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Abstract—We consider the task of estimating a network
cascade as fast as possible. The cascade is assumed to spread
according to a general Susceptible-Infected process with het-
erogeneous transmission rates from an unknown source in the
network. While the propagation is not directly observable, noisy
information about its spread can be gathered through multiple
rounds of error-prone diagnostic testing. We propose a novel
adaptive procedure which quickly outputs an estimate for the
cascade source and the full spread under this observation model.
Remarkably, under mild conditions on the network topology, our
procedure is able to estimate the full spread of the cascade in an
n-vertex network, before poly logn vertices are affected by the
cascade. We complement our theoretical analysis with simulation
results illustrating the effectiveness of our methods.

I. INTRODUCTION

Large-scale networks are often vulnerable to cascading
failures, where anomalous behavior originating from a small
set of nodes spreads rapidly to the rest of the network. Left
unchecked, network cascades can have a devastating impact
on society. This has been made painfully clear by the ongoing
COVID-19 pandemic, as well as through other examples in-
cluding the diffusion of misinformation in social networks [7],
[13], [31] and malware in cyber-physical networks [16], [33],
[41]. It is therefore of central importance to accurately locate
network cascades before too many nodes are compromised.

Unfortunately, it is often the case that information about a
cascade is noisy in the early stages of its spread, which can
make the cascade challenging to locate. Consider, for instance,
the use of diagnostic testing to determine whether individuals
in a population are infected with a contagious disease. As seen
from the inaccuracies of early antigen-based rapid diagnostic
tests for the detection of COVID-19 as well as other diseases
[1], [9], such tests may have a significant false positive or
negative rate. In recent work [28]–[30], Sridhar and Poor
designed sequential estimators for the source of a network
cascade which takes such uncertainties into account while also
quickly coming to a decision so that mitigation measures (e.g.,
quaranting) can be applied in a timely manner. However, a
serious weakness of their work is that rigorous guarantees on
the performance of their estimators were only established for
extremely simple cascade dynamics and network topologies.
In particular, it has remained unclear whether estimators with
provable performance guarantees exist in practical settings.

In the present work, we address this gap by designing a
novel sequential estimation procedure for realistic network

cascades in generic networks with bounded degree. We assume
that the cascade is modeled by a heterogeneous Susceptible-
Infected (SI) process that can describe multi-type agents and
viral mutations [3], [4], [11], [32], [37]. As the cascade
spreads, the behaviors of nodes are periodically monitored
through error-prone diagnostic tests. From sequential obser-
vations of these noisy measurements, our procedure quickly
outputs an accurate estimate for the cascade source, as well
as the full spread of the cascade. Notably, under minimal
assumptions on the cascade dynamics and network topology,
we show that the full spread of the cascade can be reliably
estimated in an n-vertex graph before poly log n vertices are
affected. We validate these theoretical results through simula-
tions, demonstrating that our estimator can quickly locate SI
cascades in random regular graphs before a significant fraction
of nodes is affected.

A. Related work

Our work contributes to the literature on the quickest
inference of network cascades, where the overarching goal
is to leverage both the network topology and noisy, vertex-
level signals to quickly infer aspects of the cascade. In [42]–
[44], Zou, Veeravalli, Li and Towsley derived near-optimal
algorithms for detecting the emergence of a network cascade
when the cascade spreads slowly through the network. See
also [23]–[25], [36], [39] for extensions of their initial work.
The most relevant work to ours is that of Sridhar and Poor
[28]–[30], who developed procedures to quickly estimate the
source of a simple, deterministic cascade in networks that can
be represented as lattices and regular trees. The present work
expands upon the methods of [30] to design estimators for
realistic cascades in generic networks with bounded degree.

We also mention a few fascinating directions on the infer-
ence of network cascades in different contexts. In the seminal
work of Shah and Zaman [26], [27], the cascade source is
estimated from a large, noiseless snapshot of the affected
vertices in a tree (in contrast, the present work estimates
the source in generic networks before too many vertices are
affected). Several authors have extended the initial ideas of
[26], [27] in various fruitful directions; see, e.g., [12], [17],
[34], [38], [40]. Another line of work approaches cascade de-
tection and estimation by placing a small number of noiseless
“sensors" from which to obtain high-quality measurements of
the cascade’s impact [2], [6], [10], [14], [15], [18]. We study
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a complementary setting where many nodes are monitored but
measurements can be quite noisy.

B. Paper organization

Section II contains notational conventions we use through-
out the paper. Section III details the cascade and diagnostic
testing models, as well as adaptive estimators for the cascade
source and full spread. We study the performance of our
estimator both theoretically and empirically in Section IV, and
we conclude in Section V. The proofs of our main results can
be found in the appendices.

II. NOTATION

We let R,R+,Z,Z≥0 denote the reals, the positive reals,
the integers, and the non-negative integers, respectively. For
a finite set S, |S| denotes the number of elements in the
set. Throughout the paper, we use standard asymptotic no-
tation (e.g., O(·), o(·)). Also, for two sequences {an}n≥1 and
{bn}n≥1, we say an . bn if an ≤ (1 + o(1))bn, where
o(1)→ 0 as n→∞.

We represent a graph by a pair G = (V (G), E(G)), where
V (G) is the vertex set of the graph and E(G) is the edge
set. A graph may be either finite or infinite, which means that
the vertex set may be finite or infinite in size. The degree of
a vertex v, denoted by degG(v), is the number of neighbors
v has in G. The maximum degree in the graph is denoted
by ∆. For any u, v ∈ V (G), we write u ∼ v to mean that
(u, v) is an edge in G. The quantity distG(u, v) denotes the
shortest path distance between u and v in G. The quantity
Nv(t) is the t-hop neighborhood of v in G, which consists
of all vertices u ∈ V (G) such that distG(u, v) ≤ t. Notice
that this definition allows for t to take on real values in
addition to integer values. For a finite set S ⊆ V (G), we
define diam(S) := maxu,v∈S distG(u, v).

III. MODELS AND METHODS

A. Cascade model

We model the cascade using a general version of the well-
known SI process in networks. In this model, the cascade
spreads in a stochastic manner and in continuous time. Ini-
tially, the cascade consists of just a single vertex v∗ (the
source). Vertices that are adjacent in G interact at random
times, and the cascade spreads to a vertex v when v interacts
with one of its affected neighbors.

