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Abstract—The number of wireless devices which are connected
to a single Wireless Local Area Network continues to grow each
year. As a result, the orchestration of so many devices becomes a
daunting, resource–consuming task, especially when the resources
available at the single access point are limited, and it is hard to
anticipate which devices will request access at any given time.
On the other hand, the number of antennas on both the devices
and the access point grows as well, facilitating advanced joint
scheduling and coding techniques.

In this paper, we leverage the large number of antennas and
suggest a massive multiple-user multiple-input-multiple-output
(MU-MIMO) scheme using sparse coding based on Group Testing
(GT) principles. The scheme allows for a small subset of de-
vices to transmit simultaneously, without a preceding scheduling
phase or coordination, thus reducing overhead and complexity.
Specifically, we show that out of a population of N devices, it
is possible to jointly identify and decode K devices, unknown in
advance, simultaneously and without any scheduling. The scheme
utilizes minimal knowledge of channel state, uses an efficient
(in both run-time and space) decoding algorithm, and requires
O(K logNM) antennas, where M is the number of messages
per device. In fact, we prove that this scheme is order–optimal
in the number of users and messages. This is done by deriving
sufficient conditions for a vanishing error probability (a direct
result), bounding the minimal number of antennas necessary for
any such scheme (a converse result), and showing that these
results are asymptotically tight.

I. INTRODUCTION

Multiple-input-multiple-output (MIMO) systems have be-

come ubiquitous due to their increased reception and transmis-

sion quality, in both single and multi-user (MU) communica-

tions. In MU communication, most MU-MIMO works focus

on user selection (e.g., [1], [2]) as a possible solution to the

Multiple Access Channel (MAC) problem. Even the 802.11ax

standard, the state-of-the-art WiFi technology, solves the MAC

problem by scheduling users to dedicated frequency bands [3,

Chapters 3.3.4-3.3.6], scheduling only a very small group of

users simultaneously. Traditional user selection carries a lot

of overhead - complex optimization problems solved by a

centralized unit, information gathering (by message passing),

and the scheduling announcement. The announcements may

use dedicated resources - reducing system resource efficiency.

Collecting and processing Channel State Information (CSI) to

schedule users can be computationally hard when the number

of users is large, so optimal user scheduling is infeasible. Re-

ducing this complexity encompasses many challenges; Moving

the scheduling task to the users by means of self-scheduling

requires sophisticated mechanisms to identify them and their

transmitted codewords. Additionally, when no CSI is present,

the receiver is greatly limited in its processing options. E.g.,

using matched filters.

We address these challenges by combining two seemingly

unrelated ideas into a novel, order-optimal self-scheduling,

identification, and decoding scheme. The first is Index Mod-

ulation, and the other is Group Testing (GT). In Index Mod-

ulation, users selectively activate antennas at the receiver to

send information [4, Chapter 1.2] in addition to transmitting a

symbol. In such a scheme, it is easy to construct an algorithm

that identifies the transmitting user by the activated antenna’s

index. The symbol can be recovered in numerous ways. For

example, using a single threshold like in On-Off Keying [5].

Then, we revisit the GT problem, capable of finding K
ill patients (or defective items) out of a large population of

N patients [6], in order to devise a mechanism to identify

the senders and decode their information. Indeed, in GT, pa-

tients are tested together rather than individually, minimizing

the number of tests required to identify the K ill patients.

Specifically, in GT, the patients participating in each test

can be determined a-priori in the form of a test matrix.

After conducting all tests, the test conductor observes the

result vector and uses decoding algorithms, such as Chan’s

Noisy Column Matching (Noisy CoMa) [7], [8] to identify

the defective items.

In the context of user scheduling and identification, the

users and their messages are analogous to the population of N
items. The K items of interest are the self-scheduled users who

actually send messages whose identity is unknown. The test

matrix is akin to a binary codebook. The tests conducted are

usually energy detection results on different system resources

such as timeslots, frequency bands, or, as in the suggested

scheme, antennas activated.

Modern literature suggests GT-originated codes to devise

communication protocols capable of joint decoding many

messages using a simple decoding algorithm. For example,

in [9], Robin and Erkip proposed an energy-efficient sensor

discovery in power-constrained clustered networks. Cohen et

al. proposed a GT-based communication protocol in [10],

based on the binning ideas from [11]. Robin and Erkip have

analyzed a protocol similar to [10] in [12], where they assumed

a Rayleigh Fading Channel. The main idea is to reduce

the continuous signal and noise models into discrete binary

models, using energy detection, followed by Noisy CoMa for
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decoding. The energy detection suggested straightforwardly

compares the energy at the timeslot to some threshold.

These works assumed transmissions over timeslots and can

be easily extended to frequency bands. However, the extension

to the spatial dimension, where antennas act as test tubes, is

far from trivial; Unlike different timeslots or frequency bands,

transmissions from each antenna directly affect the signals

at all receiving antennas. In other words, adjusting existing

schemes for MU-MIMO requires careful design to prevent

self-interference.

In the suggested scheme, users have a codebook generated

using methods from GT. The users leverage their massive

number of antennas to null their transmitted signals’ energy

in the antennas corresponding to zeros in their allocated

codeword, and allow energy at the antennas corresponding to

ones. The receiver uses energy detection (converting channel

output to a binary vector) to estimate which antenna is targeted

by at least one user. The binary vector is treated as the result

vector of GT and is the input to a decoding algorithm which

returns the sent messages (consequently, the identities of the

transmitting users as well).

Our scheme requires no scheduling overhead (headers,

control messages, CSI collection at the receiver, etc.) and has

extraordinarily low complexity; Codeword length is linear in

the number of antennas. Their growth is logarithmic in the

total number of users in the system and is linear with the

number of self-scheduled users. Each antenna is equipped

with a simple energy detector which compares the input

energy to some pre-defined energy threshold. The decoding

algorithm is efficient in both run-time and space, requiring

only O(NMK logNM) operations and no additional space

aside from trivially storing the codebook. Our suggested

scheme’s space requirements significantly improve the Ω(N)
space complexity required for optimal user scheduling. We

analyze the error probability of the scheme, find a lower bound

and scaling laws of the number of antennas, and show that it

is order-optimal in either the number of users or the number

of messages per user.

The rest of the paper is organized as follows: We introduce

our notations and the model in Section II. Section III describes

our GT-based scheme and discusses the results. We thoroughly

analyze our system in Section IV. In Section V, we formulate

a necessary lower bound (converse) on the number of antennas

for a vanishing error probability. In Section VI, we show

numerical evaluations of our results and compare our scheme

with existing technologies. Section VII concludes the paper.

II. SYSTEM MODEL

A. Notation

Matrices will appear in bold (e.g., H) and vectors are

underlined (e.g., x). We shall use subscript for user indices

(e.g., Hi), components of a vector or matrix are specified as

a subscript after squared parentheses (e.g., [y]m is y’s mth

component, [Hk]i,j is Hk’s component in the ith row and jth

column). All logarithms in this article are in base two. When

they are not, we will specify the log base explicitly or write

ln(·) in the case of the natural logarithm. We write [n] as a

shorthand notation for the set {1, 2, . . . , n}. We write 2S as

the power set of a set S (e.g., 2[n]). We use a single subscript

after squared parentheses of a matrix to specify a column of

a matrix. E.g., [Hk]j is Hk’s jth column. We use (·)T for the

transpose operation and (·)∗ for the Conjugate Transpose. We

write ℜ(X) and ℑ(X) to denote the real and imaginary parts

of some complex variable X , respectively.

