC measure when a single-letter obfuscation mechanism PY |X is

applied to a dataset X parametrized by (n,m,X, PX). Let Rd(·) and R̂d(·) denote the degree-based

rank function associated with the original dataset X and obfuscated dataset Y, respectively. Then,

E(dKRCC(Rd, R̂d))

= E
( 1
n(n − 1)

n∑
k,l=1

1

(
Rd(k) > Rd(l)&R̂d(k) < R̂d(l)

))
(a)
=

1
n(n − 1)

n∑
k,l=1

P
(
Rd(k) > Rd(l)&R̂d(k) < R̂d(l)

)
=

1
n(n − 1)

n∑
k,l=1

P
( 1
√

m
Rd(k)>

1
√

m
Rd(l)&

1
√

m
R̂d(k)<

1
√

m
R̂d(l)

)
(b)
=

1
n(n − 1)

n∑
k,l=1

P
( 1
√

m
DX(k)>

1
√

m
DX(l) &

1
√

m
DY(k)<

1
√

m
DY(l)

)
(c)
= P

( 1
√

m
DX(1) >

1
√

m
DX(2)&

1
√

m
DY(1) <

1
√

m
DY(2)

)
= P

( 1
√

m

m∑
j=1

X1, j >
1
√

m

m∑
j=1

X2, j&

1
√

m

m∑
j=1

Y1, j <
1
√

m

m∑
j=1

Y2, j

)
= P

( 1
√

m

m∑
j=1

X2, j − X1, j < 0&
1
√

m

m∑
j=1

Y1, j − Y2, j < 0
)
, (5)

where (a) follows the form linearity of expectation, (b) uses the definition of degree-based rank

function (Definition 1), and (c) follows from the fact that the original dataset elements are IID and

in single-letter obfuscation mechanisms the obfuscating test-channels are statistically identical.

We bound the last term using a generalization of the Berry-Esseen result to multivariate scenarios

given in [33, Theorem 1.1]. The theorem is stated below for completeness.

Theorem 3. [ [33], Theorem 1.1] Let (Z1,i,Z2,i), i ∈ [m] be independent pairs of sequences

of independent, zero-mean, and unit-variance random variables, where m ∈ N, and let W ′
j ,
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1
√

m

∑
i∈[m] Z j,i, j ∈ {1, 2}. Then, for any measurable convex set A,

|P((W ′
1,W

′
2)∈A) − P((N′1,N

′
2) ∈ A)| ≤

(42 4√2 + 16)
m
√

m

m∑
i=1

E|Zi|
3,

where (N′1,N
′
2) is a pair of independent and unit-variance Gaussian random variables, and |Zi| ,√

Z2
1,i + Z2

2,i, i ∈ [m].

We let W1 ,
1
√

m

∑m
j=1 X2, j − X1, j and W2 ,

1
√

m

∑m
j=1 Y1, j −Y2, j. Then, W1 and W2 are zero-mean

variables since Xi, j, i ∈ [n], j ∈ [m] are IID and the obfuscating test-channels are statistically

identical so that Yi, j, i ∈ [n], j ∈ [m] are IID. Next, we find the covariance matrix of (W1,W2).

First, we find the variance of W1:

Var(W1) = E(W2
1 ) = E


 1
√

m

m∑
j=1

(X1, j − X2, j)


2

(a)
=

1
m

m∑
j=1

E
((

X2, j − X1, j

)2
)

+
1
m

∑
i, j

E
((

X1,i − X2,i)(X1, j − X2, j

))
(b)
= E

((
X1,1 − X2,1

)2
) (c)

= P(X1,1 , X2,1) = PX1,X2(0, 1) + PX1,X2(1, 0)
(d)
= 2PX(0)PX(1),

where in (a) we have used the fact that the dataset elements are identically distributed and the

test-channels are statistically identical, (b) follows since (X1,i, X2,i) is independent of (X1, j, X2, j)

since the dataset elements are IID, (c) follows since X1,1−X2,1 ∈ {−1, 0, 1}, and (d) follows since