In a bit more detail, the cascade dynamics can be described
as follows. Let {λuv}u∼v be the collection of interaction rates,
where λuv ∈ R+ represents the frequency of interactions
between vertices u and v. We assume that interactions are
symmetric, so that λuv = λvu. For any time index t ≥ 0,
let us also denote C(t) ⊂ V to be the set of vertices affected
by the cascade at time t. When t = 0, C(0) = v∗; in words,
only the source is affected initially. For any t ≥ 0 and δ > 0
sufficiently small, we have for any vertex v ∈ V \ C(t) that

P(v ∈ C(t+ δ)|C(t)) = δ
∑

u∈C(t):u∼v

λuv + o(δ), (III.1)

where o(δ) → 0 at a faster rate than δ → 0. In words, an
unaffected vertex v ∈ V \C(t) becomes affected by the cascade
at a rate equal to the sum of the interaction rates with affected
neighbors.

In the special case where all interaction rates are equal
(λuv = λ when u ∼ v), the SI model (III.1) has received
significant attention in the last century. In the mathematical
physics community, it is known to be equivalent to first
passage percolation with Exp(λ) edge weights [5], [22], and
is also equivalent to the (Markovian) contact process with
no recovery [19], [20]. The process (III.1) has also been
used to derive well-known population-level models of viral
spread (see, e.g., [8, Chapter 9]). The usage of heterogeneous
interaction rates in (III.1) allows us to capture a variety
of important scenarios beyond the basic models described
above. For instance, the rate at which one individual may
infect another can depend significantly on underlying health
conditions (e.g, immuno-compromised individuals could be
more easily infected), mask-wearing tendencies, and the type
of viral strain. In particular, the dynamics (III.1) are closely
related to recent work on mask-wearing and viral mutations
in network cascades [3], [4], [11], [32], [37].1

A useful property of the cascade is that, after a sufficient
amount of time passes, C(t) can be contained within two
neighborhoods of the source. Before stating this property, let
us define λmin := minu∼v λuv and λmax := maxu∼v λuv .
The proof can be found in Appendix A.

Proposition III.1. Let ∆ be the maximum degree in G. Set

(α, β) :=

(
λmin

12 log ∆
, 3∆λmax

)
, (III.2)

and define the event

Ek := {∀t ≥ k,Nv∗(αt) ⊆ C(t) ⊆ Nv∗(βt)}.

Then limk→∞ P(Ek) = 1.

B. Observation model

For each integer value of t and for each v ∈ V , we
assume an error-prone diagnostic test is administered to v with
probability p. The diagnostic test is correct (that is, it outputs
a value of 1 if v ∈ C(t) and −1 if v /∈ C(t)) with probability
1− ε. With probability ε, the diagnostic test is incorrect (both
false alarm and misdetection errors). Formally, we denote the
measurement corresponding to v at time t by Yv(t), where
Yv(t) = 0 if no test is administered to v and Yv(t) is equal to
the output of the diagnostic test (either −1 or +1) otherwise.
In particular, if v /∈ C(t), we have that

P(Yv(t) = 0|C(t)) = 1− p,
P(Yv(t) = −1|C(t)) = p(1− ε),
P(Yv(t) = +1|C(t)) = pε. (III.3)

1These works examine cases where the probability of transmission between
two neighbors can be heterogeneous. Since there is a one-to-one correspon-
dence between the probability of transmission and the rate of transmission
between individuals (see, e.g., [21]), such models are closely related to (III.1)
when the recovery rate is zero.



As a shorthand, we say that Yv(t) ∼ Q−, where Q− is the
probability mass function (PMF) described in (III.3). Similarly,
if v ∈ C(t), we have that

P(Yv(t) = 0|C(t)) = 1− p,
P(Yv(t) = −1|C(t)) = pε,

P(Yv(t) = +1|C(t)) = p(1− ε). (III.4)

In this case, we say that Yv(t) ∼ Q+, where Q+ is the PMF
described in (III.4). For brevity, we will also denote Y(t) :=
{Yw(t)}w∈V (G) to be the collection of all signals collected at
a positive integer time t.

C. Source estimation

Any estimation procedure can be represented by a pair
(T, v̂). Here, T ∈ Z≥0 is an integer-valued, data-dependent
stopping time and v̂ = {v̂(t)}t≥0 is a sequence of estimators
for the cascade source, where v̂(t) ∈ V (G) is a measurable
function of the data, i.e., of the signals observed until time t.
The procedure (T, v̂) collects signals until the stopping time
T is reached, at which point v̂(T ) is outputted as an estimate
for the cascade source. We will also assume that there is a
finite candidate set U ⊆ V (G), which represents a known set
of potential source vertices (i.e., it is known that v∗ ∈ U ).
When G is a finite graph, we may set U = V (G), though in
our theoretical results, we will consider infinite graphs as well.
Our goal is to find an estimator v̂(T ) for the cascade source
that enjoys low estimation error, as measured by the graph
distance to the source, distG(v∗, v̂(T )), while also ensuring
that a decision is reached as fast as possible (i.e., T is not too
large) to prevent the cascade from affecting too many vertices.
As we shall see in Section III-D, source estimation can also
be used as a subroutine to accurately estimate the full spread
of the cascade.

Our source estimator is based on two guiding principles:
1) Vertices close to the source should have many positive

cases in their local neighborhood.
2) If the number of positive cases in a neighborhood of v is

significantly greater than the number of positive cases in
a neighborhood of u, then v is more likely to be close in
proximity to the source.

Following the first guiding principle, we start by construct-
ing a score function for each vertex based on the positive and
negative cases in a local neighborhood. For a vertex v ∈ U
and any positive integer time index t, define

Zv(t) :=

t∑
s=0

∑
w∈Nv(αs)

Yw(s).

In words, Zv(t) is the cumulative sum of net positive cases
in the local neighborhood Nv(αs), for 0 ≤ s ≤ t. The
parameter α is chosen as in (III.2) so that, if v∗ = v, the
vertices in Nv(αs) are likely all affected by the cascade for
s sufficiently large in light of Proposition III.1. On the other
hand, if distG(v∗, v) ≥ (α + β)t (with β defined in (III.2)),
then Proposition III.1 implies that Nv(αt) likely has no

overlap with C(t). It follows that the differences between score
functions, measured by Zv(t)−Zu(t), is most informative in
estimating the source when distG(u, v) ≥ (α+ β)t.