B. Model

We assume a time-slotted network of N users where K ≪
N of them simultaneously transmit to a single receiver. In

each time slot, a different set of K users may transmit, and

their identity is unknown a-priori. Every user wishes to send

one out of M possible messages using a single time slot and

a single frequency band, and there is no a-priori knowledge

about the distribution of which a message is sent. The kth

user’s messages are Wk = {wk,1, wk,2, . . . , wk,M}. WLOG,

the transmitting users are [K], and each user wishes to transmit

its first message, wk,1.

Each transmitter has Mt antennas, whereas the receiver has

Mr antennas. Each transmitter has complete knowledge of its

channel state at any given time but has no channel state of

other transmitters (CSIT model, as named in [13, Chapter 10]).

The receiver, on the other hand, has no CSI. The channel

matrix of the kth user is Hk ∈ CMr×Mt . Each entry in Hk is a

zero-mean Complex Gaussian Random Variable (CGRV). We

also assume a zero-mean White Complex Gaussian Additive

Noise, n ∈ CMr×1, where [n]i ∼ CN (0, N0) for all i.
Since Hk is known to the kth transmitter, its encoder is

a function that maps some wk ∈ Wk to a complex vector

xk ∈ CMt×1. The choice of xk also depends on the CSI, for

example, by beamforming. Mathematically:

Ek :Wk × C
Mr×Mt → C

Mt×1 (1)

The transmission cannot exceed some power level, P . I.e.,

‖xk‖2 ≤ P . For convenience, we shall assume each compo-

nent of Hk has a unit variance1, that is, [Hk]i,j ∼ CN (0, 1)
for all i, j, k. Finally, the receiver obtains

y =

K∑

k=1

Hkxk + n. (2)

The decoder uses y to obtain the messages sent and infer

the identity of the K users. Hence, the decoder is a function

D : CMr×1 →
N∏

k=1

Wk × [N ]N . (3)

The product taken in this case is the Cartesian Product.

Messages and identities of silent users are defined as ∅ and

are omitted from the function output2.

We assume Mr = Mt, and a Massive MIMO settings, so

1 ≪ Mt,Mr. When a system has a minuscule number of

1The assumption of unit variance at the channel matrix can be interpreted
as the normalization of the power constraint with the fading power. I.e., P is
not the transmitted power perse, but the average SNR per antenna.

2This definition allows decoders to output any number of messages up to
N , assuming each user sends up to one message per time slot.
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antennas, one can use additional time slots/frequency bands

to compensate for the difference. E.g., if our solution requires

L = l·Mr antennas, use l time slots. In each time slot, save the

channel output to obtain {y
i
}li=1. Finally, y can be obtained

by concatenation: y = (yT
1
, yT

2
, . . . , yT

l
)T .

Throughout, we will give expressions valid for any N , K ,

and M, yet we will focus on their relationship such that the

error probability, defined below, will vanish. We say that the

system is message-user reliable if

P(D(y) 6= (w1,1, w2,1, . . . , wK,1
︸ ︷︷ ︸

The sent messages

, [K]
︸︷︷︸

Identities

)) −−−−−→
N,M→∞

0. (4)

That is, the decoder obtains exactly K messages, and the

correct ones. Additionally, it must correctly identify the cor-

responding users.

C. Rates

Each user has M codewords, hence sends logM bits

per transmission. When identifying the K users, the receiver

decodes additional log
(
N
K

)
bits. For an approximation for large

N , replace log
(
N
K

)
with K logN . We thus obtain a sum-rate

of K logM+K logN = K logNM bits per channel use.

We are interested in comparing this rate with the ergodic

sum-rates. The ergodic sum-rate has been established in [14]

(albeit for models with CSI at the receiver). They defined and

used capacity notations to approximate the capacity of MU-

MIMO systems to scaled (by min{KMt,Mr}) versions of

single-user to single receiver ergodic capacity, where each

party has exactly one antenna. When Mr < KMt, their

approximation has errors bounded by a logarithmic (in KMt)

term. Adapting their result, without the capacity notation, to

our system model yields the ergodic sum-rate with CSIT [14,

Equation (40)]:

CFull CSI ≈Mr · E[log(1 + ρ|[H1]1,1|2)]
+O(log(1 +KMt −Mr))

≤Mr log(1 + ρ) +O(log(KMr)) (5)

Where ρ , P
N0

. The last transition follows from Jensen’s

Inequality and the fact that |[Hk]i,j |2 ∼ Exp(1). We justify

this claim with Lemma 4 below.

For comparison, we are also interested in the settings where

all users are already scheduled. Namely, users are scheduled

using Round Robin (RR). In RR, in each time slot, exactly one

user (whose identity is well-known) transmits but may transmit

at the highest rate possible. Hence, the average ergodic Rate

approximation is K
N

times the approximation for a single user

given in [14, Equation (37)]:

CRR ≈
K

N
·Mr log(1 + ρ) (6)

III. A MIMO-GT-BASED TRANSMISSION SCHEME

In this section, we describe our suggested scheme in depth.

The scheme is comprised of three parts; codebook generation,

transmission scheme, and the receiver algorithm. The code-

book generation is a random codebook whose components

are i.i.d. Bernoulli random variables. To transmit a codeword,

each transmitter beamforms its signals to null the energy at

all antennas whose indices correspond to zeros in the desired

codeword. The receiver obtains the signals, and compares them

to some threshold, creating a binary vector. This binary vector

is sent to a GT-decoding algorithm, namely Noisy CoMa, to

obtain the codewords. We now describe each part in depth.

First, we generate NM binary codewords and distributeM
codewords to each user. Each codeword is of length Mt = Mr.

Each bit in these codewords is generated using i.i.d. Bernoulli

distribution with parameter p, which would be determined

later.

To transmit the jth codeword, cj ∈ {0, 1}Mr×1, the ith

user takes the following procedure: Let Zj , {l : [cj ]l =

0}. Construct HZj
, {([HT

i ]l)
T }l∈Zj

∈ C|Zj|×Mt . That is,

collect all rows of Hi whose index corresponds to a zero in cj .

Now, calculate the orthonormal basis of HZj
’s nullspace, and

take an arbitrary linear combination of them, which holds the

power constraint, to obtain xi. We dub this technique as ”one-

dimensional Randomized Zero-Forcing” (RZF) beamforming.

The version of RZF we used in the simulations appears in

algorithm 1.