X1 and X2 are IID. Variance of W2 is similarly derived as:

Var(W2) = 2PY(0)PY(1) = 2
(
PX(0)PY |X(0|0) + PX(1)PY |X(0|1)

)(
PX(0)PY |X(1|0) + PX(1)PY |X(1|1)

)
The covariance between W1 and W2 is given by:

Cov(W1,W2) = E(W1W2) = E

 1
√

m

m∑
i=1

(X2,i − X1,i))
1
√

m

m∑
j=1

(Y1, j − Y2, j))


=

1
m

m∑
i=1

E
(
(X2,i − X1,i)(Y1,i − Y2,i)

)
= E

(
(X2,1 − X1,1)(Y1,1 − Y2,1)

)
= 2E(X2,1Y1,2) − 2E

(
X1,1Y1,1

)
= 2PX(1)PY(1) − 2PX,Y(1, 1) = 2PX(1)(PY(1) − PY |X(1, 1))



19

Let ΣW1,W2 be the covariance matrix of (W1,W2). We define W as the column vector consisting

of W1,W2 and define W ′ , Σ
−1
2

W1,W2
W. Then,

W ′
1 =

1
√

m

m∑
j=1

Σ
−1
2

W1,W2
(1, 1)(X2, j − X1, j) + Σ

−1
2

W1,W2
(1, 2)(Y1, j − X2, j),

W ′
2 =

1
√

m

m∑
j=1

Σ
−1
2

W1,W2
(2, 1)(X2, j − X1, j) + Σ

−1
2

W1,W2
(2, 2)(Y1, j − X2, j),

where Σ
− 1

2
W1,W2

(i, j), i, j ∈ {1, 2} is the (i, j)th element of the matrix Σ
− 1

2
W1,W2

. It should be noted that

Σ
−1
2

W1,W2
exists since ΣW1,W2 is positive semi-definite. It is straightforward to check that W ′

1,W
′
2 are

zero-mean and unit variance. Consequently, W ′
1,W

′
2 satisfy the properties of Theorem 3. Let

A , {w′ ∈ R2 : Σ
1
2
W1,W2

w′ ≤ 0}

Then, by Theorem 3, we have:

|P((W ′
1,W

′
2) ∈ A) − P((N′1,N

′
2) ∈ A)| ≤

(42 4√2 + 16)
√

m
E|Z|3,

where Z = (Z1,Z2), and

Z1 = Σ
−1
2

W1,W2
(1, 1)(X2,1 − X1,1) + Σ

−1
2

W1,W2
(1, 2)(Y1,1 − X2,1)

Z2 = Σ
−1
2

W1,W2
(2, 1)(X2,1 − X1,1) + Σ

−1
2

W1,W2
(2, 2)(Y1,1 − X2,1).

Note that

|Z| ≤ |Σ−
1
2

W1,W2
|F |[X2,1 − X1,1,Y1,2 − Y2,1]|,

where | · |F is the Frobenius norm. Let ΣW1,W2 = VΛV∗, where V and Λ are the singular value

decomposition matrices associated with ΣW1,W2 , V is unitary, and V∗ is the conjugate transpose

of V . So, Σ
− 1

2
W1,W2

= Λ−
1
2 V∗. So, |Σ−

1
2

W1,W2
|F ≤ |Λ

− 1
2 |F |V∗|F ≤ 4

√
λ∗

, where λ∗ is the smallest eigenvalue

of ΣW1,W2 and we have used the fact that |V∗|F = trace(VV∗) = trace(I2) = 2. Furthermore,

by the Gershgorin circle theorem [34], [35], we have λ∗ ≥ max(σ1,1 − |σ1,2|, σ2,2 − |σ2,1|). So,
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|Σ
− 1

2
W1,W2
|F ≤

4
λ∗

= θ. Let γ , E(|[X2,1 − X1,1,Y1,2 − Y2,1]|). Then, γ is given by:

γ = E

((
(X2,1 − X1,1)2 + (Y1,1 − Y2,1)2

) 3
2

)
= P

(
|X2,1 − X1,1| = 0, |Y1,1 − Y2,1| = 1

)
+ P

(
|X2,1 − X1,1| = 1, |Y1,1 − Y2,1| = 0

)
+ 2

3
2 P

(
|X2,1 − X1,1| = 1, |Y1,1 − Y2,1| = 1

)
= 2P(X = Y)P(X , Y) + 2

5
2 (PX,Y(0, 0)PX,Y(1, 1) + PX,Y(0, 1)PX,Y(1, 0))

So far, we have shown that:

|P((W ′
1,W

′
2) ∈ A) − P((N′1,N

′
2) ∈ A)| ≤

(42 4√2 + 16)
√

m
θγ.

Let N = [N1,N2], where N = Σ
1
2
W1,W2

N′. It is straightforward to show that P((N′1,N
′
2) ∈ A) =

FN1,N2(0, 0) = Q(PX, PY |X) and that ΣN1,N2 = ΣW1,W2 . As a result, from Equation (5), we have:

|E(dKRCC(Rd, R̂d)) − Q(PX, PY |X)| ≤
(42 4√2 + 16)
√

m
θγ.

Next, we evaluate the privacy cost. We have:

I(U; Fq,Y) = I(U; Y) + I(U; Fq|Y)

(a)
= I(U; Fq|Y) = I(U,Y; Fq) − I(Y; Fq),

where we have used the chain rule of mutual information in the first and last equality, and in (a)

we have used the fact that the dataset is independent of the identity of the victim (recall that the

victim is chosen randomly and uniformly from the dataset members, independently of dataset

elements). Furthermore, we have:

1
q

I(U,Y; Fq) =
1
q

q∑
j=1

I(YU,i j; F j) = I(PY , PF|Y).
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Additionally,

I(Y; Fq) = DKL(PFq ||PFq |Y)

Note that Y is a random unstructured code with single-letter distribution PY and hence is a good

code for a channel with transition probability PY |F and from [36, Theorem 7], we have

DKL(PFq ||PFq |Y) ≤ ζ + b
log

3
2 m
√

m
.

for some b > 0. Consequently,

I(PY , PF|Y) ≤
1
q

I(U; Fq,Y) ≤ I(PY , PF|Y) + ζ + b
log

3
2 m
√

m
.

This completes the proof. �

Appendix B

Proof of Theorem 2

From Theorem 1, we need to solve the following optimization problem:

Pε
Y |X = arg min

PY |X :I(U;Fq,Y)<ε
FN1,N2(0, 0)

= arg min
PY |X :I(U;Fq,Y)<ε

∫ 0

n1=−∞

∫ 0

n2=−∞

1
2π
√
|Σ|

exp
(
−

1
2

ntΣ−1n
)
dn1dn2

where, n =

n1

n2

.
Let us define p1 , PY |X(1|0), p2 , PY |X(0|1). and define variables N′1 = N1√

2Var(N1)
,N′2 = N2√

2Var(N2)
.

Note that P(N1 ≤ 0,N2 ≤ 0) = P(N′1 ≤ 0,N′2 ≤ 0). The covariance of N′1,N
′
2 is:

Σ′ =


1
2

1
2 − p′

1
2 − p′ 1

2


where p′ is defined as:

p′ ,
1
2
−

Cov(N1,N2)
2
√

Var(N1)Var(N2)
. (6)
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So,

Pε
Y |X = arg min

p1,p2:I(U;Fq,Y)<ε
FN′1,N

′
2
(0, 0)