Following the second guiding principle, our estimation
procedure will collect data until the score of some vertex
v ∈ U is significantly larger than the score of all vertices
that are sufficiently far from v. Specifically, for each v ∈ U
we define the stopping time Tαβ(v), which halts at the first
time t ≥ 0 when the following condition is satisfied:

Zv(t)−Zu(t) ≥ 2 log |U |
log
(

1−ε
ε

) , ∀u ∈ U : distG(u, v) ≥ (α+β)t.

(III.5)
Our estimation procedure is formally given by (Tαβ , v̂), where
Tαβ := minv∈U T

αβ(v) and v̂(Tαβ) ∈ arg minv∈U T
αβ(v).

Remark III.2. An edge case in the description of Tαβ(v) is
that when t > distG(u, v)/(α+ β), the condition in (III.5) is
vacuous. Consequently, if none of the stopping times halt for
any t ≤ diam(U)/(α + β), we set Tαβ = diam(U)/(α + β)
and v̂(Tαβ) is an arbitrary vertex from U . However, as our
results show, it is quite unlikely that such an edge case would
occur (see Theorem IV.2).

Remark III.3. The threshold for Zv(t) − Zu(t) in (III.5) is
carefully chosen so that distG(v∗, v̂(Tαβ)) ≤ (α+β)Tαβ with
probability tending to 1 as |U | → ∞. For details, see Lemma
C.2.

Remark III.4. In [28], [30] it was noted that source estima-
tion can be viewed as a sequential multi-hypothesis testing
problem, for which a procedure based on the computation
of log-likelihood ratios of the observations achieves optimal
performance. Indeed, in the simple case where C(t) = Nv∗(t)
and α = 1, Zv(t)−Zu(t) is proportional to the log-likielihood
ratio between the measures P(·|v∗ = v) and P(·|v∗ = u).
However, computing log-likelihood ratios for the more realis-
tic, stochastic cascade models considered in this work would
require us to integrate over all possible realizations of the
cascade. We instead use Zv(t)−Zu(t) as a proxy for the log-
likelihood ratio, which circumvents these issues, while also
achieving similar performance guarantees to the likelihood-
based procedure of [28], [30].

D. From source estimation to full cascade estimation

A natural and important goal is also to quickly estimate the
full spread of the cascade, rather than just the source. This
goal can be readily achieved using the procedure (Tαβ , v̂) as
a subroutine. Indeed, recall from Proposition III.1 that if Tαβ

is sufficiently large, then C(Tαβ) ⊆ Nv∗(βTαβ) with high
probability. If distG(v∗, v̂(Tαβ)) ≤ (α+ β)Tαβ as suggested
by Remark III.3, it follows that

C(Tαβ) ⊆ Nv̂(Tαβ)((α+ 2β)Tαβ) =: Ĉ(Tαβ), (III.6)

with high probability. Hence the estimator Ĉ(Tαβ) for the
cascade spread fully contains the true spread in this case. This
intuition is confirmed in Theorem IV.2 below.



IV. PERFORMANCE ANALYSIS

A. Theoretical results

Although our algorithm applies to any graph with bounded
degree, in our theoretical results we focus on a general class
of infinite graphs. Such graphs capture scenarios where the
cascade is small relative to the full network size without overly
complicating the mathematical analysis,2 though we expect
that our results also hold for finite graphs with sufficiently
large diameter. Formally, we assume the following:

Assumption IV.1. Assume that G has infinitely many vertices,
is connected, and has a finite maximum degree ∆.

We next define a few key quantities. For a non-negative inte-
ger t and a vertex v ∈ V (G), define fαv (t) :=

∑t
s=0 |Nv(αs)|

as well as its inverse function Fαv . It turns out that fαv∗ and
Fαv∗ play a fundamental role in the performance guarantees
of our estimator. Indeed, notice from the definition of the
score functions that, conditionally on the cascade evolution
C := {C(s)}s≥0,

E[Zv∗(t)|C]

p(1− 2ε)
=

t∑
s=0

(|Nv∗(αs) ∩ C(s)| − |Nv∗(αs) \ C(s)|)

=

t∑
s=0

|Nv∗(αs)| − 2

t∑
s=0

|Nv∗(αs) \ C(s)| ∼ fαv∗(t),

where the final asymptotic expression holds as t → ∞, with
high probability in light of Proposition III.1. On the other
hand, if u ∈ V (G) satisfies distG(v∗, u) > (α+ β)t, then the
vertices in Nu(αt) are unaffected by the cascade at time t with
high probability (see Proposition III.1), hence E[Zu(t)|C] ≤ 0.
It follows that E[Zv∗(t) − Zu(t)|C] ≥ p(1 − 2ε)fαv∗(t). If
Zv(t)−Zu(t) concentrates around its expectation, we see that
it exceeds the threshold in (III.5) when fαv∗(t) & log |U |,
or equivalently when t . Fαv∗(log |U |). This intuition is
confirmed in our first main result below.

Theorem IV.2. Let (α, β) be set according to (III.2) and let
U ⊂ V (G) be any finite candidate set of potential source
vertices. Then, with probability tending to 1 as |U | → ∞, the
following hold:

1) Tαβ ≤ Fαv∗
(

15 log |U |
p(1−2ε)2

)
2) distG(v∗, v̂(Tαβ)) ≤ (α+ β)Fαv∗

(
15 log |U |
p(1−2ε)2

)
3) C(Tαβ) ⊆ Ĉ(Tαβ)

The intuition behind Item 1 can be found in the discussion
preceding the theorem statement. Notice in particular that as
the testing frequency decreases (p → 0) or as testing errors
become large (ε→ 1/2), the upper bound for Tαβ increases.
Item 2 essentially follows from the choice of thresholds in

2In finite graphs, the cascade will spread to all the vertices in finite time,
at which point no new information about the source location can be learned
from the data. The study of infinite graphs allows us to avoid such “boundary
effects".

(III.5). As discussed in Remark III.3, the thresholds ensure
that distG(v∗, v̂(Tαβ) ≤ (α+β)Tαβ , and the statement in the
theorem follows from substituting the bound on Tαβ given in
Item 1. Item 3 shows that the cascade estimator (defined in
(III.6)) contains no false negatives. The full proof details can
be found in Appendix C.