Algorithm 1 Randomized Zero-Forcing (H, c)

Input:

A channel matrix, H

Codeword to transmit, c.
Output:

Legal signal vector to transmit, x
Algorithm:

Calculate Z , {i : [c]i = 0}
Construct HZ , {([HT ]l)

T }l∈Z
VZ ← Orth(NullSpace(HZ)) ⊲ HZ’s nullspace

orthonormal basis.

v ←∑Mr−|Z|
m=1 [VZ ]m ⊲ Arbitrary vector spanned by VZ

x←
√
P

‖v‖2
· v ⊲ Ensure x holds the power constraint

return x

A user utilizing RZF, in the absence of the additive noise,

assures that the receiver reads no energy from the antennas

whose indices correspond to zeros. In other antennas, there

is some desirable (and optimizable) energy leakage. K users

are transmitting similar signals, summed by the channel. As a

result, the receiver obtains energy at antennas corresponding to

at least one ’1’, resulting in a Boolean sum of all transmitted

codewords. Due to the additive noise, the receiver uses an

energy threshold and a relaxed decoding algorithm to obtain all

K codewords. We note that RZF is not optimal; It is possible

to pick a vector from HZj
’s nullspace that maximizes the SNR

at the antennas corresponding to ones. However, analyzing the

scheme with the optimized vector can be complex and does

not substantially change the qualitative discussion in terms of

the order-optimality we wish to accomplish.

The receiver obtains y according to (2), and compares |[y]i|2
to an energy threshold N0γ for all i. γ will be selected later.

The result of the comparison, Y , is the result vector in the GT

context. Clearly, a hard decision using energy detection may

introduce erroneous bits in Y . The errors are characterized by



4

crossover probabilities from ’1’ to ’0’ and vice-versa, denoted

by q10 and q01, respectively. They are given in the following

two results.

Lemma 1. For any γ, the crossover probability from ’0’ to

’1’ is

q01 = e−γ .

Note that q01 does not depend on N0, as the threshold is

normalized by it.

Lemma 2. For any γ, the crossover probability from ’1’ to

’0’ is

q10 =

K∑

j=1

(
K

j

)
pj(1− p)K−j

1− (1 − p)K

(

1− exp

{

− γ

jρ+ 1

})

.

The proofs for both results can be found in Subsection IV-A.

We then use Y as an input to the Noisy CoMa algorithm, to

obtain the messages. Noisy CoMa outputs all codewords with

at least 1−q10(∆+1) common ’1’s with Y (∆ will be selected

later). Since it has the complete codebook, the decoder also

infers the users’ identities without a dedicated header.

Noisy CoMa may output any number of codewords between

0 and NM (consequently, any users ranging from 0 to N ).

Hence, we have to consider two types of errors; the first is

miss-detection, where Noisy CoMa fails to find at least one

transmitted codeword. The other error is a false alarm, where

Noisy CoMa declares at least one excess codeword (that was

not transmitted). The probabilities of these events are denoted

by pMD and pFA, respectively. pFA also covers the event

of identical codewords by its definition. If pe is the error

probability of MIMO-GT, then pe ≤ pMD + pFA. Our main

result is the following.

Theorem 3. Fix N , K , and M. Let δ > 0. Set

Mt = Mr ≥ (1 + δ)βK lnNM for some constant β ≥ 1.

Then, MIMO-GT achieves max{pFA, pMD} ≤ (NM)−δ.

Consequently, MIMO-GT is message-user reliable.

We note that Theorem 3 defines the relationship between

K , N , M and Mr such that the error probability is less than

(NM)−δ. As long as Mr ≥ (1 + δ)βK lnNM, the theorem

asserts a vanishing error probability. The main concern of this

work is to attain vanishing error probability while minimizing

receiver complexity - including run-time and hardware require-

ments embodied in the number of antennas. Noisy CoMa’s

run-time is dictated by the length of the GT result vector,

which is the number of receiving antennas, Mr, in MIMO-

GT and the product NM.

The minimizer, β∗, is a function of K , ρ, γ, ∆ and p as

we show in Subsection IV-B. If we write p = α
K

, a common

choice in GT, and bound γ to the interval [1,max{1, ρ}] then,

for large enough K , β∗ is bounded by terms independent of

N , M or K for any ρ.

1 ≤ β∗ ≤ 8e2max{ρ,1}(ρ+ 1)2

3α(1− α
2 )

4ρ2
(7)

The bound is loose for high SNR regions, but it is possible

to show that β∗ converges to some constant when the SNR

grows. We elaborate on β∗’s scaling laws in Subsection IV-C.

Since MIMO-GT sends K logNM bits per channel use,

assuming the choice of the best possible Mr, MIMO-GT’s

sum-rate is

R = K logNM =
Mr

(1 + δ)β∗ ln 2
. (8)

Similarly, the Spectral Efficiency of MIMO-GT is

η =
K logNM

Mr

=
1

(1 + δ)β∗ ln 2
. (9)

We would like to emphasize that β∗ is a function of ρ, hence

both (8) and (9).

The system’s sum-rate in (8) can be compared with (5) and

(6). We obtain the following ratios.

CFull CSI

R
≈ (1 + δ)β∗ ln(1 + ρ) +O

(
log(K2 logNM)

K logNM

)

(10)

CRR

R
≈ K

N
(1 + δ)β∗ ln(1 + ρ) (11)

We observe two kinds of losses; The first is an SNR loss,

where we analyze how the rate ratios scale with ρ. The other

loss is the User-Codebook Loss, where we observe how the

rate ratios scale with N , M, and K .

In (10), the User-Codebook Loss tends to zero, so MIMO-

GT is order-optimal when either the number of users or the

number of messages grows. The User-Codebook Loss in (11)

vanish when N → ∞ and K = o(N). I.e., if K is small

enough, scheduling is ineffective as it forces all users but one

to idle, and MIMO-GT is far superior.

The SNR Loss, however, scales differently. When ρ → 0
β∗ → ∞ by corollary 13 below, hence all ratios tend to

infinity. This is a direct result of Shannon’s Power Efficiency

Limit (SPEL); it is a lower bound on the energy per bit,

equivalently on ρ, below a communication system cannot

achieve vanishing error rates. This law limits our system at

low SNR due to the energy detection phase.

IV. ANALYSIS - DIRECT RESULT

This section analyzes MIMO-GT’s error probability and

scaling laws. In Subsection IV-A we calculate q10 and q01.

We elaborate on Noisy CoMa’s performance analysis in Sub-

section IV-B, and we study β’s scaling laws in Subsection

IV-C. In Section V, we give a matching converse result and

discuss its tightness.

A. Calculating the Crossover Probabilities

MIMO-GT uses energy detectors to implement hard deci-

sions at each antenna. If no additive noise exists, the result

vector, Y , is a Boolean Sum of the K transmitted messages.

When the additive noise is present, we use an energy threshold

to convert |y|2 to Y . Therefore, we are interested in the

following random variable.

[Y ]i =

{

1 |[y]i|2 > N0γ

0 |[y]i|2 ≤ N0γ
(12)

[Y ]i estimates whether at least one user targeted the ith

antenna. [Y ]i are i.i.d due to the codebook construction and
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channel statistics. Naturally, the estimation may err - either due

to weak reception (caused by deep fade or strong canceling

noise), denoted by q10, or since the additive noise overcame

the threshold when no user targeted the antenna (denoted by

q01). Calculating these probabilities is similar to the derivation

of a non-coherent detector for i.i.d Rayleigh fading channels

in [15, Chapter 3.1.1], albeit adjusted for energy detection in a

MU-MIMO environment. Note that the detection differs from

that in [16], since our receiver has no CSI.

To calculate q01 and q10, we calculate the distribution of

|[y]i|2, conditioned on the number of users targeting the ith

antenna. The distribution is given in the following lemma.