= arg min
p1,p2:I(U;Fq,Y)<ε

∫ 0

n′1=−∞

∫ 0

n′2=−∞

1
2π
√
|Σ′|

exp
(
−

1
2

n′tΣ′−1n′
)
dn′

The eigenvalues of the covariance matrix Σ′ are λ1 = 1 − p′, λ2 = p′ and the eigenvectors are

the columns of V = 1
√

2


1√
1−p′

1
√

p′

1√
1−p′

− 1
√

p′

. Let us define n′′ = V tn′ Changing the variables in the

integral, we have:

arg min
p1,p2:I(U;Fq,Y)<ε

∫ 0

n′′1 =−∞

∫ −

√
1−p′

p′ n′′1

n′′2 =

√
1−p′

p′ n′′1

1
2π

exp(−
n′′1

2 + n′′2
2

2
)dn′′1

dn′′2

Form Equation (6) and using Cauchy-Schwarz inequality we have 0 < p′ < 1, so the inner integral

interval [
√

1−p′

p′ n′′1 ,−
√

1−p′

p′ n′′1 ] is decreasing as function of p′ for all values of n′′1 < 0. Hence,

to minimize the utility cost, we should take the maximum value of p′ such that I(U; Fq,Y) < ε.

That is, the optimization becomes

arg max
p1,p2:I(PY ,PY |F )≤ε

p′ = arg min
p1,p2:I(PY ,PY |F )≤ε

Cov(N1,N2)
√

Var(N1)Var(N2)
.

From the proof of Theorem 1, we have

Cov(N1,N2) = PX(1)(PY(1) − PY |X(1|1))

= PX(1)(p1PX(0) + (1 − p2)PX(1) − PY |X(1|1))

= PX(1)PX(0)(p1 + p2 − 1).

So, the optimization can be re-written as:

Pε
Y |X= arg min

p1,p2:I(PY ,PY |F )≤ε

p1 + p2 − 1√
(p1PX(0) + p2PX(1))(p1PX(0) + p2PX(1))

,

where p1 , 1− p1 and p2 , 1− p2. Note that we can restrict the minimization to p1 + p2 < 1 since

if p1 + p2 > 1 the objective function in the above optimization is positive and cannot achieve
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the minimum value since for p1 + p2 = 0 the value of zero is already achieved. So,

Pε
Y |X= arg min

p1,p2:I(PY ,PY |F )≤ε
p1+p2<1

p1 + p2 − 1√
(p1PX(0) + p2PX(1))(p1PX(0) + p2PX(1))

.

Next, we show that Cov(N1,N2)
√

Var(N1)Var(N2)
is i) increasing in p1 for any fixed p2, and ii) increasing in p2

for any fixed p1. Hence, we conclude that the optimal value is achieved at the boundary where

I(PY , PY |F) = ε since for any point not on the boundary, one either reduce p1 or p2 without

violating I(PY , PY |F) ≤ ε. To show i) it suffices to show that Cov2(N1,N2)
Var(N1)Var(N2) is decreasing in p1 for

any fixed p2 since Cov2(N1,N2) < 0 for p1 + p2 < 1. That is, we wish to show that the following

function is decreasing in p1 for fixed p2:

(p1 + p2 − 1)2

(p1PX(0) + p2PX(1))(p1PX(0) + p2PX(1))
=

p1 + p2 − 1
p1PX(0) + p2PX(1)

p1 + p2 − 1
p1PX(0) + p2PX(1)

.

Taking derivative of each component in the multiplication with respect to p1, we have:

∂

∂p1

p1 + p2 − 1
p1PX(0) + p2PX(1)

=
p1PX(0) + p2PX(1) + PX(0)(p1 + p2 − 1)

(p1PX(0) + p2PX(1))2 =
p2

(p1PX(0) + p2PX(1))2

and

∂

∂p1

p1 + p2 − 1
p1PX(0) + p2PX(1)

=
p1PX(0) + p2PX(1) − PX(0)(p1 + p2 − 1)

(p1PX(0) + p2PX(1))2 =
p2

(p1PX(0) + p2PX(1))2

Since both derivatives are positive, and both functions are negative-valued, the multiplication

has a derivative which is negative with respect to p1 for fixed p2. So, Cov2(N1,N2)
Var(N1)Var(N2) is decreasing

in p1 for any fixed p2. Hence, Cov(N1,N2)
√

Var(N1)Var(N2)
is increasing in p1 for any fixed p2 which proves i).

The proof of ii) follows similarly. We conclude that the optimum is achieved at I(PY , PY |F) = ε.

This completes the proof. �
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