It is challenging to obtain a bound on the size of the
estimated set in the most general setting of bounded degree
graphs. Fortunately, under a very mild structural condition on
the topology of G, we can show that the size of Ĉ(Tαβ) is at
most poly log |U | – an exponential reduction from the initial
|U | potential locations for the cascade. This is formalized in
the following corollary; the proof is in Appendix C.

Corollary IV.3. Assume the same conditions as Theorem IV.2,
and suppose that there exist constants q, r ≥ 1 such that

|Nu(t)| ≤ q|Nv(t)|r, ∀u, v ∈ V (G),∀t ≥ 0. (IV.1)

Then with probability tending to 1 as |U | → ∞, there is a
constant c = c(α, β, q, r) such that |Ĉ(Tαβ)| ≤ logc |U |.

At a high level, the condition (IV.1) states that neighborhood
sizes are polynomially equivalent, in the sense that the size of
one neighborhood can be bounded by a (fixed) polynomial
of any other neighborhood. A consequence of this definition
is that if one neighborhood grows polynomially in t (which
is often the case in spatial networks such as lattices), then
all neighborhoods must grow polynomially in t. Similarly, if
one neighborhood grows exponentially in t (which is often
the case in tree-like networks), then all neighborhoods must
grow exponentially. We expect such a condition to be trivially
fulfilled in models of natural networks.

Finally, we study the implications of Theorem IV.2 in simple
networks, for which neighborhood sizes can be explicitly
calculated. Notably, the bounds on Tαβ in the following
corollaries match the performance of the optimal source
estimation algorithms derived for deterministic cascades in
[30]. The proofs of the corollaries below follow immediately
from Theorem IV.2, the asymptotic characterization of Fαv in
Lemma D.4, as well as the expressions for neighborhood sizes
for lattices and regular trees found in [30, Appendix A].

Corollary IV.4. Assume the same conditions as in Theorem
IV.2, and furthermore assume that G is an infinite regular tree
with degree at least 3. The following statements hold with
probability tending to 1 as |U | → ∞:

1) Tαβ . 1
α log log |U |

2) distG(v∗, v̂(Tαβ)) . α+β
α log log |U |

3) C(Tαβ) ⊆ Ĉ(Tαβ) and |Ĉ(Tαβ)| ≤ (log |U |)3β/α.

Corollary IV.5. Assume the same conditions as in Theo-
rem IV.2 and furthermore assume that G is an infinite `-
dimensional lattice. The following statements hold with prob-
ability tending to 1 as |U | → ∞:

1) Tαβ = O
(

(log |U |)1/(`+1)
)



(a)

(b)

Fig. 1: Plots of the expected stopping time (a) and the median
number of infections upon stopping (b) for homogeneous rates.

2) distG(v∗, v̂(Tαβ)) = O
(

(log |U |)1/(`+1)
)

3) C(Tαβ) ⊆ Ĉ(Tαβ) and |Ĉ(Tαβ)| = O
(

(log |U |)
`
`+1

)
.

B. Simulations

To complement our theoretical results, we show through
simulations that our cascade estimators have desirable perfor-
mance in non-asymptotic settings (i.e., small values of |U |)
as well. The underlying network was chosen to be a uniform
random 3-regular graph of size ranging between 500 and 2000
nodes. The cascade source was chosen uniformly at random
in each trial. Throughout, we set α = 1, β = 2, p = 0.5 and
studied ε ∈ {0.1, 0.2}. To generate each data point in our
plots, we ran 100 independent trials simulating the cascade
propagation and our estimation procedure.3

We first studied the performance of our estimator on a
(classical) SI model with homogeneous rates, where λuv = 1
whenever u ∼ v. Our results can be found in Figure 1, with
the average stopping time found in Figure 1a and the median
number of infections in Figure 1b. In all our simulations, the
estimation error was, on average, less than 1.5 for all parameter
values. We plot the median instead of the average to disregard
rare instantiations of the cascade that spread extremely rapidly
through the network. Remarkably, when ε = 0.1 our estimator
is able to reliably track the cascade before 80 vertices are
affected, even as the network grows large. Though the number

3The curves may appear noisy even after averaging and taking the median
due to the large amount of randomness in our simulations, coming from the
network structure, cascade evolution, and diagnostic testing model.

(a)

(b)

Fig. 2: Plots of the expected stopping time (a) and the median
number of infections upon stopping (b) for heterogeneous
rates.

of infections is substantially larger for ε = 0.2, the average
stopping time in this case seems to flatten out (see Figure 1a),
indicating that the infection curve should also flatten as the
network size increases beyond 2000.

We then studied a setting with heterogeneous rates, in
which each interaction rate was taken to be a uniform random
variable in [1, 1.5]. We kept (α, β) = (1, 2). Here again, the
estimation error was quite small on average, being less than
2 for all tested parameter values. Interestingly, it does not
seem that the heterogeneities in the rates significantly affect
the performance of the estimator, as the average stopping
times in Figures 1a and 2a are similar. However, the number
of infections in Figure 2b does increase due to the average
increase in the spreading rate of the cascade.

V. CONCLUSION

In this work, we considered the problem of estimating a
network cascade from a noisy time series of its spread. Prior
work on source estimation in this setting only had provable
performance guarantees for unrealistically simple cascades and
network topologies [28]–[30]. Our work is substantially more
general: we develop novel estimators for both the source and
the full cascade, with provable guarantees for realistic cascades
spreading on arbitrary networks of bounded degree. Avenues
for future work include the study of optimal estimators for
the cascade source and full spread in the general setting we
consider, as well as a development of estimators in scenarios
where nodes are adaptively selected, rather than randomly
selected, for diagnostic testing.
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APPENDIX A
PROOF OF PROPOSITION III.1

In this appendix, we characterize the typical behavior of
the cascade, formalized through the event Ek. Formally, for a
positive integer k, let us define the events

E1,k := {∀t ≥ k,Nv∗(αt) ⊆ C(t)}
E2,k := {∀t ≥ k, C(t) ⊆ Nv∗(βt)},

where (α, β) are given by (III.2). The main results of this
section are the following two lemmas. The proofs utilize
the alternative representation of the cascade (in terms of
exponential edge weights), which we describe in Section A-A.