Lemma 4. Assume each transmitter uses RZF. Let Ji be the

number of users targeting the ith antenna. Then,

|[y]i|2
∣
∣Ji ∼ Exp

(
1

JiP +N0

)

.

Proof. Each transmitter uses RZF by taking an arbitrary vector

that holds the power constraint from the nullspace of their

channel matrix, corresponding to the zeros in their codeword.

I.e.,

yi =

Ji∑

k=1

Mr∑

j=1

[Hk]i,j [xk]j + [n]i (13)

The inner sum,
∑Mr

j=1[Hk]i,j [xk]j , is the standard non-

complex inner product. In other words, a linear transformation

of ([HT
k ]i)

T . Since [Hk]i,j are jointly Gaussian, the inner sum

is a single CGRV whose mean is zero, and its variance is P
[17, Chapter 6.4.1]. The outer sum sums Ji i.i.d RVs, resulting

in a CGRV whose mean is zero and variance is JiP . Finally,

the channel adds the additive noise, [n]i, and we obtain that

[y]i ∼ CN (0, JiP +N0).

Now, we calculate the distribution of |[y]i|2. We are inter-

ested in the distribution of W , |[y]2i | = ℜ([y]i)2 +ℑ([y]i)2.

The calculation has two steps - first, we calculate Z ,
√
W ’s

CDF. Then, we show that W ∼ Exp( 1
2σ2 ). For simplicity,

we denote σ2 , JiP+N0

2 . [y]i ∼ CN (0, 2σ2), so both its real

and imaginary parts are zero-mean σ2-variance Gaussians. I.e.,

ℜ([y]i),ℑ([y]i) ∼ N (0, σ2).

FZ(z) = P(Z ≤ z) (14)

= P
(√

ℜ([y]i)2 + ℑ([y]i)2 ≤ z
)

(15)

=

∫∫

√
x2+y2≤z

1

2πσ2
exp

{

− x2 + y2

2σ2

}

dxdy (16)

=

∫ z

0

∫ 2π

0

r

2πσ2
exp

{

− r2

2σ2

}

dθdr (17)

=

∫ z

0

r

σ2
exp

{

− r2

2σ2

}

dr (18)

By deriving the CDF, we obtain that Z’s PDF is

fZ(z) =

{
z
σ2 e

− z2

2σ2 z ≥ 0

0 z < 0
. (19)

When w < 0, there is no solution to w = z2 (as a function

of z). Hence, fW (w) = 0 for any w < 0. In any other case,

z = ±√w. Now we are ready to calculate W ’s PDF.

fW (w) =
fZ(−

√
w)

|∂w
∂z
| +

fZ(
√
w)

|∂w
∂z
| (20)

=
1

2
√
w

(
fZ(−

√
w) + fZ(

√
w)

)
(21)

=
1

2
√
w

(

0 +

√
w

σ2
e−

w

2σ2

)

(22)

=
1

2σ2
e−

w

2σ2 (23)

Step (20) is the Random Variable Transformation Theorem

[17, Chapter 6]. Finally, W ’s PDF is given by

fW (w) =

{
1

2σ2 e
− w

2σ2 w ≥ 0

0 w < 0
. (24)

Which is the PDF of an exponentially distributed random

variable with mean 2σ2. I.e., |[y]2i | ∼ Exp( 1
JiP+N0

).

When each transmitter has a random codebook generated

by i.i.d coin tosses with probability p for ’1’, Ji ∼ Bin(K, p).
We can thus calculate the probabilities

q01 = P(|[y]i|2 > N0γ | Ji = 0) (25)

q10 = P(|[y]i|2 ≤ N0γ | Ji ≥ 1). (26)

We will start with q01.

Proof of Lemma 1.

q01 = P(|[y]i|2 ≥ N0γ | Ji = 0) (27)

=

∫ ∞

N0γ

1

N0
e−

t
N0 dt (28)

= e−γ (29)

Now, we move to calculate q10.

Proof of Lemma 2.

q10 = P(|[y]i|2 ≤ N0γ | Ji ≥ 1) (30)

=
1

P(Ji ≥ 1)

K∑

j=1

P(|[y]i|2 ≤ N0γ | Ji = j) (31)

=
K∑

j=1

(
K

j

)
pj(1− p)K−j

1− (1 − p)K
P(|yi|2 ≤ N0γ | Ji = j)

(32)

=

K∑

j=1

(
K

j

)
pj(1− p)K−j

1− (1 − p)K

(

1− exp

{

− N0γ

jP +N0

})

(33)

=

K∑

j=1

(
K

j

)
pj(1− p)K−j

1− (1 − p)K

(

1− exp

{

− γ

jρ+ 1

})

(34)
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B. Decoding Error Probability

We shall follow the footsteps of [7, Section V.B], which

analyzed the Noisy CoMa algorithm for a Binary Symmetric

Channel. However, herein, the error pattern is different, with

non-symmetric errors; hence the analysis differs. We formally

define the criterion used by Noisy CoMa to obtain the mes-

sages from the output vector Y .

Definition 1 (Noisy CoMa Decision Criterion). Fix ∆ > 0.

Denote supp(x) as the set of indices where x has non-zero

components. Let Tj , |supp(cj)| and Sj , |supp(cj) ∩
supp(Y )|. Noisy CoMa’s declares that cj has been transmitted

if and only if Sj ≥ Tj(1− q10(∆ + 1)).

The relaxation criterion, 1− q10(∆ + 1), is the same as in

[12, Chapter IV]. To put it simply, Noisy CoMa examines

all codewords and discards all ”definitely-not-transmitted”

codewords (definitely-not-defective items in the GT context)

whose matching fraction with Y is less than 1− q10(∆ + 1).

First, we consider the probability that some antenna reads

’1’, p1. I.e., p1 , P([Y ]i = 1). We can calculate this

probability by calculating its complement,

p0 = (1− (1− p)K)q10 + (1− p)K(1 − q01). (35)

Intuitively, p1 is the probability that some component of a

transmitted codeword is ”hidden” by other codewords or noise.

Lemma 5. Fix some δ > 0. Set Mr ≥ (1+ δ)β1K lnNM. If

β1 ≥
1

Kp
(
1− exp

{
− 2(q10∆)2

})

then pMD ≤ (NM)−δ .

Proof. To prove lemma 5, we introduce the following propo-

sition.

Proposition 6. The probability of missing at least one true

codeword is bounded from above by

pMD ≤ K exp

{

−Mrp
(
1− e−2(q10∆)2

)
}

.

Proof. Denote FBin(k;n, p) ,
∑k

i=0

(
n
i

)
pi(1− p)n−i.

pMD ≤

K

Mr∑

i=0

P(T1 = i)P(S1 < T1(1− q10(∆ + 1))|T1 = i) (36)

= K

Mr∑

i=0

(
Mr

i

)

pi(1− p)Mr−i
P(S1 < i(1− q10(∆ + 1)))

(37)

= K

Mr∑

i=0

(
Mr

i

)

pi(1− p)Mr−i (38)

i∑

l=i−i(1−q10(∆+1))

(
i

l

)

qi10(1− q10)
i−l

≤ K

Mr∑

i=0

(
Mr

i

)

pi(1 − p)Mr−ie−2i(q10∆)2 (39)

= K
(
1− p

(
1− e−2(q10∆)2

))Mr
(40)

≤ K exp

{

−Mrp
(
1− e−2(q10∆)2

)
}

(41)

In (36), we used the union bound and the law of total

probability. (37) is derived from the random codebook con-

struction where S1 ∼ Bin(Mr, p). In (38), we used the fact

that the local decision rule is identical among the antennas,

so the probability for bit flips is symmetric (the number of

flipped bits is binomially distributed with parameters Mr, q10).