Lemma A.1. For any positive integer k,

P(Ec1,k) ≤ 12

λmin
e−kλmin/12.

Lemma A.2. For any k sufficiently large, it holds that

P(Ec2,k) ≤ 900

(
2.9

3

)3∆λmaxk

.

The proof of Lemmas A.1 and A.2 can be found in Sections
A-B and A-C, respectively. Moreover, the two lemmas readily
imply Proposition III.1.

Proof of Proposition III.1. Notice that Ek = E1,k ∩ E2,k.
Hence, for any v ∈ V (G), P(Eck) ≤ P(Ec1,k) +P(Ec2,k)→ 0 as
k →∞, as desired.

A. An equivalent cascade model

We introduce a useful alternate representation of the cascade
dynamics described in Section III-A. We start with some no-
tation. Generate a collection of independent random variables
{Xuv}u∼v , where Xuv ∼ Exp(λuv) denotes the weight of
the edge (u, v). Given a path4 P in the graph, we let the
weight of the path – denoted by weight(P ) – be the sum of
the edge weights along the path. Let Pvu denote the set of all
paths starting at v and ending at u. Then, in this alternate
cascade model, if v is the source, then u ∈ C(t) if and
only if infP∈Pvu weight(P ) ≤ t. In other words, the quantity
infP∈Pvu weight(P ) represents the infection time of u when
v is the cascade source. Due to the memoryless property of
the exponential distribution, this representation is equivalent
to the Markovian dynamics in (III.1). We defer the reader
to [5, Chapter 6] and references therein for details on this
equivalence.

B. The event E1,k: Proof of Lemma A.1

Let u ∈ Nv∗(αs) and let d = distG(u, v). Then we can find
a path w0, . . . , wd with w0 = v∗ and wd = u. Notice that the
infection time of u is upper bounded by

∑d−1
i=0 Xwiwi+1 , where

we recall that the Xwiwi+1
’s are independent with Xwi,wi+1

∼

4A path is a finite sequence of distinct vertices u1, . . . , uk such that ui ∼
ui+1 for all 1 ≤ i ≤ k − 1.

Exp(λwiwi+1). Hence, we have, for any s ≥ 1 and any θ ∈
(0, λmin),

P(u /∈ C(s)) ≤ Pv

(
d−1∑
i=0

Xwiwi+1 ≥ s

)
(a)

≤ e−θs
d−1∏
i=0

λwiwi+1

λwiwi+1 − θ

= exp

{
−θs−

d−1∑
i=0

log

(
1− θ

λwiwi+1

)}
(b)

≤ exp

{
−θs− αs log

(
1− θ

λmin

)}
.

In (a), we have used the form of the moment generating
function of an exponential random variable, and in (b) we
have used that the function x 7→ log(1− x) is decreasing for
x ∈ [0, 1) as well as d ≤ αs. Setting θ = λmin/2, it holds for
α ≤ λmin/(6 log 2), that

P(u /∈ C(s)) ≤ e−sλmin/3.

As a consequence, we also have that

E[|Nv∗(αs) \ C(s)|] =
∑

u∈Nv∗ (αs)

P(u /∈ C(s))

≤ e−sλmin/6|Nv∗(αs)| ≤ 2
(
e−λmin/6∆α

)s
.

Above, the final inequality uses the bound |Nv∗(αs)| ≤ 2∆αs

(see Lemma D.1). Markov’s inequality now implies

P(|Nv∗(αs) \ C(s)| ≥ 1) ≤ 2
(
e−λmin/6∆α

)s
≤ 2e−

sλmin
12 ,

where the final expression follows from substituting α =
λmin/(12 log ∆). We conclude by taking a union bound over
all s ≥ k.

C. The event E2,k: Proof of Lemma A.2

We start by proving a useful intermediate result on lower tail
bounds of a sum of independent exponential random variables.

Lemma A.3. Let X1, . . . , Xm be independent random vari-
ables with Xi ∼ Exp(µi), and let µ := max1≤i≤m µi. Then
for any ε ∈ (0, µ−1), it holds for m sufficiently large that

P

(
m∑
i=1

Xi ≤ εm

)
≤
√
m(2.8εµ)m.

Proof. Notice that if µ1 ≤ µ2, where X1 ∼ Exp(µ1) and
X2 ∼ Exp(µ2), then X2 � X1. Due to this stochastic
ordering,

∑m
i=1Xi stochastically dominates a sum of i.i.d.

Exp(µ) random variables, which is equal in distribution to
W ∼ Gamma(m,µ). Hence

P

(
m∑
i=1

Xi ≤ εm

)
≤ P(W ≤ εm) =

∫ εm

0

µmxm−1e−µx

(m− 1)!
dx.



Notice that the density of W is increasing for 0 ≤ x ≤ (m−
1)/µ. As a result, for ε < 1/µ and m sufficiently large, we
can bound the integral by

µm(εm)me−µεm

(m− 1)!
∼
√
m− 1

e
√

2π
(εµe1−µε)m ≤

√
m(2.8εµ)m,

where the asymptotic expansion is due to Stirling’s formula.

We are now ready to prove our main result.

Proof of Lemma A.2. Let Pd be the set of paths of length d
starting from v8. Notice that if, for all P ∈

⋃
d≥βt Pd we

have that weight(P ) > t, then C(t) \Nv∗(βt) = ∅. Our proof
therefore bounds the probability that a path P ∈

⋃
d≥βt Pd

has weight at most t. To this end, we have that

P(C(t) \ Nv∗(βt) 6= ∅)

≤ P

∃P ∈ ⋃
d≥βt

Pd : weight(P ) ≤ t


≤
∑
d≥βt

|Pd| max
P∈Pd

P(weight(P ) ≤ t)

≤
∑
d≥βt

|Pd|
√
d

(
2.8λmax

β

)d
≤
∑
d≥βt

|Pd|
√
d

(
2.8

3∆

)d
, (A.1)

where the first inequality is due to a union bound, and the
third inequality holds for t sufficiently large and whenever
β > λmax, in light of Lemma A.3, and the final expression
follows from substituting β = 3∆λmax. To simplify the final
summation, we will bound the size of Pd. Since the maximum
degree in G is ∆, simple counting arguments show that there
are at most ∆d paths of length d. For sufficiently large t, the
summation in (A.1) can be bounded by

∑
d≥βt

√
d

(
2.8

3∆

)d
≤
∑
d≥βt

(
2.9

3∆

)d
= 30

(
2.9

3

)βt
.