Additionally, we used the binomial distribution’s symmetry.

I.e., FBin(k;n, p) = FBin(n − k;n, 1 − p). In equation (39),

we used Hoeffding bound, FBin(k;n, p) ≤ exp{−2n(p− k
n
)2}

for any p − k
n

> 0 [18]. (40) used the binomial theorem to

combine the sum of products into a power of a sum. In (41),

we used the Taylor Expansion of exp{−x(1− a)} at x0 = 0.

That is, e−x(1−a) = 1− (1− a)x+ O((1 − a)2x2).

Now we are ready to prove lemma 5.

pMD ≤ K exp

{

−Mrp
(
1− e−2(q10∆)2

)
}

(42)

= K exp

{

− (1 + δ)β1(K lnNM)p
(
1− e−2(q10∆)2

)
}

(43)

≤ K exp

{

− (1 + δ)(K lnNM)p
(
1− e−2(q10∆)2

)

Kp
(
1− e−2(q10∆)2

)

}

(44)

= K exp
{
− (1 + δ) lnNM

}
(45)

= K(NM)−(1+δ) ≤ (NM)(NM)−(1+δ) = (NM)−δ

(46)

In (43) and (44), we utilized lemma 5’s conditions.

Likewise, we have a sufficient condition on pFA.

Lemma 7. Fix some δ > 0. Set Mr ≥ (1 + δ)β2K lnNM
and ∆ < p0

q10
− 1. If

β2 ≥
1

Kp
(
1− exp

{
− 2(p0 − q10(∆ + 1))2

})

then pFA ≤ (NM)−δ .

Proof. The proof of lemma 7 is similar to lemma 5’s, with

the following upper bound:

Proposition 8. Assume ∆ < p0

q10
− 1. The probability of

declaring at least one false codeword is bounded from above

by

pFA ≤ (NM−K) exp

{

−Mrp
(
1− e−2(p0−q10(∆+1))2

)
}

.

The additional condition ∆ < p0

q10
− 1 is required for the

Hoeffding Bound to hold.
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Proof.

pFA ≤ (NM−K)

Mr∑

i=0

P(T1 = i)

· P(S1 ≥ T1(1− q10(∆ + 1))|T1 = i) (47)

= (NM−K)

Mr∑

i=0

(
Mr

i

)

pi(1 − p)Mr−i

·
i∑

l=i(1−q10(∆+1))

(
i

l

)

pi1(1− p1)
i−l (48)

≤ (NM−K)

Mr∑

i=0

(
Mr

i

)

pi(1 − p)Mr−i

· e−2i(1−p1−q10(∆+1))2 (49)

= (NM−K)
(
1− p

(
1− e−2(p0−q10(∆+1))2

))Mr
(50)

≤ (NM−K) exp

{

−Mrp
(
1− e−2(p0−q10(∆+1))2

)
}

(51)

In equation (49) we used Hoeffding bound like in the proof

of proposition 6, which is applicable when ∆ < p0

q10
− 1. Any

other transition is identical to the proof of proposition 6.

Now we prove lemma 7 similarly to lemma 5.

pFA ≤ (NM−K) exp

{

−Mrp
(
1− e−2(p0−q10(∆+1))2

)
}

(52)

= (NM−K) exp

{

− (1 + δ)β2(K lnNM)p (53)

·
(
1− e−2(p0−q10(∆+1))2

)
}

≤ (NM−K) exp

{ −(1 + δ)(K lnNM)p

Kp
(
1− e−2(p0−q10(∆+1))2

) (54)

·
(
1− e−2(p0−q10(∆+1))2

)
}

= (NM−K) exp
{
− (1 + δ) lnNM

}
≤ (NM)−δ

(55)

Both propositions 6 and 8 hold due to K ≤ N . By carefully

examining equations (46) and (55) we obtain the following

corollary.

Corollary 9 (K’s Scaling Law). If K = Nε for some

0 ≤ ε ≤ 1 and Mr ≥ (1 + δ)max{β1, β2}K lnNM, then

max{pMD, pFA} ≤ (NM)−δ.

We are interested in a vanishing error probability for our

scheme, so we would like to take β such that both pMD and

pFA tend to zero. In other words, an appropriate choice of β

is the solution to the optimization problem of minimizing the

number of antennas required for MIMO-GT.

min
∆,p,γ∈R

max{β1, β2}

s.t.







0 < ∆ < p0

q10
− 1

0 < p ≤ 1
2

0 < γ

(56)

The following lemma simplifies the optimization problem.

Lemma 10. The optimization problem in (56) is equivalent

to, and has the same solution as the following optimization

problem:

min
p,γ∈R

1

Kp
(
1− exp{− 1

2 (1− p)2K(1 − q10 − q01)2}
)

s.t.

{

0 ≤ p ≤ 1
2

0 ≤ γ

which has a unique solution.

The proof is technical and appears in Appendix A-A. Proof

Sketch: The proof has five steps; (1) simplify ∆’s upper bound,
p0

q10
− 1, to (1 − p)K 1−q01−q10

q10
. (2) eliminate the dependency

on ∆ and convert the minimax problem into a minimization

problem (by noticing that β1 and β2 have opposing trends in

∆, so ∆∗ is their equalizer). (3) by defining p , α
K

, we bound

α∗ to the interval [0, e−1]. (4) show that for each α there exists

a unique γ∗ minimizing the objective function. By putting all

steps together, by the continuity of the objective function, a

solution exists. Step (4) assures its uniqueness. Finally, the

final step shows that numerical algorithms will converge to

(p∗, γ∗), which is an interior point in [0, 12 ]×[0,∞), by putting

all previous steps together and the fact that some boundary

points are infeasible.

C. Antenna Scaling Laws

This subsection shows different scaling laws on β∗, the

solution to the optimization problem in lemma 10, as a

function of K and ρ. First, we shall show that β∗ converges

to some constant term when K →∞.

Proposition 11. Let p = α
K

, where α > 0 is some constant.

If 1 ≤ γ ≤ max{1, ρ}, then

β∗ ≤ 8e2max{1,ρ}(ρ+ 1)2

3α(1− α
2 )

4ρ2
.

The proof is attached in appendix A-B. Proof Sketch: The

proofs consist of three steps; bound q10 from above by its

largest addend. Next, bound (1 − α
K
)2K from below by

substituting K = 2. Finally, apply Taylor series expansion

successively to obtain the bound.

β∗ ≥ 1 and proposition 11 bounds β∗ from above. Hence,

β∗ converges to some constant when K → ∞ regardless of

what trends β∗ exhibits when K grows.

Lemma 12. Let p = α
K

for some α > 0. Let β∗ be the solution

to the optimization problem in lemma 10. Then, β∗ converges

to some constant when K →∞.
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Proof Sketch: When p = α
K

we can invoke the Poisson

Limit Theorem on q10. Any other term dependant on K tends

to some exponent powered by α, so β∗ tends to some constant.

Complete proof can be found in appendix A-C.

For β∗’s scaling with ρ, we observe that the expression

in lemma 10 is not a function of ρ, except for q10 (lemma

2). From this observation, we have the following (immediate)

result:

Corollary 13. If ρ → 0 then β∗ → ∞. If ρ → ∞ then

β∗ → const.

V. CONVERSE

In this section, we shall derive a lower bound on the number

of antennas.

Theorem 14. Assume N users, each with a M-sized code-

book. Assume K of them wish to transmit a single codeword.

Then, a lower bound on the number of antennas, Mr, is

required to obtain the K messages reliably when using a hard-

decision criterion at the receiver is

Mr ≥
K log NM

K

CBAC(q01, q10)
.

Where CBAC(q01, q10) is the BAC capacity ([19])

CBAC(q01, q10) =
q01

1− q01 − q10
H(q10) (57)

− 1− q10
1− q01 − q10

H(q01) + log

(

1 + 2
H(q01)−H(q10)

1−q01−q10)

)

.

H(·) is the binary entropy function.

Proof Sketch: The proof is similar to [8, Chapter IV]. Notice

that the K messages, their corresponding codewords, the

”clean” Boolean sum, the noisy output vector, the estimated

codewords, and estimated messages form a Markov Chain. We

use Fano’s Inequality and Data Processing Inequality to bound

the entropy of the messages and use algebraic manipulations

to obtain the result.

Proof. Denote Ỹ as the noiseless Y . It is the column-wise

Boolean sum of the K transmitted codewords. Let W ∈
{1, 2, . . . ,

(
N
K

)
MK} be the index of the set corresponding to

the K messages transmitted. The codewords corresponding to

W are C(W). Observe that we can treat Y as an output of

some discrete channel (characterized by q10 and q01) whose

input is Ỹ . Notice the following Markov Chain

W → C(W)→ Ỹ → Y → Ĉ(Ŵ)→ Ŵ . (58)

Using the definition of mutual information, we have

H(W) = H(W|Ŵ) + I(W ; Ŵ). (59)

We assume we have no prior information on the messages

or users, so W is uniform on {1, 2, . . .
(
N
K

)
MK}. This is

equivalent to H(W) = log
(
N
K

)
MK . Using Fano’s Inequality,

we have

H(W|Ŵ) ≤ 1 + pe log

(
N

K

)

MK . (60)

We have the following chain of inequalities

I(W ; Ŵ) ≤ I(Ỹ ;Y ) (61)

= H(Y )−H(Y |Ỹ ) (62)

= H(Y )−
Mr∑

m=1

H([Y ]m|[Y ]1, . . . , [Y ]m−1, Ỹ )

(63)

=

Mr∑

m=1

H([Y ]m)−
Mr∑

m=1

H([Y ]m|[Ỹ ]m) (64)

=

Mr∑

m=1

[
H([Y ]m)−H([Y ]m|[Ỹ ]m)

]
(65)

=

Mr∑

m=1

I([Ỹ ]m; [Y ]m) (66)

≤MrCBAC(q01, q10) (67)

(61) is valid due to the Data Processing Inequality. In (63), we

have used the Entropy Chain Rule, whereas in (64), we used

the fact that [Ỹ ]m ([Y ]m) is independent of [Ỹ ]k ([Y ]k) for

all m 6= k. Now, we can put (67) and (60) into (59) to obtain

the following

log

(
N

K

)

MK ≤ 1 + pe log

(
N

K

)

MK

+MrCBAC(q01, q10). (68)

Rearranging both sides results in a lower bound on Mr

Mr ≥
(1− pe) log

(
N
K

)
MK − 1

CBAC(q01, q10)
. (69)

Next, using Stirling’s Approximation, we have

log

(
N

K

)

MK = log

(
N

K

)

+ logMK (70)

≈ K log
N

K
+K logM (71)

= K log
NM
K

(72)

Which results in

Mr ≥
(1− pe)K log NM

K

CBAC(q01, q10)
. (73)

Dividing the converse bound with our scheme’s number of

antennas yields

K log NM
K

CBAC(q01, q10)
· 1

(1 + δ)β∗K lnNM

=
1− logK

logNM
(1 + δ)β∗CBAC(q01, q10) ln 2

(74)

which tends to a constant when NM→ ∞. In other words,

our scheme’s number of antennas is asymptotically tight when

N andM grow as long as K < NM. According to corollary

13, the same claims hold when ρ→∞ and N ,M and K are

constant.
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Fig. 1. The detection error per antenna. Either an antenna fails to identify a
transmission (q10) or detects a non-existing transmission (q01) for N = 100,
M = 1000, K = 5, ρ = 24dB, δ = 0.33, γ∗ = 11.318 and p∗ = 0.0986.

VI. NUMERICAL RESULTS

In this section, we present simulation and numerical evalua-

tion results. The simulation had a network of N = 100 sensors

with M = 1000 codewords each. ρ is taken to be 24dB
3,

N0 = 2 and δ = 0.33. We assumed K = log10 NM = 5 users

wish to transmit simultaneously and solved the optimization

problem in lemma 10 to obtain γ∗ = 5.6583, p∗ = 0.0986 and

β∗ = 9.048. The initial number of antennas at the receiver is

the Converse bound in Theorem 14.

Figure 1 shows that the calculations in lemmas 1 and 2 co-

incide with the simulation results. Figure 2 shows that propo-

sitions 5 and 7 hold when taking Mr ≥ (1 + δ)β∗K lnNM.

We note that our results are asymptotically tight.

Figure 3 compares the rates in Subsection II-C with MIMO-

GT’s rate. We also compare our rate with MU systems used in

practice - errorless satellite networks (using data provided by

AYECKA) and oracle-aided errorless 802.11ax. The blue line

is (5), whereas the orange line is (6). The yellow line is the

sum-rate of MIMO-GT, (8). The purple line is the sum-rate

of raw transmissions at the highest symbol rate of a K-to-1

satellite communication (normalized by its bandwidth).

The green line is the sum-rate of a 160MHz 802.11ax,

normalized by a single carrier’s bandwidth (78.125kHz). The

oracle schedules the K users without passing requests or

scheduling information. I.e., they do not send logN header

bits for identification. The receiver sends a trigger frame

followed by a short silent interval (named SIFS). Afterward,

the users transmit their frames simultaneously on different

frequency bands. Payload size is logM (for a fair comparison)

and is sent in MCS2 rate, and the rest is according to

the 802.11ax standard (one training field and 8µsec packet

extension). The sum-rate also considers the trigger frame (sent

in MCS0 rate) to allocate resources to the K users; each

is scheduled to 200 frequency bands. The sum-rate can be

3SNR required for MCS3 in 802.11ac, [20]
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Noisy CoMa Error Probability

pMD (Simulation)

Proposition 6

pFA (Simulation)

Proposition 8

(1 + δ)β∗K lnN = 1000

Fig. 2. Decoding algorithm’s error probabilities. The decoding algorithm
either returns codeowrds not transmitted (pFA) or fails to find transmitted
codewords (pMD). The error probabilities are compared to their theoretical
bounds for N = 100, M = 1000, K = 5, ρ = 24dB, δ = 0.33, γ∗ =
11.318 and p∗ = 0.0986.
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Full CSI Bound, (5)

Round Robin, (6)

MIMO-GT, (8)

Satellite Bound

Oracle-aided 802.11ax

Fig. 3. Different rates (normalized in bandwidth) as functions of N when
ρ = 20dB, K = 10, M = 1000, δ = 0.33 and N0 = 2. The 802.11ax is
oracle-aided; the K users are scheduled without passing information to the
access point. The coefficient multiplying the logarithmic term in (5) is 1.

further reduced when considering the logN header bits and

the scheduling information. MIMO-GT achieves higher sum-

rates than 802.11ax (when the number of users is big enough)

or satellite networks and has no significant overheads.