In the display above, the inequality holds for t sufficiently
large, and the final expression is follows from the formula for
the sum of a geometric series.

Putting everything together, we have for k sufficiently large
that

P(Ec2,k) ≤ P(∃t ≥ k : C(t) \ Nv∗(βt) 6= ∅)

≤
∑
t≥k

P(C(t) \ Nv∗(βt) 6= ∅)

≤
∑
t≥k

30

(
2.9

3

)βt
= 900

(
2.9

3

)βk
.

APPENDIX B
PROPERTIES OF THE SCORE FUNCTIONS

Throughout this appendix, we will condition on the cascade
evolution, denoted by C := {C(s)}s≥0. We will also assume
that C is a realization of the cascade where the event Ek holds
(see Proposition III.1), for an appropriately chosen value of k.
We will also define the measure Pv(·) = P(·|v∗ = v).

We begin by establishing a useful representation of the
difference between score functions. Let {Ai}i≥1, {Bi}i≥1 be
independent collections of i.i.d. Q+-distributed random vari-
ables. For any v ∈ V (G), let gαv (t) :=

∑t
s=0 |Nv(αs)∩C(s)|.

For u, v ∈ V and any t ≥ 0, define the processes

Mα
vu(t) :=

fαv (t)+fαu (t)∑
i=1

Ai (B.1)

Dα
vu(t) :=

fαv (t)−gαv (t)∑
i=1

(Ai +Bi). (B.2)

Lemma B.1. For t satisfying 0 ≤ t ≤ distG(v, u)/(α+ β),

Zv(t)− Zu(t)
d
= Mα

vu(t) +Dα
vu(t),

with respect to the measure Pv(·|C).

Proof. We first consider the distributional representation of
Zv(t) with respect to Pv(·|C). From the definition of the signal
model, we have for any t ≥ 0 that

Zv(t) =

t∑
s=0

 ∑
w∈Nv(αs)∩C(s)

Yw(s) +
∑

w∈Nv(αs)\C(s)

Yw(s)


d
=

gαv (t)∑
i=1

Ai −
fαv (t)−gαv (t)∑

i=1

Bi,

where {Ai}i≥1 and {Bi}i≥1 are collections of i.i.d. samples
from Q+. On the other hand, notice that if the event Ek holds,
then C(t) ⊆ Nv(βt) for t ≥ k, hence Nu(αt) ∩ C(t) = ∅ for
u ∈ Vn \ Nv((α+ β)t). As a consequence,

Zu(t)
d
= −

fαu (t)∑
i=1

Ai.

Subtracting the two expressions, we see that for t ≥ k,

Zv(t)− Zu(t)
d
=

gαv (t)+fαu (t)∑
i=1

Ai −
fαv (t)−gαv (t)∑

i=1

Bi.

Letting {A′i}i≥1 be another sequence of i.i.d. Q+-distributed
random variables, we can add and subtract terms to obtain

Zv(t)− Zu(t)
d
=

fαv (t)−gαv (t)∑
i=1

Ai +

gαv (t)+fαu (t)∑
i=1

Ai


−
fαv (t)−gαv (t)∑

i=1

(A′i +Bi).



It is readily seen that this expression is equal to the one in the
statement in Lemma B.1.

We proceed by establishing some useful properties of
Mα
vu(t) and Dα

vu(t).

Lemma B.2. On the event Ek, it holds that supt≥0 |Dα
vu(t)| ≤

2fαv (k) almost surely.

Proof. Conditionally on C, it follows from the definition of
Dα
vu(t) that |Dα

vu(t)| ≤ 2(fαv (t) − gαv (t)). On the event Ek,
we have that Nv(αt) = Nv(αt) ∩ C(t) for all t ≥ k, so

fαv (t)− gαv (t) = fαv (k)− gαv (k) ≤ fαv (k).

The desired claim follows.

Lemma B.3. For k sufficiently large, it holds for t ≥
12k/(p(1− 2ε)) that

Pv
(
Zv(t)− Zu(t) ≤ p(1− 2ε)

3
fαv (t)

∣∣∣∣Ek)
≤ 2 exp

(
−p(1− 2ε)2

10
fαv (t)

)
.

Proof. Condition on C and suppose that the event Ek holds.
As a shorthand, let N := fαv (t) +fαu (t). Under Pv , Mα

vu(t) is
a sum of N i.i.d. Q+-distributed random variables. For A ∼
Q+, we have that E[A] = p(1 − 2ε), which in turn implies
Ev[Mα

vu(t)|C] = p(1 − 2ε)N . It also holds that Var(A) ≤
E[A2] = p. Bernstein’s inequality therefore implies that

Pv
(
Mα
vu(t) ≤ p(1− 2ε)

2
N

∣∣∣∣C) ≤ exp

(
−p(1− 2ε)2

10
N

)
.

(B.3)

We now use (B.3) to derive an inequality for Zv(t) − Zu(t).
We can write

Pv
(
Zv(t)− Zu(t) ≤ p(1− 2ε)

3
fαv (t)

∣∣∣∣C)
(a)

≤ Pv
(
Mα
vu(t) ≤ p(1− 2ε)

3
fαv (t) + 2fαv (k)

∣∣∣∣C)
(b)

≤ Pv
(
Mα
vu(t) ≤ p(1− 2ε)

2
N

∣∣∣∣C)
(c)

≤ exp

(
−p(1− 2ε)2

10
fαv (t)

)
.

Above, (a) is due to the decomposition Zv(t) − Zu(t) =
Mα
vu(t) + Dα

vu(t) and since |Dα
vu(t)| ≤ 2fαv (k) on the event

Ek by Lemma B.2; (b) follows since N ≥ fαv (t) assumes t
is sufficiently large so that fαv (k) ≤ p(1− 2ε)fαv (t)/6, which
holds when t ≥ 12k/(p(1− 2ε)) in light of Lemma D.2; and
(c) uses (B.3) and N ≥ fαv (t).