Figure 4 compares MIMO-GT’s Spectral Efficiency from

(9) with SPEL, evaluated for different settings of K , N and

M. The SPEL is calculated like in [21, Chapter 3.5]. For our

system, we have used Eb

N0
= KP

N0Mr
. The bold dark line is

SPEL, and its dashed counterpart is the absolute SPEL, ln 2.

The purple line is η’s (eq. (9)) limit when K →∞, calculated

regardless of N or M.
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Fig. 4. Spectral Efficiency as a function of ρ (in dB) when δ = 0.33 and

N0 = 2. The mentioned probabilities, qe , (1−p)Kq01+(1−(1−p)K)q10,
are the BER of the blue line at the corresponding SNR.
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Fig. 5. α∗ , Kp∗’s value as a function of ρ when N = 100, K = 5,
M = 1000, δ = 0.33 and N0 = 2.

Figures 5, 6 and 7 show how α∗ , Kp∗, γ∗, and the BER4

(respectively) scale as a function of ρ ∈ [−30, 60]dB. When

the SNR is low, the BER tends to 0.5, equivalent to the error

when the receiver guesses whether the antenna is activated. γ∗

tends to 1 when the SNR is low, unlike its proportion to ln ρ
in the high SNR region. Since γ can be independent of the

code we use, choosing γ = max{1, ln(1+ ρ)} is an excellent

heuristic.

VII. CONCLUSION

In this paper, we studied a distributed MU-MIMO scheme

using GT codes on the antennas at the receiver where the users

are non-cooperative self-scheduling named MIMO-GT. The

4evaluated as qe , (1 − p)Kq01 + (1− (1− p)K)q10
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max{1, ln(1 + ρ)}

Fig. 6. γ∗’s value as a function of ρ when N = 100, K = 5, M = 1000,
δ = 0.33 and N0 = 2 compared to the heuristic γ = max{1, ln(1 + ρ)}.
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Fig. 7. BER as a function of ρ when N = 100, K = 5, M = 1000,
δ = 0.33 and N0 = 2.

receiver used energy detection in each antenna and a simple

decoding algorithm to jointly obtain numerous messages. Our

approach is simple to implement and order-optimal in the

number of users or messages. MIMO-GT’s order-optimality

is shown by comparing our rate to the Full CSI solution,

and the number of antennas required asymptotically matches

the converse bound we calculated. We have expressed and

determined the scaling laws of the antennas when the SNR or

the number of users grows large. Our results are supported by

simulations and numerical evaluations (e.g., matching slopes

between MIMO-GT’s rate and the Full CSI bound).

MIMO-GT relies heavily on the reliability of the channel

estimation at each transmitter; if a user errs in their estimation,

the communication may fail. Future research may address this

issue by studying the effects of estimation errors or aiming
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for different algorithms to jointly obtain the sent messages

without utilizing the perfectly estimated channel matrices. We

may overcome the errors by either using a special deterministic

codebook (with a constant number of intersections between

every K codewords), by devising a scheme non-reliant on

CSIT (e.g., utilizing CSIR), or by adding more antennas

to compensate for the erroneous channel estimation. The

codebooks of the first approach are hard to find, and the last

approach must be designed meticulously to not accidentally

change the antenna scaling laws, potentially annihilating the

order-optimality of MIMO-GT. The second approach might

be more practical as excellent CSI collection techniques are

available at the receiver. On the other hand, not utilizing CSI

at all results in massive rate loss.
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APPENDIX A

PROOFS

A. Proof of Lemma 10

First, we simplify p0

q10
− 1 to

p0
q10
− 1 =

(1− p)K(1− q01) + (1− (1− p)K)q10
q10

− 1

= (1− p)K
1− q01 − q10

q10
. (75)

Now, we convert the problem in (56) to a minimization

problem by removing the dependence on ∆.

Proposition 15. The objective function in (56) can be re-

written as follows:

1

Kp
(
1− exp{− 1

2 (1− p)2K(1 − q10 − q01)2}
)

Proof. By deriving βi by ∆, we obtain

∂β1

∂∆
= −4q210e

−2(q10∆)2∆

(·)2 ≤ 0 ∀∆ ≥ 0 (76)

∂β2

∂∆
=

4q10e
−2(p0−q10(∆+1))2(p0 − q10(∆ + 1))

(·)2 . (77)

The last term is non-negative as long as ∆ ≤ p0

q10
− 1. Hence,

β1 decrease with ∆ whereas β2 increase in ∆. In other words,

the minimax problem would pick the equalizer,

∆∗ =
1

2

(
p0
q10
− 1

)

. (78)

Putting ∆∗ and (75) back into β1 = β2 results in the following

term inside the exponent

q10
1

2

(
p0
q10
− 1

)

=
1

2
(1 − p)K(1− q01 − q10). (79)

Now, we define p , α
K

. Assuming α∗ exists, we shall show

that α∗ ∈ (0, K
2 ). That is, α∗ is an interior point.

Proposition 16. If α∗ exists, α∗ ≤ e− 1

https://books.google.co.il/books?id=WXx4zgEACAAJ
https://doi.org/10.1109/TNET.2020.2964764
https://doi.org/10.1109/TIFS.2020.3029877
https://www.increasebroadbandspeed.co.uk/what-is-a-good-signal-level-or-signal-to-noise-ratio-snr-for-wi-fi
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Proof. Let us observe the objective function in proposition 15

derivative’s numerator as a function of α, denoted as g(α).

g(α) =

{

− 1 + e−
1
2 (1−p)2K(1−q10−q01)

2

+

+ αe−
1
2 (1−p)2K(1−q10−q01)

2

(

1− α

K

)2K−1

· (1− q01 − q10)

(

1− q01 − q10+

+

(

1− α

K

)
∂q10
∂α

)}

. (80)

In other words, g(α) is of the form

g(α) = c1(e
−h(α)(1 + αw(α)) − 1). (81)

Where w(α) = (1 − α/K)2K−1(1 − q01 − q10)
(
1 − q01 −

q10 + (1 − α/K)∂q10
∂α

)
, h(α) = 1

2 (1 − p)2K(1 − q10 − q01)
2

and c1 > 0. g(α∗) = 0 if and only if 1 + α∗w(α∗) = eh(α
∗).

We notice that 0 ≤ h(α∗) ≤ 1, so

e0 ≤ 1 + α∗w(α∗) ≤ e1 (82)

0 ≤ α∗w(α∗) ≤ e− 1 (83)

Observe ∂q10
∂p

∂q10
∂p

=

K∑

j=1

(
K
j

)
pj(1− p)K−j

(1− (1− p)K)2p(1− p)
·

· (1 − e−
γ

1+jρ )(j(1 − (1− p)K)−Kp). (84)

Since K ≥ 2, α > (1−(1−α/K)K) any α ≥ 0, so ∂q10
∂α

< 0.