To relate the probability bound to the probability of interest,
we can write, for any event A,

Pv(A|Ek) =
Pv(A ∩ Ek)

P(Ek)
=

Ev[Pv(A|C)1(Ek)]

P(Ek)
.

The desired result follows from letting A := {Zv(t)−Zu(t) ≤
p(1− 2ε)fαv (t)/3} and from letting k be sufficiently large so
that P(Ek) ≥ 1/2.

Lemma B.4. Fix u, v ∈ V (G), and let T be a stopping time
satisfying T ≤ distG(u, v)/(α + β) almost surely. Then for
any sufficiently large integer k and any x ≥ 0, it holds that

Pv(Zv(T )− Zu(T ) ≤ −x|Ek) ≤ 2

(
ε

1− ε

)x−2fαv (k)

.

Proof. Suppose that Ek holds. Conditionally on C, we claim
that the process (ε/(1− ε))Mα

vu(t) is a martingale with respect
to Pv(·|C). To see why, notice that for A ∼ Q+, we have that

E

[(
ε

1− ε

)A]
= 1.

Since Mα
vu(t) is an i.i.d. sum of fαv (t) + fαu (t) random

variables distributed according to Q+, the claim follows.
We now turn to the proof of the main result. Let T be any

stopping time that is almost surely bounded. Then, conditioned
on C, we have that

Pv(Zv(T )− Zu(T ) ≤ −x|C)

(a)

≤ Pv(Mα
vu(T ) ≤ −x+ 2fαv (k)|C)

= Pv

((
ε

1− ε

)Mα
vu(T )

≥
(

1− ε
ε

)x−2fαv (k)
∣∣∣∣∣C
)

(b)

≤
(

ε

1− ε

)x−2fαv (k)

Ev

[(
ε

1− ε

)Mα
vu(T )

∣∣∣∣∣C
]

(c)
=

(
ε

1− ε

)x−2fαv (k)

.

Above, (a) follows from the representation of Zv(T )−Zu(T )
in Lemma B.1 (which holds since T ≤ distG(u, v)/(α + β)
almost surely) as well as the bound for Dα

vu(T ) established
in Lemma B.2; (b) is due to Markov’s inequality; and (c) is a
consequence of the Optional Stopping Theorem [35, Section
10.10], since T is almost surely bounded.

Finally, to replace the conditioning on the cascade with
conditioning on Ek, we may follow the same reasoning as
the proof of Lemma B.3.

APPENDIX C
PROOFS OF THEOREM IV.2 AND COROLLARY IV.3

We prove a series of lemmas which establish properties of
Tαβ , distG(v∗, v̂(Tαβ)) and Ĉ(Tαβ). The proof of Theorem
IV.2, which follows readily from these results, can be found
at the end of this section.

Lemma C.1. Let k be sufficiently large and let v ∈ U . Then
for |U | sufficiently large,

P
(
Tαβ ≥ Fαv∗

(
15 log |U |
p(1− 2ε)2

)∣∣∣∣Ek) ≤ 2|U |−1/2.



Proof. Define the quantity

tv := Fαv

(
15 log |U |
p(1− 2ε)2

)
, (C.1)

and notice that
p(1− 2ε)

3
fαv (tv) ≥

5 log |U |
1− 2ε

≥ 5 log |U |
log
(

1−ε
ε

) ≥ τ. (C.2)

Moreover, we can bound the probability of interest as

Pv(Tαβ ≥ tv|Ek) ≤ Pv(Tαβ(v) ≥ tv|Ek)

(a)

≤
∑

u∈U\Nv((α+β)tv)

Pv(Zv(tv)− Zu(tv) < τ |Ek)

(b)

≤ 2 exp

(
log |U | − p(1− 2ε)2

10
fαv (tv)

)
(c)

≤ 2 exp

(
−1

2
log |U |

)
.

Above, (a) is due to a union bound, (b) is a consequence of
Lemma B.3 since (C.2) holds, and (c) uses the definition of
tv .

Lemma C.2. Let k be sufficiently large. Then for any v ∈ U ,
it holds that

Pv
(
distG(v, v̂αβ) > (α+ β)Tαβ

∣∣Ek) ≤ ck,ε|U |−1,

where ck,ε is a constant depending only on k and ε.

Proof. We start by writing

Pv
(
distG(v, v̂αβ) ≥ (α+ β)Tαβ

∣∣Ek)
=
∑
u∈U

Pv
(
v̂αβ = u, Tαβ <

distG(v, u)

α+ β

∣∣∣∣Ek). (C.3)

To analyze the probabilities in the summation, let us define the
stopping time Tvu := max{Tαβ , distG(v, u)/(α + β)}. Then
we can bound

Pv
(
v̂αβ = u, Tαβ <

distG(v, u)

α+ β

∣∣∣∣Ek)
≤ Pv(Zv(Tvu)− Zu(Tvu) ≤ −τ |Ek)

≤
(

ε

1− ε

)τ−fαv (k)

=:

(
1− ε
ε

)fαv (k)

|U |−2. (C.4)

Above, the first inequality follows since Tvu = Tαβ when
Tαβ < distG(u, v)/(α + β), and the second inequality is a
consequence of Lemma B.4. In the final expression, we sub-
stitute τ = 2 log |U |/ log((1 − ε)/ε). Finally, substituting the
bound in (C.4) into (C.3) shows that the probability of interest
is at most ck,ε|U |−1, where ck,ε := ((1− ε)/ε)fαv (k).

Lemma C.3. Recall that

Ĉ(Tαβ) := Nv̂(Tαβ)((α+ 2β)Tαβ).

For k sufficiently large, and all |U | sufficiently larger than k,
it holds that

P
(
C(Tαβ) 6⊆ Ĉ(Tαβ)

∣∣∣Ek) ≤ ck,ε|U |−1,

where ck,ε is the constant from Lemma C.2.

Proof. Observe that, for k fixed, we have that Tαβ ≥ k when
|U | is sufficiently large. Indeed, for any u, v ∈ U , we have that
|Zv(t) − Zu(t)| ≤ fαv (t) + fαu (t) as all the observed signals
are at most 1 in absolute value. Hence, for all 0 ≤ t ≤ k,
|Zv(t) − Zu(t)| ≤ fαv (k) + fαu (k), which is smaller than the
threshold 2 log |U |/ log((1− ε)/ε) for |U | sufficiently large. It
follows immediately that Tαβ must be larger than k.