Therefore w(α) ≤ 1 and we conclude that α∗ ≤ e− 1.

Now we will concentrate on proving that γ∗ exists. We

notice that minimizing the objective function in proposition 15

as a function of γ is the same as minimizing f(γ) , q01+q10.

As a result, proving γ∗’s existence requires showing it exists

for f(γ).

Proposition 17. For any α < K , there exists a unique γ∗ to

the optimization problem.

We want to remark that despite what proposition 17 might

suggest, f(γ) is not convex nor concave in γ ∈ [0,∞). Proof

Sketch: We fist show that there exists some γ0 such that ∂f
∂γ

=

0. Next, by explicitly writing ∂f
∂γ

, we notice that the terms

inside the exponents are linear in γ, so γ0 must be unique.

Next, we calculate ∂2f
∂2γ

∣
∣
γ=γ0

to learn that it’s strictly positive.

I.e., γ0 minimizes f(γ) so γ0 = γ∗.

Proof. q10 is well defined when α < K . f(0) = 1 from

lemmas 1 and 2. When γ → ∞, f(γ) → 1, so by Rolle’s

Theorem5 there exists some γ0 such that ∂f
∂γ

∣
∣
γ=γ0

= 0.

Let us calculate
∂f
∂γ

explicitly:

∂f

∂γ
= −e−γ +

K∑

j=1

(
K

j

)
pj(1− p)K−j exp

{
− γ

jρ+1

}

(1− (1− p)K)(1 + jρ)
.

(85)

5formally, there exists y0 < 1, γ1 and γ2 such that f(γ1) = f(γ2) = y0.

All the terms inside the exponents are linear in γ, so γ0 is

unique. Now we are ready to use the second derivative test.

∂2f

∂2γ
= e−γ −

K∑

j=1

(
K

j

)
pj(1− p)K−j exp

{
− γ

jρ+1

}

(1− (1 − p)K)(1 + jρ)2
.

(86)

γ0 nulls (85), so we can replace e−γ in (86) with the sum in

(85) to obtain a sum of differences

K∑

j=1

(
K

j

)
pj(1− p)K−j

1 − (1− p)K
e−

γ0
jρ+1

(
1

1 + jρ
− 1

(1 + jρ)2

)

.

(87)

Hence, the sign of the second derivative is decided by the sign

of differences

1

1 + jρ
− 1

(1 + jρ)2
=

1 + jρ− 1

(1 + jρ)2
=

jρ

(1 + jρ)2
> 0. (88)

In other words, each addend is positive, so γ0 minimizes f(γ).

Now we are ready to prove lemma 10.

Proof of Lemma 10. Since [0, K2 ] is a closed interval, and

the objective function is continuous, α∗ (which brings the

objective function in proposition 15 to a global minimum)

exists. Proposition 16 bounds α∗ to the interval (0, e − 1].
Proposition 17 assures that γ∗ exists and is unique per α
(and α∗ in particular), so a unique solution to the optimization

problem exists (consequently, p∗ exists). We also notice that

γ∗ is the solution to the optimization problem in equation

(56), so (γ∗, p∗) are the solutions to optimization problem in

equation (56).

To ease the numerical search of γ∗ and p∗ numerically,

we show that closing the intervals does not introduce new

solutions to the optimization problem:

Proposition 18. Rewriting all strong inequalities in (56) with

weak inequalities does not introduce new solutions. Addition-

ally, extending the search of p∗ to the interval [0, 0.5] does

not introduce new solutions.

Proof. q10 = 0 when γ = 0 so β1 → ∞. When p = 0 both

β1 and β2 tend to infinity. Hence, we can replace the strong

inequalities with weak inequalities. Proposition 16 assures

p∗ = O( 1
K
) and proposition 17 assures it is unique, so

extending p’s range does not include new solutions.

B. Proof of Proposition 11

β∗ is the solution of lemma 10’s optimization problem, so

it is enough to show that

1− e−
1
2 (1−p)2K(1−q10−q01)

2 ≥ 3(1− α
2 )

4ρ2

8e2max{ρ,1}(ρ+ 1)2
.

We first bound q10 by its largest addend. That is,

q10 ≤ 1− e
−γ
ρ+1 . (89)
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Hence, the terms inside the exponent are bounded by

1− q01 − q10 ≥ e
−γ
ρ+1 − e−γ (90)

= e−γ
(
e

γρ
ρ+1 − 1

)
(91)

= e−γ

(

1 +
γρ

ρ+ 1
+O

((
γρ

ρ+ 1

)2)

− 1

)

(92)

≥ e−γ γρ

ρ+ 1
(93)

≥ ρ

ρ+ 1
e−max{1,ρ} (94)

In equation (92) we used the Taylor series of e−x = 1− x+
O(x2). The last step used γ’s range in the proposition. Now,

we bound (1− p)2K with the famous limit

(

1− α

K

)K

→ e−α. (95)

The bounds are

(

1− α

2

)4

≤
(

1− α

K

)2K

≤ e−2α. (96)

By putting (94), (96) and taking additional addend in the

Taylor series of e−x = 1− x+ 1
2x

2 −O(x3) we obtain that

1− e−
1
2 (1−p)2K(1−q10−q01)

2

≥ 1− exp

{

− 1

2

(

1− α

2

)4(
ρ

ρ+ 1

)2

e−2max{1,ρ}
}

(97)

≥ 1

2

(

1− α

2

)4(
ρ

ρ+ 1

)2

e−2max{1,ρ}

− 1

8

(

1− α

2

)8(
ρ

ρ+ 1

)4

e−4max{1,ρ} (98)

≥ 1

2

(

1− α

2

)4(
ρ

ρ+ 1

)2

e−2max{1,ρ}

− 1

8

(

1− α

2

)4(
ρ

ρ+ 1

)2

e−2max{1,ρ} (99)

≥ 3

8

(

1− α

2

)4(
ρ

ρ+ 1

)2

e−2max{1,ρ}

C. Proof of Lemma 12

Since Kp = α, β∗’s convergence to a constant depends on

the limit

lim
K→∞

q10 =

lim
K→∞

K∑

j=1

(
K

j

)
pj(1− p)K−j

1 − (1− p)K

(

1− exp

{ −γ
jρ+ 1

})

(100)

= 1− lim
K→∞

K∑

j=1

(
K

j

)
pj(1− p)K−j

1− (1− p)K
exp

{ −γ
jρ+ 1

}

(101)

= 1− lim
K→∞

1

1− (1 − p)K

· lim
K→∞

K∑

j=1

(
K

j

)

pj(1− p)K−j exp

{ −γ
jρ+ 1

}

(102)

= 1− 1

1− e−α

∞∑

j=1

e−αα
j

j!
exp

{ −γ
jρ+ 1

}

(103)

In equations (101) and (102) we used the Limit Sum and

Product Laws, respectively. The final step, (103), used Poisson

Limit Theorem and the famous limit. The series in equation

(103) is convergent by d’Alembert’s criterion (with respect to

ex’s Taylor series).

Combining (95) and (103) with lemma 10 when K → ∞
results in an optimization problem independent of K , N , or

M, completing the proof.
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