Next, for k large enough, we have that

Pv
(
|C(Tαβ) \ Ĉ(Tαβ)| ≥ 1

∣∣∣Ek)
(a)

≤ Pv
(
∃u ∈ Nv(βTαβ) \ Nv̂αβ ((α+ 2β)Tαβ)

∣∣Ek)
(b)

≤ Pv
(
distG(v, v̂αβ) ≥ (α+ β)Tαβ

∣∣Ek)
(c)

≤ ck,ε|U |−1.

Above, (a) follows since C(t) ⊆ Nv(βt) for all t ≥ k on Ek
when v is the source; (b) is the due to the triangle inequality;
and (c) is a consequence of Lemma C.2.

Proof of Theorem IV.2. Notice that for k fixed but sufficiently
large, the probability bounds in Lemmas C.1, C.2, and C.3 tend
to zero as |U | → 0. We conclude by noting that P(Ek) →
1 by Proposition III.1, so we may take k to increase at an
arbitrarily slow rate with |U | to remove the conditioning on
Ek in Lemmas C.1, C.2 and C.3. The theorem now follows
from a union bound.

Proof of Corollary IV.3. By the form of the cascade estimator
(see (III.6)) and by Item 2 of Theorem IV.2, we have that
Ĉ(Tαβ) is contained within Nv∗((α+β)Tαβ) with probability
tending to 1 as |U | → ∞. Moreover, it holds that∣∣∣Ĉ(Tαβ)

∣∣∣ (a)

≤
∣∣∣∣Nv∗((α+ β)Fαv∗

(
15 log |U |
p(1− 2ε)2

))∣∣∣∣
(b)

≤
(
q

∣∣∣∣Nv∗(αFαv ( 15 log |U |
p(1− 2ε)2

))∣∣∣∣)r(α+β)/α

(c)

≤
(
qfαv

(
Fαv

(
15 log |U |
p(1− 2ε)2

)))r(α+β)/α

(d)
=

(
15q log |U |
p(1− 2ε)2

)r(α+β)/α

.

Above, (a) follows from Item 1 of Theorem IV.2; (b) is due to
Lemma D.5; (c) follows since fαv (t) ≥ Nv(αt) for any t ≥ 0
and v ∈ V (G); and (d) uses that Fαv is the inverse function
of fαv . The desired claim follows from noting that the final
bound is at most logc |U | when c > r(α+ β)/α.

APPENDIX D
BASIC GRAPH-THEORETIC RESULTS

In this appendix, we prove a few elementary but useful
graph-theoretic results.

Lemma D.1. Suppose that G is connected and has maximum
degree ∆. Then for all v ∈ V (G) and all t ≥ 0, it holds that
|Nv(t)| ≤ 2∆t.



Proof. Let ∂Nv(t) denote the set of vertices of distance
exactly t from v. Then we have the inequality |∂Nv(t)| ≤
∆|∂Nv(t−1)| for all t ≥ 1, which implies that |∂Nv(t)| ≤ ∆t.
We then have that

|Nv(t)| =
t∑

s=0

|∂Nv(s)| ≤
t∑

s=0

∆s

=
∆t+1 − 1

∆− 1
≤
(

∆

∆− 1

)
∆t.

Since G is connected, ∆ ≥ 2. As a result, ∆/(∆ − 1) ≤ 2,
which proves the desired statement.

Lemma D.2. Let α > 0 and v ∈ V (G). For any 1 ≤ t1 ≤ t2,
it holds that

fαv (t1) ≤ 2t1
t2
fαv (t2).

Proof. Since fαv (t) is a sum of increasing terms, we have that
fαv (t1)/(t1 + 1) ≤ fαv (t2)/(t2 + 1). It follows that

fαv (t1) ≤ t1 + 1

t2 + 1
fαv (t2).

The desired result follows since t1 + 1 ≤ 2t1 and t2 + 1 ≥
t2.

Lemma D.3. For any 0 ≤ t1 ≤ t2, it holds that fαv (t2) −
fαv (t1) ≥ t2 − t1.

Proof. Since |Nv(αs)| ≥ 1 for all s ≥ 0, it holds that

fαv (t2)− fαv (t1) =

t2∑
s=t1+1

|Nv(αs)| ≥ t2 − t1.

Lemma D.4. As z →∞, Fαv (z) ∼ Fv(αz)/α.

Proof. Let f̃αv (t) and f̃v(t) denote the continuous-time ver-
sions of fαv (t) and fv(t) (which are well-defined for t ∈ Z≥0)
formed by linear interpolation. To relate f̃αv and f̃v , we can
write

f̃αv (t) =

∫ t

0

|Nv(αs)|ds =
1

α

∫ αt

0

|Nv(θ)|dθ =
1

α
f̃v(αt).

(D.1)
Next, define F̃αv and F̃v to be the inverse functions of f̃αv and
f̃v , respectively. It holds for any t ≥ 0 that

1

α
F̃v(αf̃

α
v (t)) =

1

α
F̃v(f̃v(αt)) = t = F̃αv (f̃αv (t)),

where the first equality is due to the relation (D.1). As f̃αv is
a continuous function, it follows that for any z ≥ 0, F̃αv (z) =
F̃v(αz)/α.

Finally, notice that F̃αv and F̃v are linearly interpolated
versions of Fαv and Fv . Moreover, F̃αv and F̃v grow at most
linearly in light of Lemma D.3. Hence Fαv (z) ∼ F̃αv (z) and
Fv(z) ∼ F̃v(z) as z →∞, and the desired result follows.

Lemma D.5. Assume that the condition (IV.1) holds. Then for
non-negative integers t and k, it holds for any v ∈ V (G) that
|Nv(kt)| ≤ (q|Nv(t)|r)k.

Proof. Let k ≥ 0 be an integer. Noting that Nv((k + 1)t) ⊆⋃
u∈Nv(kt)Nu(t), it holds that

|Nv((k + 1)t)| ≤
∑

u∈Nv(kt)

|Nu(t)| ≤ q|Nv(t)|r|Nv(kt)|,

where the first inequality is due to a union bound, and the
second is due to (IV.1). Solving this recursion with the initial
condition |Nv(0)| = 1 proves the lemma.
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